Supporting Information

Injectable Thermosensitive Hydrogel to EnhancePhotothermalAblationandSystemicImmunotherapy of Breast Tumors

Tao Qin, Ruipeng Li, Huiqin Jin, Yunxia Wang* and Liheng Feng*

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006,

P.R. China

E-mail: wangyunxia@sxu.edu.cn (Wang, Y.X.); https://lhfeng@sxu.edu.cn (Feng, L.H.)

Fig. S1. ¹H NMR spectrum of N-1 in CDCl_{3.}

Fig. S2. ¹³ C NMR spectrum of N-1 in CDCl₃.

Fig. S3. ¹H NMR spectrum of N-2 in CDCl_{3.}

Fig. S4. ¹³ C NMR spectrum of N-2 in DMSO- d_6 .

Fig. S5. LCMS of N-3.

Fig. S6. ¹H NMR spectrum of N-3 in CDCl₃.

Fig. S7. ¹³ C NMR spectrum of N-3 in CDCl₃.

Fig. S8. MALDI-TOF of N-4.

Fig. S10. ¹³ C NMR spectrum of N-4 in CDCl₃.

Fig. S11. MALDI-TOF of N-5.

Fig. S12.¹ H NMR spectrum of N-5 in CDCl₃.

Fig. S13. ¹³ C NMR spectrum of N-5 in CDCl₃.

Fig. S14. MALDI-TOF of M-1.

Fig. S16. ¹³ C NMR spectrum of M-1 in CDCl₃.

Fig. S17. MALDI-TOF of M-2.

Fig. S18. ¹ H NMR spectrum of M-2 in CDCl₃.

Fig. S19. ¹³ C NMR spectrum of M-2 in CDCl₃.

Fig. S20. MALDI-TOF of M-3.

Fig. S21. ¹ H NMR spectrum of M-3 in CDCl₃.

Fig. S22. ¹³ C NMR spectrum of M-3 in CDCl₃.

Fig. S23. MALDI-TOF of M-4.

Fig. S24. ¹ H NMR spectrum of M-4 in CDCl₃.

Fig. S25. ¹³ C NMR spectrum of M-4 in CDCl₃.

Fig. S26. Normalized absorption spectra of M-1, M-2, M-3 and M-4 in THF and M-1, M-2, M-3 and

M-4 NPs in H_2O .

Fig. S27. Size distributions and SEM images of a) M-1 NPs, b) M-2 NPs, c) M-3 NPs, d) M-4 NPs.

Fig. S28. Photothermal performance of a) M-1 NPs (20 μ M, 660 nm, 2 W/cm²), b) M-2 NPs (20 μ M, 660 nm, 2 W/cm²), c) M-3 NPs (10 μ M, 808 nm, 1 W/cm²), and d) M-4 NPs (10 μ M, 808 nm, 1 W/cm²) by cooling to room temperature with linear analysis.

Fig. S29. Photothermal stability of a) M-1 NPs and b) M-2 NPs upon 660 nm laser irradiation (20 μ M, 2 W/cm²). Photothermal stability of c) M-3 NPs and d) M-4 NPs upon 808 nm laser irradiation (10 μ M, 1 W/cm²).

Fig. S30. a) Temperature changes of M-1 NPs, M-2 NPs, M-3 NPs and M-4 NPs (10 μ M) in H₂O under laser irradiation. b) PL spectrum of M-4 in solid state. c) Photothermal curves of M-4 NPs at different concentrations (0, 5, 10, 15, 20 μ M) under 808 nm (1 W/cm²) laser irradiation. d) Photothermal curves of M-4 NPs (10 μ M) under 808 nm laser irradiation at different power density (0.00, 0.25, 0.50, 0.75, and 1.00 W/cm²).

Fig. S31. a) Photothermal properties of AMDR hydrogels under irradiation of 808 nm laser (1 W/cm^2) containing different concentrations of M-4 NPs (0, 5, 10, 15, 20 μ M). b) Photothermal stability of AMDR hydrogel with M-4 NPs concentration of 10 μ M under irradiation of 808 nm laser (1 W/cm^2).

Fig. S32. a) Body weight changes of mice during different treatments. b) Numbers of tumor metastatic nodules in lung of mice (n = 5) after different treatments for 21 days. *p < 0.05, **p < 0.01, and ***p < 0.001.