Supporting Information

A Simple and Programmable Dual-mode Aptasensor for

Ultrasensitive Detection of Multidrug-resistant bacteria

Fengfeng Zhao^{1*}, Mingyuan Zou¹, Huina Wu¹, Yuming Yao¹, Meiling Zhou¹, Shuo Ma¹, Feng Xiao¹, GuliNazhaer Abudushalamu¹, Yaya Chen¹, Shijie Cai¹, Chenyan Yuan¹, Xiaobo Fan², Xinglu Jiang^{3*}, Guoqiu Wu^{1,2,4*}

1. Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China

2. Diagnostics Department, Medical School of Southeast University, Nanjing 210009, People's Republic of China

3. Clinical Laboratory Medicine Department, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China

4. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, People's Republic of China

Name	Sequence $(5' \rightarrow 3')$				
MRSA aptamer 1 ^[1]	NH ₂ -CCATCCACACTCCGCAAGGGTGCCCCGGGGGGGCTGTTCAGCGTGGT				
	GGTGGGATGCCGTTTTGGTCCTTAGTCTCCGTCGTCGG <mark>CTGCCTCTACAT</mark>				
	SH-CCATCCACACTCCGCAAGGGTGCCCCGGGGGGGCTGTTCAGCGTGGT				
MRSA aptamer 2	GGTGGGATGCCGTTTTGGTCCTTAGTCTCCGTCGTCGG <mark>CTGCCTCTACAT</mark> -				
	BHQ2				
MRSA probe	TTTTTT <mark>ATGTAGAGGCAG</mark> -Cy5				
<i>E. coli</i> aptamer 1 ^[2]	NH2-GGCAGGACACCGTAACGGGTATGCAGCTATCCCGGGCGCTGTCTGA				
	AGA <mark>TCGTGTGCTGCT</mark>				
E. coli aptamer 2	SH-				
	GGCAGGACACCGTAACGGGTATGCAGCTATCCCGGGCGCTGTCTGAA				
	GA <mark>TCGTGTGCTGCT</mark> -BHQ2				
E. coli probe	TTTTTT <mark>AGCAGCACACGA</mark> -Cy5				
<i>M. tuberculosis</i> aptamer 1 ^[3]	NH2-GGTGTGTTGACTGAGGGGGGGGGGGGGGGGGGGGGGGGG				
M. tuberculosis aptamer 2	SH-GGTGTGTTGACTGAGGGGGGGGGGGGGGGGGGGGGGGGG				
	BHQ2				
M. tuberculosis probe	TTTTTT <mark>GCTATATCCACC</mark> -Cy5				
A.baumanii aptamer 1 ^[4]	NH2-TACATGGTCAACCAAATTCTTGCAAATTCTG <mark>CATTCCTACTGT</mark>				
A.baumanii aptamer 2	SH-TACATGGTCAACCAAATTCTTGCAAATTCTG <mark>CATTCCTACTGT</mark> -BHQ2				
A.baumanii probe	TTTTTT <mark>ACAGTAGGAATG</mark> -Cy5				
P. aeruginosa aptamer 1 ^[5]	NH2-GCGCGCGAGATTAACCCCCCAATGCTGCACCGAGCCACGA				
P. aeruginosa aptamer 2	SH-GCGCGCGAGATTAACCCCCCAATGCTGCACCGAGCCACGA-BHQ2				
P. aeruginosa probe	TTTTTT <mark>TCGTGGCTCGGT</mark> -Cy5				

Table S1. The sequences of the aptamers used in this work.

The highlighted fragment by the yellow background is the binding region of the probe to the aptamer.

Fig. S1. (A) Size distribution histograms of MBs and (B) Magnetic hysteresis loop of MBs and AptMBs.

Fig. S2. Characterization of the synthesized GNPs with sizes of 30, 80, and 120 nm through UV-vis absorption spectra.

Fig S3. TEM image of AptGNPs (scale bar: 500 nm)

Fig. S4. Recognition time of AptGNPs on dual-mode: (A) Mode-DLS and (B) Mode-Flu.

Fig. S5. The average $D_{\rm H}$ of MRSA.

Fig. S6. The hydrodynamic diameter among 10 independent replications in the absence of MRSA. The threshold value of fluorescence intensity was defined as the mean value of negative samples plus 3 standard derivations.

Fig. S7. Levey-Jennings chart-based control for 10 CFU/mL and 10⁴ CFU/mL of MRSA concentrations detected by Mode-DLS. \overline{X}_1 and \overline{X}_2 represent the mean D_H of 10 CFU/mL and 10⁴ CFU/mL, and their corresponding standard deviation is SD₁ and SD₂, respectively.

Fig. S8. The peak fluorescence intensity among 10 independent replications in the absence of MRSA. The threshold value of fluorescence intensity was defined as the mean value of negative samples plus 3 standard derivations.

Fig. S9. Levey-Jennings chart-based control for 10^2 CFU/mL and 10^6 CFU/mL of MRSA concentrations detected by Mode-Flu. \overline{X}_1 and \overline{X}_2 represent the mean fluorescence intensity of 10^2 CFU/mL and 10^6 CFU/mL, and their corresponding standard deviation is SD₁ and SD₂, respectively.

Table S2. Summary of the proposed methods for MDR bacteria detection.

Mathad	Target	Platform	LOD	Detection	Ref.
Method			(CFU/mL)	time (min)	
EXPAR	MDR bacteria	Yes	6.73	70	[6]
RPA and Cas12a	Drug-resistant	No	1	40	[7]
	Salmonella				
Multiplex PCR and CRISPR-	Drug-resistant	No	50	120	[8]
Cas system	A. Baumannii				
Fluorescent microspheres	MRSA	No	110	10	[9]
Modified RPA	Drug-resistant	No	319	60	[10]
	E. coli				
Blue polymeric nanobeads	MRSA	No	2	5	[11]
/	MRSA	No	845	270	[12]
DAPT	MDR bacteria	Yes	4.63	60	This work

References

[1] Qiao J, Meng X, Sun Y, et al. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J Microbiol Methods. 2018;153:92-98.

[2] Chen J, Li H, Xie H, Xu D. A novel method combining aptamer-Ag10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Anal Chim Acta. 2020;1132:20-27.

[3] Dhiman A, Kumar C, Mishra SK, et al. Theranostic Application of a Novel G-Quadruplex-Forming DNA Aptamer Targeting Malate Synthase of Mycobacterium tuberculosis. Mol Ther Nucleic Acids. 2019;18:661-672.

[4] Yang S, Guo Y, Fan J, et al. A fluorometric assay for rapid enrichment and determination of bacteria by using zirconium-metal organic frameworks as both capture surface and signal amplification tag. Mikrochim Acta. 2020;187(3):188.

[5] Kubiczek D, Raber H, Bodenberger N, et al. The Diversity of a Polyclonal FluCell-SELEX Library Outperforms Individual Aptamers as Emerging Diagnostic Tools for the Identification of Carbapenem Resistant Pseudomonas aeruginosa. Chemistry. 2020;26(64):14536-14545.

[6] Hu X, Qin W, Yuan R, et al. Programmable molecular circuit discriminates multidrugresistant bacteria. Mater Today Bio. 2022;16:100379.

[7] Fu X, Sun J, Ye Y, Zhang Y, Sun X. A rapid and ultrasensitive dual detection platform based on Cas12a for simultaneous detection of virulence and resistance genes of drug-resistant Salmonella. Biosens Bioelectron. 2022;195:113682.

[8] Y.F. Wang, Y.C. Guo, L. Zhang, Y.J. Yang, S.S. Yang, L. Yang, H.J. Chen, C.G. Liu, J.J. Li, G.M. Xie, Integration of multiplex PCR and CRISPR-Cas allows highly specific detection of multidrug-resistant Acinetobacter Baumannii, Sensor. Actuat. B-Chem., 334 (2021), p. 129600.

[9] Yang H, Wang Y, Liu S, et al. Lateral flow assay of methicillin-resistant Staphylococcus aureus using bacteriophage cellular wall-binding domain as recognition agent. Biosens

Bioelectron. 2021;182:113189.

[10] Raji MA, Suaifan G, Shibl A, et al. Aptasensor for the detection of Methicillin resistant Staphylococcus aureus on contaminated surfaces. Biosens Bioelectron. 2021;176:112910.

[11] Butterworth A, Pratibha P, Marx A, Corrigan DK. Electrochemical Detection of Oxacillin Resistance using Direct-Labeling Solid-Phase Isothermal Amplification. ACS Sens. 2021;6(10):3773-3780.

[12] Nemr CR, Smith SJ, Liu W, et al. Nanoparticle-Mediated Capture and Electrochemical Detection of Methicillin-Resistant Staphylococcus aureus. Anal Chem. 2019;91(4):2847-2853.