SUPPLEMENTARY INFORMATION for

A NanoCurvS platform for quantitative and multiplex analysis of curvature-sensing proteins

Supplementary Figure 1. Schematic illustrations of SLBs on nanostructures.
(A) Schematic illustrations of the NanoCurvS assay. (B) Illustrations of solvent-assisted lipid bilayer (SALB) formation method.

Supplementary Figure 2. SLBs on nanostructures show similar fluidities as surrounding flat areas. (A) Representative fluorescence images of lipid bilayers on a nanoX array at different time points after photobleaching. (B) Representative fluorescence images of lipid bilayers on a gradient nanoU array at different time points after photobleaching. For both (A) and (B), the bilayer consists of 70\% DOPC, 15\% DOPS, $15 \% \mathrm{PI}(4,5) \mathrm{P}_{2}$ and $\sim 1 \%$ Texas Red-DHPE. White-dashed circles indicate the bleached region. (C) A plot of the time-lapsed fluorescence recovery signals. Scale bar: $20 \mu \mathrm{~m}$.

Supplementary Figure 3. Purified protein and lysates of FBP17 BAR show similar curvature sensitivity on nanobar arrays.
(A) Illustration and a SEM image of a 200-nm nanobar array. All nanobars are 200 nm in width, $1 \mu \mathrm{~m}$ in height and $5 \mu \mathrm{~m}$ in spacing. Scale bar: $5 \mu \mathrm{~m}$. (B) Constructs of the GFP-FBP17 and GFP-FBP17(BAR)-6XHis variants used in this study. (C) Representative fluorescence images of GFP-FBP17(BAR)-6XHis purified protein and lysates on SLB-coated nanobar arrays. The lipid bilayer is made of 90% DOPC, 10\% DGS-Ni-NTA and doped with ~1\% Texas Red-DHPE for bilayer visualization. Scale bar: $5 \mu \mathrm{~m}$. (D) Averaged images of GFP-FBP17(BAR)-6XHis purified protein and lysates on SLB-coated nanobar arrays. (E) Quantification of fluorescence intensity of GFP-FBP17(BAR)-6xHis purified protein and lysates on SLB-coated nanobar arrays. Error bars represent standard deviation. Welch's t tests (unpaired, two-tailed, not assuming equal variance) are applied for all statistical analyses.

Supplementary Figure 4. Representative fluorescence images of U2OS cells expressing IRSp53(BAR)-GFP, IRSp53(FL)-GFP, and GFP-FBP17(FL). Scale bar: $20 \mu \mathrm{~m}$.

Supplementary Figure 5. Western blots of protein lysates confirming the presence of transfected proteins.
(A) IRSp53-GFP variants. (B) Full-length GFP-FBP17. Both GFP-FBP17 and IRSp53-GFP variants were probed by rabbit anti-GFP antibodies. GAPDH was stained with mouse anti-GAPDH antibodies as a control.

Supplementary Figure 6. Quantification of TXR-lipid bilayer signals on gradient nanoU and nanoX arrays.
(A-B) 70% DOPC, 15% DOPS, $15 \% \mathrm{PIP}_{2}$ and $\sim 1 \%$ Texas Red-DHPE on (A) gradient nanoX arrays or (B) gradient nanoU arrays. (C) 55\% DOPC, 15\% DOPS, 15\% PIP ${ }_{2}$, 15\% DGS-Ni-NTA, and $\sim 1 \%$ Texas Red-DHPE on gradient nanoU arrays. Error bars represent standard error of mean.

Supplementary Figure 7. Representative whole-field fluorescence images of BAR protein lysates on SLB-coated nanoX arrays. (A) IRSp53(BAR)-GFP; (B) GFP-FBP17(FL). Scale bar: $20 \mu \mathrm{~m}$.

Supplementary Figure 8. Representative whole-field and zoom-in fluorescence images of BAR protein lysates on SLB-coated nanoU arrays. (A) IRSp53(BAR)-GFP; (B) GFP-FBP17(FL); (C) IRSp53(FL)-6XHis-GFP; (D) IRSp53(FL)-GFP; (E) Empty vector. Scale bar: $20 \mu \mathrm{~m}$.

Supplementary Figure 9. Representative fluorescence images from the c-Abl kinase experiments on SLB-coated nanoU arrays. (A) c-Abl-catalyzed phosphorylation upon ATP addition significantly reduces the intensity of GFP-FBP17 on the lipid bilayer. (B) GFP-FBP17 fluorescence intensity does not change upon the addition of a control buffer. Scale bar: $20 \mu \mathrm{~m}$.

Designed values			Measured values (Diameter of curvature)			Number of nanostructures measured
Arm width (nm)	Crossing angle $(\boldsymbol{\theta})$	Complementary crossing angle $(\boldsymbol{\theta})$	Arm end (nm)	Crossing angle (nm)	Complementary crossing angle (nm)	10
400	15	165	447 ± 43.2	354 ± 15.8	5749 ± 1449	10
	30	150	397 ± 26.3	436 ± 51.8	3797 ± 840	10
	45	135	438 ± 36.2	491 ± 45.4	2680 ± 293	10
	60	120	480 ± 46.1	648 ± 45.2	1050 ± 270	10

Supplementary Table 1. Characterization of gradient nanoX arrays.
Error bars represent standard deviation.

Desired Arm width (nm)	Measured values (Diameter of curvature)			Number of nanostructures measured
	Arm end (nm)	Inner groove (nm)	Outer face (nm)	
400	382 ± 39.4	388 ± 39.9	1148 ± 75.5	1384 ± 92.0
450	443 ± 28.0	516 ± 62.2	1487 ± 31.9	10
500	489 ± 21.1	593 ± 32.8	1672 ± 141	10
550	562 ± 23.0	623 ± 59.2	1811 ± 89.4	10
600	599 ± 38.6	663 ± 54.2	1928 ± 74.2	10
650	644 ± 36.0	708 ± 39.1	2136 ± 85.2	10
700	711 ± 29.5	783 ± 49.3	2230 ± 168	10
750	757 ± 33.5	823 ± 61.2	2378 ± 152	10
800	795 ± 44.1	859 ± 67.1		10

Supplementary Table 2. Characterization of gradient nanoU arrays.
Error bars represent standard deviation.
A

Target	Desired Crossing angle (θ)	Normalized intensity (A.U.)				Number of fields of view considered (N)	Number of nanostructures measured (n)	Corresponding figure
		NanoX region	Mean	SD	SEM (SD/ \sqrt{N})			
IRSp53 (BAR)GFP	15	End	1.56	0.80	0.23	12	168	Fig. 1E
		Inner face	5.50	3.49	1.01			
		Complementary inner face	0.83	0.56	0.16			
	30	End	0.88	0.15	0.04	12	182	
		Inner face	4.29	2.71	0.78			
		Complementary inner face	0.71	0.30	0.09			
	45	End	0.83	0.12	0.03			
		Inner face	3.91	2.16	0.62	12	196	
		Complementary inner face	0.92	0.25	0.07			
		End	0.86	0.10	0.03			
	60	Inner face	3.36	1.62	0.47	12	186	
		Complementary inner face	1.31	0.19	0.05			
		End	0.73	0.13	0.04			
	75	Inner face	2.53	0.95	0.29	11	171	
		Complementary inner face	1.55	0.19	0.06			
	90	End	0.73	0.14	0.04	11	167	
		Inner face	1.98	0.55	0.17			
		Complementary inner face	1.96	0.54	0.16			

B

Target	Desired Crossing angle (θ)	Normalized intensity (A.U.)				Number of fields of view considered (N)	Number of nanostructures measured (n)	Corresponding figure
		NanoX region	Mean	SD	SEM (SD/ \sqrt{N})			
$\begin{aligned} & \text { GFP- } \\ & \text { FBP17 } \\ & \text { (FL) } \end{aligned}$	15	End	2.22	0.32	0.16			Fig. 1H
		Inner face	1.18	0.15	0.07	4	72	
		Complementary inner face	1.08	0.04	0.02			
	30	End	2.20	0.56	0.25			
		Inner face	0.99	0.24	0.11	5	90	
		Complementary inner face	0.97	0.12	0.05			
		End	2.21	0.47	0.21			
	45	Inner face	0.94	0.09	0.04	5	90	
		Complementary inner face	0.85	0.13	0.06			
		End	2.64	0.38	0.17			
	60	Inner face	0.93	0.10	0.04	5	90	
		Complementary inner face	0.92	0.09	0.04			
	75	End	2.44	0.22	0.10	5	90	
		Inner face	0.90	0.17	0.07			
		Complementary inner face	1.16	0.18	0.08			
	90	End	2.36	0.46	0.21	5	90	
		Inner face	0.99	0.13	0.06			
		Complementary inner face	0.98	0.14	0.06			

Supplementary Table 3. Statistical analysis for Figure 1.

Supplementary Table 4. Statistical analysis for Figure 2.

Supplementary Table 5. Statistical analysis for Figure 3.

Target	Desired Arm width (nm)	Normalized intensity (A.U.)				Number of fields of view considered (N)	Number of nanostructures measured (n)	Corresponding figure
		NanoU region	Mean	SD	SEM (SD/ \sqrt{N})			
$\begin{gathered} \text { GFP- } \\ \text { FBP17 } \\ \text { (FL) } \end{gathered}$	400	End	1.38	0.21	0.07	9	162	Fig. 4E
	450		1.30	0.22	0.07	9	162	
	500		1.21	0.18	0.06	9	162	
	550		1.16	0.16	0.05	9	162	
Before adding ATP	600		1.23	0.13	0.04	9	162	
	650		1.17	0.20	0.07	9	162	
	700		1.12	0.13	0.04	9	162	
	750		1.13	0.14	0.05	9	162	
	800		1.11	0.21	0.07	9	162	
\qquad Target \qquad GFPFBP17 (FL) 1-hr After adding ATP								
	Desired Arm width (nm)	Normalized intensity (A.U.)				Number of fields of view considered (N)	Number of nanostructures measured (n)	Corresponding figure
		NanoU region	Mean	SD	SEM (SD/ \sqrt{N})			
	400	End	1.34	0.24	0.09	7	124	Fig. 4F
	450		1.27	0.23	0.09	7	124	
	500		1.23	0.27	0.10	7	124	
	550		1.16	0.18	0.07	7	124	
	600		1.01	0.18	0.07	7	124	
	650		1.09	0.18	0.07	7	124	
	700		1.06	0.16	0.06	7	124	
	750		1.02	0.17	0.06	7	124	
	800		1.04	0.19	0.07	7	124	

Supplementary Table 6. Statistical analysis for Figure 4.

