Supplementary data for

Development of polyacrylamide/chitosan composite hydrogel conduit containing synergistic cues of elasticity and topographies for promoting peripheral nerve regeneration

Fang Liu^{1,2,3#}, Jiawei Xu^{1,2#}, Anning Liu⁴, Linliang Wu^{1,2}, Dongzhi Wang^{4,5}, Qi Han^{1,2},

Tiantian Zheng^{1,2}, Feiran Wang⁴, Yan Kong^{1,2}, Guicai Li^{1,2*}, Peng Li^{4*}, Shouyong Gu^{6,7*}, Yumin Yang^{1,2,3*}

¹Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-

innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, P.R.

China

²NMPA Key Laboratory for Research and Evaluation of Tissue Engineering

Technology Products, Nantong University, 226001, Nantong, P.R. China

³School of Medical, Nantong University, 226001, Nantong, P.R. China

⁴Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China, 226001

⁵Department of General Surgery, Affiliated Hospital of Nantong University,

Nantong, Jiangsu, China, 226001

⁶Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R China, 226001

⁷Geriatric Hospital affiliated to Nanjing Medical University, Nanjing , Jiangsu, P.R China, 211166

⁸Geriatric institute of jiangsu province, Jiangsu, P.R China, 211166#These authors contributed equally to the work

*Corresponding author:

gcli1981@ntu.edu.cn(Guicai Li), pengli@ntu.edu.cn(PengLi),

gushouyong@jspgh.com (Shouyong Gu), yangym@ntu.edu.cn (Yumin Yang)

Table S1. Ratio of PAM/CS hydrogel solution (solution volume: 100mL).								
Young's	Acrylamide	N-H-methylene	Ammonium					
modulus(kPa)	(g)	bisacrylamide(g)	persulfate(µL)	chitosan(g)				
2.151	23.2	0.08	200	1				
4.186	23.2	0.2	200	1				
5.882	23.2	0.4	200	1				
8.41	23.2	0.6	200	1				
10.024	23.2	0.8	200	1				

Table S2. Variation of groove width of hydrogel with different elasticity after soaking.

Groove size	10(µm)	30(µm)	50(µm)	80(µm)	Young's modulus
Groove dimensions before soaking	10±0.5	30±2	50±2.5	80±4.5	8.41kPa
Groove size for soaking water for 15 days	10±2.5	35±5	55±8	100±2	2.151kPa
	10±2.5	30±4	55±5	95±3	4.186kPa
	10±2	30±4	55±5	95±3	5.882kPa
	10±2	30±3	55±3	95±2	8.41kPa
	10±1.5	30±3	50±3	95±2	10.024kPa

Ridge size	4.5(µm)	10(µm)	20(µm)	65(µm)	Young's modulus
Ridge dimensions before soaking	4.5±1	10±0.5	20±1.5	65±4.5	8.41kPa
Ridge size soaked in water for 15 days	5±2	10±5	20±5	75±4	2.151kPa
	5±2	10±3	20±4	75±3	4.186kPa
	5±2	10±3	20±3	75±3	5.882kPa
	5±1	10±2	20±3	75±2	8.41kPa
	5±1	10±2	20±3	75±2	10.024kPa

Table S3. The change of ridge width of hydrogel with different elasticity after

soaking.

3

Fig. S1. Samples of different sizes were immersed in PBS for 15 d and then observed under a light microscope the erosion of the micro-pattern structure.

Fig. S2. ATR-FTIR spectra of chitosan, polyacrylamide, polyacrylamide/chitosan and polyacrylamide/chitosan with surface topology.

Fig. S3. In vitro cell cytocompatibility testing. The cytocompatibility of the hydrogel on L929 cells was detected by MTT at 48 h, n=4. All results are mean \pm SD.

Fig. S4. Immunofluorescence staining of Schwann cells on hydrogel with elastic modulus of 5.882kPa and topological size of 10μ m, 30μ m and 50μ m, respectively

after 1 day of culture.

Fig. S5. Immunofluorescence staining of DRG neurons on hydrogels with different elastic modulus. (A) DRG neurons were cultured on different elastic hydrogels for 7 d. DRG neurons were stained with NF200 (red). Scale bar indicates 500 μ m. (B) Statistics of nerve protrusion length on different elastic hydrogels.

Fig. S6. Immunofluorescence staining of regenerated nerve tissue. At 2 w after surgery, representative images of nerve regeneration in the autograft group, 4.186 kPa/30μm, 5.882 kPa/30μm, 8.41 kPa/30μm and 10.024 kPa/30μm conduits. (A)Immunofluorescence staining image of longitudinal section of S100. Green color, S100. (B)Immunofluorescence staining image of longitudinal section of Neurofilaments. Red color, NF200. Scale bar indicates 1 mm.

Fig. S7. The expression of the proximal, middle and distal nerves in the five groups regenerated nerves at 2 w postoperatively. (A)Immunofluorescence staining image of cross section of S100. Green color, S100. Scale bar indicates 150 μ m. (B)The relative expression level of S100. Scale bar indicates 150 μ m.

Fig. S8. The expression of the proximal, intermediate and distal nerves in the five groups regenerated nerves at 12 w postoperatively. (A)Immunofluorescence staining image of cross section of S100. Green color, S100. Scale bar = 250μ m. (B)The relative expression level of S100. (C)Immunofluorescence staining image of cross-section of Neurofilaments. Red color, NF200. Scale bar= 250μ m. (D)The relative expression level of NF200. The result is the mean ± standard deviation.

Fig. S9. The regeneration of the myelin sheath in the proximal, middle and distal cross-sections of the autograft group, $4.186 \text{ kPa/30 } \mu\text{m}$, $5.882 \text{ kPa/30 } \mu\text{m}$, $8.41 \text{ kPa/30} \mu\text{m}$ and $10.024 \text{ kPa/30 } \mu\text{m}$ conduits regenerated sciatic nerve at 12 w postoperatively. Scale bar indicates 10 μm .