Supporting Information

Ionic liquid functionalized metal-organic framework nanowires for sensitive and real-time electrochemical monitoring nitric oxide released from living cells

Lijun Tang,[†] Xinyu Sun,[†] Xianping Gao, Linyu Wang, Pei Yang, and Pinghua Ling*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

* To whom correspondence should be addressed. E-mail: phling@ahnu.edu.cn (P. Ling)

Fig. S1. XPS spectra of MOFNWs: (A) Ni 2p, (B) C 1s, and (C) O 1s.

Fig. S2. HRTEM images of (A) MOFNWs and (B) IL@Au@MOFNWs/ITO, (C-E) STEM images and the corresponding elemental mapping of MOFNWs, and (F) TEM-EDS of MOFNWs.

Fig. S3. (A) CVs of bare ITO (a), MOFNWs/ITO (b), Au@MOFNWs/ITO (c) and IL@Au@MOFNWs/ITO (d) in 0.1 M pH 7.4 PBS containing 10 μ M NO. (B) CV responses of the biosensor to different concentrations of NO at 10 nM, 20 nM, 30 nM, 40 nM, 60 nM, 80 nM, 100 nM, 500 nM, 1.0 μ M, 2.0 μ M, 3.0 μ M, 4.0 μ M, 5.0 μ M, 6.0 μ M, 7.0 μ M, 8.0 μ M, 9.0 μ M, 10 μ M, 20 μ M, 30 μ M, 40 μ M, 50 μ M, 60 μ M, 100 μ M, 200 μ M, 300 μ M and 350 μ M (from top to bottom). (C) Calibration curve of current intensity vs. NO concentration.

Fig. S4. CV response of IL/ITO (a), AuNPs/ITO (b) and IL@Au/ITO (c) with 30 μ M NO in 0.1 M PBS.

Modified electrodes	Linear range	LOD	Reference
N-G/FePc/Nafion/PLL ITO electrode	0.18-400 μM	0.18 μΜ	1
poly(TTBA-rGO)/ZnO/GCE	0.019–76 μM	7.7 nM	2
CNF/hemin/Nafion electrode	0.02-1 μM	10 nM	3
CA/CS/GNP 1.54T-CUA electrode	5-100 µM	0.2 µM	4
Nafion/Pt/BDD	0-10 µM	0.5 μΜ	5
laminin/AuNPs-ctDNANGS/SPCE	2-500 nM	0.8 nM	6
3D hemin/CFN	0.024-70.9 μM	8.0 nM	7

Table S1. Comparison of the performance of this sensor with other reported for the determination of NO.

Parallel test	Current (µA)		
	L-Arg 2.0 mM	L-Arg 8.0 mM	
1	7.25	21.44	
2	7.54	22.04	
3	7.83	20.85	
4	7.91	22.76	
5	8.06	22.40	
6	7.91	22.70	
Average	7.75	21.70	
RSD	3.85	3.73	

Table S2. The reproducibility of the sensor for cell culture experiments

Fig. S5. Stability test for the IL@Au@MOFNWs/ITO electrode over 21 days.

Fig. S6. (A) SEM and (B) TEM imagines of IL@Au@MOFNWs/ITO after electrochemical testing.

Supporting Reference

- [1] H. Xu, C. Liao, Y. Liu, B. Ye, B. Liu, Anal. Chem. 90 (2018) 4438-4444.
- [2] M. Kim, M. Naveen, N. Gurudatt, Y. Shim, Small 13 (2017) 1700502.
- [3] L. Liu, L. Zhang, Z. Dai, Y. Tian, Analyst 142 (2017) 1452–1458.
- [4] J. Elliott, J. Duay, O. Simoska, J. Shear, K. Stevenson, Anal. Chem. 89 (2017) 1267– 1274.
- [5] S. Henderson, K. Bhardwaj, V. Perugachi, P. Espinoza-Montero, J. J. Galligan, G.

M. Swain, Anal. Chem. DOI: 10.1021/acs.analchem.2c03731.

- [6] B. Dou, J. Li, B. Jiang, R. Yuan, Y. Xiang, Anal. Chem. 91 (2019) 2273–2278.
- [7] F.X. Hu, X.L. Xie, D.P. Wang, H.B. Yang, Y. Gu, B. Chen, C.M. Zhang, Q.H. Rao,

Q.F. Li, C.X. Guo, Sens. Actuators, B 334 (2021) 129594.