Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2023

A highly efficient photothermal branched Au-Ag nanoparticles containing procyanidins for synergistic antibacterial and antiinflammatory immunotherapy

Hanchi Wang ^{a, b}, Dongyang Wang ^b, Huimin Huangfu ^{a, b}, Siyu Chen^{a,b}, Qiuyue Qin ^{a, b}, Sicong Ren^{a,b}, Yidi

Zhang ^{a, c}*, Li Fu^{a, b}*, Yanmin Zhou ^{a, b}*

^a Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China

^b Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin

University, Changchun, 130021, China

° State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University,

Changchun 130012, China

Corresponding author: zhouym@jlu.edu.cn (Dr. Y. Zhou), fuli1127@jlu.edu.cn (Dr. L. Fu), zhangyidi@jlu.edu.cn

(Dr. Y. Zhang)

1. Calculation of the photothermal conversion efficiency (η)

The specific derivation process of photothermal conversion efficiency was calculated as follows:

$$\eta = \frac{hS(T_{max} - T_0)}{I(1 - 10^{-A_{808}})}$$
(1)

Where T_{max} is the highest temperature of AuAg-PC NRs solution irradiated for 10 min, and T_0 is the highest temperature of the water. *I* is the laser power (2.5w), and A_{808} is the absorbance of AuAg-PC at 808 nm. *hS* is directly derived from the formula:

$$\tau_s = \frac{m \times C}{hS}$$
(2)

m = 1 g, $C = (4.2 \text{ J g}^{-1})$. τ_s is the slope of the fitting line between cooling time t and $ln\theta$.

$$t = -\tau_s(ln\theta)$$

$$\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$$
(3)

(4)

T is the temperature corresponding to the cooling time, and T_{surr} is the ambient temperature.

2. Supplementary table

Table S1: EE (%) and DLC (%) for different NPs		
Materials	DLC(%)	EE(%)
AuAg-PC I	6.667 ± 0.5819	65.23 ± 1.65
AuAg-PC II	3.2 ± 0.4163	75.47 ± 1.541
AuAg-PC III	1.35 ± 0.3753	58.23 ± 1.198

Table S2: The antimicrobial activity of different treatment			
Materials	MIC(µg ml ⁻¹)	MBC(µg ml ⁻¹)	
AuAg-PC I/NIR	150	300	
AuAg-PC II/NIR	75	150	
AuAg-PC III/NIR	50	100	

3. Supplementary figures

Fig. S1. XPS spectra of the Ag3d region of the AuAg-PC NPs.

Fig. S2. XPS spectra of the Au4f region of the AuAg-PC NPs.

Fig. S3. Cytotoxicity of AuAg-PC NPs under NIR irradiation.

Fig. S4. Cytotoxic effect of (A) AuAg-PC I (B) AuAg-PC II and (C) AuAg-PC III under NIR irradiation.

Fig. S5. Hemolysis ratios of fresh RBCs in the presence of AuAg-PC II.

Fig. S6. HE staining sections of main organs.