Supplementary Data For:

The maternal-fetal transfer of passive immunity as a mechanism of transplacental nanoparticle drug delivery for prenatal therapies

Wai Hei Tse^{abc}, Sean Higgins^d, Daywin Patel^{abc}, Malcolm Xing^e, Adrian R. West^{bc}, Hagar I. Labouta ^{bf}, and Richard Keijzer^{abc*}

^aDepartments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Manitoba, Canada.

^bChildren's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.

^cDepartment of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada

^dMax Rady College of Medicine, University of Manitoba, Manitoba, Canada.

^eDepartment of Mechanical Engineering, University of Manitoba, Manitoba, Canada.

^fCollege of Pharmacy, University of Manitoba, Manitoba, Canada.

*Corresponding author: Richard Keijzer Email:richard.keijzer@umanitoba.ca

Table S1. Formulation of chitosan nanoparticles (CNPs)

Sample	Chitosan Concentration	Chitosan volume (mL)	STPP Concentration	STPP volume (mL)
CNP1 (Bare CNPs)	3 mg/mL	10	5 mg/mL	3
CNP2	2 mg/mL	15	3 mg/mL	5

Bare chitosan nanoparticles (bare CNPs) were synthesized by pouring 9 mL of a 5 mg/mL STPP solution into 30 mL of a 3 mg/mL chitosan solution. CNPs to be surface modified with IgG (CNP2) were synthesized by pouring 10 mL of a 3 mg/mL STPP solution into 30 mL of a 2 mg/mL chitosan solution. The as-synthesized NPs were centrifuged at 6500 rpm for 20 minutes and washed with deionized water thrice. CNPs were resuspended in deionized water via ultra-sonification on 30% power for 30 seconds.

Figure S1. Bioconjugation of IgG to CNP2. Bioconjugation of IgG antibodies to CNP2 to form IgG-CNP was confirmed. FTIR spectrograph of IgG surface bioconjugation to CNP2. The combined spectra (purple) confirm the bioconjugation of unmodified CNP2 (blue) and IgG antibodies (red). Across all samples, a broad peak was detected around 3200 cm⁻¹ attributed to the stretching of hydroxyl (-OH), and amino (-NH, -NH₂) groups. Stretching attributed to the interaction of water molecules with aromatic rings in the chitosan and amino acid structures was observed at 2130 cm⁻¹ and amino bending (-NH) was observed at 1636 cm⁻¹ across all samples. We observed stretching at 2340 and 2360 cm⁻¹ which is attributed to the carbonate groups (-COO-) and nitro compound stretching (-NO) at 1550 cm⁻¹ of peptide bonds in the anti-IgG. This also corresponds to the secondary structure of the IgG α -helices and β -sheets. C-O stretches were observed between 1044 to 1323 cm⁻¹. The 1550 cm⁻¹ peak observed in the FITR spectrum of the IgG-modified CNPs indicating conjugation of IgG to the CNPs.

 Sample $(n = 3)$	Size (nm)	Polydispersity	Zeta Potential (mV)
		Index	
CNP1 (bare CNP)	$375\pm17^{~\delta}$	0.23 ± 0.01 $^{\epsilon}$	0.24 ± 1.22
CNP2	$281\pm12^{~\delta,~\gamma}$	$0.19\pm0.02^{~\epsilon,~\gamma}$	0.02 ± 0.72
CNP2-IgG (IgG-CNP)	$414\pm27~^{\gamma}$	$0.30\pm0.02^{~\epsilon,~\gamma}$	0.23 ± 0.73

Table S2. Physical properties of chitosan nanoparticle formulations

A one-way ANOVA analysis with a Bonferroni's multiple comparison test was performed to compare effect of formulations on size, polydispersity index, and zeta potential. A significant difference in size was measured between CNP1 and CNP2 ($p \le 0.01$; 95% C.I. = [42.2, 146.8]) and CNP2 and CNP2-IgG ($p \le 0.001$; 95% C.I. = [-185.1, -80.47]). A significant difference in polydispersity index was measured between CNP1 and CNP2 ($p \le 0.05$, 95% C.I. = [0.001503, 0.09650], CNP1 and CNP2-IgG ($p \le 0.05$, 95% C.I. = [-0.1148, -0.01984]), and CNP2 and CNP2-IgG ($p \le 0.001$, 95% C.I. = [-0.1638, -0.06884]). There was no significant difference in zeta potential (p = 0.9171). ϵ represents $p \le 0.05$; δ represents $p \le 0.01$; γ represents $p \le 0.001$.

Figure S2. Orthographic projection of the established BeWo placental epithelial monolayer. Orthographic z-stack projections (white boxes) were obtained by laser scanning confocal microscopy. The establishment of zona occludens-1 (ZO-1, red) tight junction proteins was visualized by immunostaining. Nuclei were stained with DAPI (blue). Scale bar is 20 µm. A) Projection of the BeWo placental epithelial cell monolayer. B) ZO-1 tight junctions remained intact 18 hours post-exposure to FITC-tagged IgG-CNPs (green). IgG-CNPs were detected within the cell body.