High Resolution Fourier Transform Ion Trap Enabled by Image

Current Splicing: A Theoretical Study

Electronic noise of amplifier

The electronic noise of amplifier includes voltage noise, current noise and thermal noise. OPA 657 was used in the proposed method¹. The electrical characteristics² of OPA 657 related to electronic noise were listed in Table S1.

Symbol	Parameter	Condition	Min Typ Max	Units
GBW	Gain-bandwidth	$G > +40 V/V, T = 25^{\circ}C$	1600	MHz
	product			
	Input impedance	Input impedance (differential) $T = 25^{\circ}C$	1012 0.7	$\Omega \ pF$
	(differential)			
	Input impedance	$T = 25^{\circ}C$	1012114 5	$\Omega \ pF$
	(common-mode)		10 4.5	
e _n	Input voltage noise	f > 100 kHz, T = 25°C	4.8	nV/\sqrt{Hz}
	density			
e _{n_L}	Input voltage noise	$f = 10 Hz, T = 25^{\circ}C$	38	nV/\sqrt{Hz}
	density			
i _n	Input current noise	f > 100 kHz, T = 25°C	1.3	fA/\sqrt{Hz}
	density			

Table S1 The electrical characteristics of OPA 657 related to electronic noise

The input capacitance of OPA 657 lumped in with differential and common-mode input is

$$C_{opa} = 0.7 \text{pF} + 4.5 \text{pF} = 5.2 \text{pF}.$$
 * MERGEFORMAT (1)

The feedback resistance R_f and feedback capacitor C_f are 75 M Ω and 25 fF, respectively. Thus, the zero f_z and pole $f_{p^{3,4}}$ contained in the transfer function are

$$f_{z} = \frac{1}{2\pi R_{f} \left(C_{f} + C_{opa} \right)} = 406.1 \text{Hz} \qquad \forall \text{MERGEFORMAT} (2)$$

$$f_p = \frac{1}{2\pi R_f C_f} = 84.9 \text{KHz.} \qquad \forall \text{MERGEFORMAT (3)}$$

Intersection of the voltage noise gain curve with the AOL curve f_{i1} is

$$f_i = \frac{C_f}{C_{opa} + C_f} GBW = 7.7 \text{MHz.} \qquad \land * \text{ MERGEFORMAT (4)}$$

The start frequency of 1/f noise f_L is 10 Hz obtained in the data sheet, and the 1/f noise voltage corner frequency f_{f^1} is

$$f_f = \frac{e_{n_{-L}}^2 f_L}{e_n^2} = 626.7$$
Hz. * MERGEFORMAT (5)

The voltage noise in region 1 (between f_L and f_f) is

$$E_{noe1} = e_n \sqrt{f_f \ln\left(\frac{f_f}{f_L}\right)} = 244.4 \text{nV}. \quad \forall \text{MERGEFORMAT (6)}$$

The voltage noise in region 2 (between f_z and f_p) is

$$E_{noe2} = \frac{e_n}{f_z} \sqrt{\frac{f_p^3 - f_z^3}{3}} = 168.8 \mu \text{V}. \qquad \forall \text{MERGEFORMAT (7)}$$

The voltage noise in region 3 (between f_p and f_i) is

$$E_{noe3} = e_n \frac{C_{opa} + C_f}{C_f} \sqrt{f_i - f_p} = 2.8 \text{mV}. \quad \forall \text{MERGEFORMAT (8)}$$

The voltage noise in region 4 (greater than f_i) is

$$E_{noe4} = e_n GWB \sqrt{\frac{1}{f_i}} = 2.8 \text{mV}.$$
 * MERGEFORMAT (9)

The voltage noise is

$$E_{noe} = \sqrt{E_{noe1}^2 + E_{noe2}^2 + E_{noe3}^2 + E_{noe4}^2} = 3.9 \text{mV.} \times \text{MERGEFORMAT}$$

(10)

The voltage noise in region 1 and 2 is partially overlapped, which is ignored because the voltage noise in region 1 is much smaller than that in region 2. The current voltage¹ is

$$E_{noi} = i_n R_f \sqrt{K_n f_p} = 35.6 \mu V \qquad \land * \text{ MERGEFORMAT (11)}$$

where $K_n = 1.57$ is the brick wall conversion factor for 1 filter order. The thermal noise⁵ is

$$E_{nor} = \sqrt{4kTR_f K_n f_p} = 400.5 \mu V$$
 * MERGEFORMAT (12)

where $k = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant and T = 298K is temperature in Kelvin.

The total noise is

$$E_{no} = \sqrt{E_{noe}^2 + E_{noi}^2 + E_{nor}^2} = 3.9 \text{mV}.$$
 * MERGEFORMAT (13)

Validation using FT-ICR data

Figure S1a plotted the raw signal in time domain which was the image current induced by cytochrome C (16+) ions at 1×10^{-10} Torr with nitrogen as the buffer gas. Compared with Figure S1b, the signal decay in Figure 1 was not apparent. Figure S2b showed the raw signal with only the 186-187 kHz frequency band retained, which is the signal shown in Figure 1 filtered by a bandpass filter with a passband of 186-187 kHz. The signal in Figure S2b was exponentially decaying.

Figure S1 (a). The raw signal in time domain which was the image current induced by cytochrome C (16+) ions at 1×10^{-10} Torr with nitrogen as the buffer gas. (b). The raw signal filtered by a bandpass filter with passband of 186-187 kHz.

Due to the previous process such as envelope normalization and the splicing, the reconstructed signal didn't decay, which resulted in a poor overlap between the frequency spectrum of the reconstructed signal and these 3 sets of raw signals. When the reconstructed signal was decayed as the raw signals, the correlation coefficients between the reconstructed spectrum and 3 sets of raw spectra were increased to 0.98-0.99, which meant that they were about the same. Figure S2 was the frequency spectra of the reconstructed signal with the same decay ratio and these 3 sets of raw signals.

Figure S2. The frequency spectra of the reconstructed signals with decay and these 3 sets of raw signals.

References:

- 1. K. Art, Operational Amplifier Noise, 2012.
- 2. J. M. Bryant, *Electron Eng*, 1996, **68**, 47-&.
- 3. A. V. Kretinin and Y. Chung, *Rev Sci Instrum*, 2012, 83.
- 4. A. J. Peyton, Y. Aboufakher and B. Wilson, *lee P-Circ Dev Syst*, 1994, **141**, 210-214.
- 5. F. N. Trofimenkoff and O. A. Onwuachi, *leee T Educ*, 1989, **32**, 12-17.