Supporting Information

Unravelling the interactions of biodegradable dendritic nucleic acids carriers and neural cells

Ana Patrícia Spencer, Victoria Leiro*, Ana Paula Pêgo*

A.P. Spencer, Dr. V. Leiro, Dr. A.P. Pêgo
i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal

A.P. Spencer

FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

Dr. A.P. Pêgo

ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-343 Porto, Portugal

*Corresponding authors

Table of Contents

1)	Deposition assay of Cy5-siRNAmi drndriplexes	3
2)	Internalization kinetics data in neuronal cell lines	4
3)	Internalization kinetics data in primary cortical neurons	5
4)	Endocytic mechanism in neuronal cell lines	7
5)	Endocytic mechanism in primary cortical neurons	9
6)	Intracellular path in neuronal cell lines (late endosomes)	10
7)	Intracellular path in primary cortical neurons (late endosomes and	
	autophagosomes)	11
8)	Endocytosis study with inhibitors	13

1) Deposition assay of Cy5-siRNAmi dendriplexes

Figure S1. Deposition assay of a) Cy5-siRNAmi dendriplexes at N/P 5 and 80. Dendriplexes were incubated in medium (DMEM with GlutaMAXTM) at 37 °C and the fluorescence intensity (5 x 5 spots, $\lambda_{exc} = 633$ nm, $\lambda_{em} = 647$ nm) of the well bottom was measured every 15 minutes, up to 1.5 hours. b) DMEM with GlutaMAXTM, free dendrimer and Cy5-siRNAmi were used as controls. Significant differences: ####, ****p ≤ 0.0001 . For free Cy5-siRNA, the symbol # denotes significant differences between times of incubation.

2) Internalization kinetics data in neuronal cell lines

Figure S2. Confocal microscopy images of ND7/23 and HT22 cell lines after incubation with Cy5-siRNAmi-fbB dendriplexes at N/P 5 and 80 at different time points (2, 4, 6, 8, 24 and 48 hours). Nuclei stained with Hoechst 33342 (blue). Actin filaments stained with Alexa FluorTM 488 Phalloidin (green). White arrows point to Cy5-siRNAmi dendriplexes (red). Scale bar: 20 μm.

3) Internalization kinetics data in primary cortical neurons

Figure S3. Confocal microscopy images of primary cortical neurons after incubation with Cy5-siRNAmi-fbB dendriplexes at N/P 5 and 80 at different time points (4, 6, 8, 24 and 48 hours). Staining: Nuclei with Hoechst 33342 (blue), β III-tubulin (green), and Cy5-siRNAmi dendriplexes (red). Scale bar: 15 µm.

Figure S4. Representative images used in the analysis of internalization kinetics in primary cortical neurons. Cells were incubated with Cy5-siRNAmi-fbB dendriplexes at N/P 5 and 20 at different time points (4, 6, 8, 24 and 48 hours). Untreated cells were used as control. Staining: Nuclei with Hoechst 33342, β III-tubulin, and Cy5-siRNAmi dendriplexes. Acquired images were a) segmented and then Cy5 fluorescence intensity (red) was quantified in b) neuronal extension (green) and in c) perinuclear area (white).

4) Internalization mechanism in neuronal cell lines

Figure S5. Confocal microscopy images of ND7/23 and HT22 cells after incubation with Cy5-siRNAmi-fbB dendriplexes at N/P 5 for 24 hours. Staining: nuclei with Hoechst 33342 (blue), actin filaments with Alexa FluorTM 488 Phalloidin (green), Clathrin (cyan), and Cy5-siRNAmi dendriplexes (red). Scale bar: 15 μ m.

Figure S6. Confocal microscopy images of ND7/23 and HT22 cells after incubation with Cy5-siRNAmi-fbB dendriplexes at N/P 5 for 24 hours. Staining: nuclei with Hoechst 33342 (blue), actin filaments with Alexa FluorTM 488 Phalloidin (green), Caveolin-1 (cyan), and Cy5-siRNAmi dendriplexes (red). Scale bar- ND7/23: 15 μ m; HT22: 20 μ m.

5) Internalization mechanism in primary cortical neurons

Figure S7. Confocal microscopy images of primary cortical neurons after incubation with Cy5-siRNAmi-fbB dendriplexes at N/P 5 for 24 h. Untreated cells (NT) were used as control. Staining: nuclei with Hoechst 33342 (in blue), β III-tubulin (in green), Clathrin (in yellow), and Cy5-siRNAmi dendriplexes (in red). Scale bar: 20 µm.

6) Intracellular path in neuronal cell lines (late endosomes)

Figure S8. Confocal microscopy images of ND7/23 and HT22 cells after incubation with Cy5-siRNAmi/fbB dendriplexes at N/P 5 for 24 h. Staining: nuclei with Hoechst 33,342 (in blue), actin filaments with Alexa FluorTM 488 Phalloidin (green), LAMP-1 (cyan), and Cy5-siRNAmi dendriplexes (red). Scale bar: 15 μ m.

7) Intracellular path in primary cortical neurons (late endosomes and autophagosomes)

Figure S9. Confocal microscopy images of primary cortical neurons after incubation with Cy5-siRNAmi/fbB dendriplexes at N/P 5 for 24 hours. Untreated cells (NT) were used as control. Staining: nuclei with Hoechst 33342 (blue), late endosomes – LAMP-1 (yellow), and Cy5-siRNAmi dendriplexes (red). Scale bar: 20 μ m.

Figure S10. Confocal microscopy images of primary cortical neurons after incubation with Cy5-siRNAmi-fbB dendriplexes at N/P 5 for 24 hours. Untreated cells (NT) were used as control. Staining: nuclei with Hoechst 33342 (blue), autophagosomes - LC3 (yellow), and Cy5-siRNAmi dendriplexes (red). Scale bar: 20 μ m.

8) Endocytosis study with inhibitors

Table S1. Inhibitors of endocytosis (dependent on clathrin or caveolin) tested and the concentrations used by us in ND7/23 and HT22 cells. Despite the effects recorded on these cells, the use of these inhibitors is described in many other cells (mostly, non-neuronal cells).

Inhibitor	Endocytic mechanism	Concentrations tested	Effect in cells	Cells already tested	References
Chlorpromazine	Clathrin	2, 4, 6, 8 and 10 µg/mL	90-100% of cells died in less than 10 mins	HeLa, A549, 1321N1, COS-7, Vero, HuH-7, ARPE-19, D407, CIK, SK-Hep1, HEK293	dos Santos et al., 2011; Vercauteren et al., 2010; Rejman et al., 2005; Wang et al., 2016; Maddila et al., 2021; Itoh et al., 2008
Phenylarsine oxide	Clathrin	0.05, 0.1, 1 and 5 μM		H358, Calu-3, SNU-1327, H1703, adrenal chromaffin cells	Prichard et al., 2021; Kim et al., 2021
Genistein	Caveolin	50, 100, 200 and 400 µM	~90% of cells died in less than 30 mins	D407, Vero, COS-7, HuH-7, ARPE-19, A549, HCT116, COLO205, Sf1Ep	Vercauteren et al., 2010; Horibe et al., 2018; Singh et al., 2012
Filipin III	Caveolin	0.5, 1, 2, 5 and 10 μg/mL	_	A549, CIK, Sf1Ep, SK-Hep1	Rejman et al., 2005; Wang et al., 2016; Singh et al., 2012; Madilla et al., 2021
Methyl-β- Cyclodextrin	Caveolin	20, 250, 500, 1000 and 5000 μM	90-100% of cells died in less than 10 mins (concentrations above 1000 μ M). At 20-500 μ M, no uptake differences were observed	D407, Vero, COS-7, HuH-7, ARPE-19, A549, BY-2, HEK293, Sf1Ep	Vercauteren et al., 2010; Chen et al., 2018; Itoh et al., 2008; Singh et al., 2012; Rejman et al., 2005

Figure S11. Cellular interaction of N/P 5 Cy5-siRNAmi dendriplexes by cell lines pretreated with a caveolin-mediated endocytosis inhibitor. ND7/23 and HT22 cells were incubated for 10 minutes with methyl- β -cyclodextrin (MBCD, 20-500 μ M), and then incubated for 6 hours with dendriplexes carrying Cy5-siRNAmi ([Cy5-siRNAmi]_f = 100 nM). Characterization by flow cytometry: a) Percentage of cells with fluorescence signal of Cy5-siRNAmi dendriplexes and b) Intensity of fluorescence in cells. Results are shown as mean \pm SD of three independent experiments (n=3). Two-way ANOVA tests were used for statistical analysis. No significant differences between the non-treated cells (0 μ M) and the MBCD-treated cells were observed.

Figure S12. Cytotoxic profile evaluation in primary cortical neuron cultures. Plasma membrane integrity assessed by LDH assay, after exposure of the cultures to: a) methyl- β -cyclodextrin (MBCD) or b) chlorpromazine. Non-treated (NT) cells, cells treated with dimethylsulfoxide (DMSO, 0.5% (v/v)) and TritonTM X-100 (0.02% (v/v)) were used as controls. Results are represented as mean \pm SD of three independent experiments (n = 3). Two-way ANOVA tests were used for statistical analysis. Significant differences: #### $p \le 0.0001$. The symbol # indicates significant differences versus the NT cells.