SUPPLEMENTARY INFORMATION

Bioactive poly(2-oxazoline)-based nanomaterials bearing arylalkylamine and benzamide motifs possess intrinsic radical trapping and antiferroptosis properties

Joshua P. Morrow,† David Pizzi,† Zihnil A. I. Mazrad,† Ashley I. Bush,± and Kristian Kempe†‡*

[†] Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences,

Monash University, Parkville, VIC 3052, Australia

± Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia

‡ Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia;

Corresponding author e-mail: kristian.kempe@monash.edu

Table of contents:

- I. Abbreviations
- II. Additional characterization by ¹H NMR spectroscopy and SEC chromatography of M45F4R and associated polymers
- III. Additional characterization of the P(MeOx-grad-PhOx) library by ¹H NMR spectroscopy, DLS, SEC chromatography and their cytocompatability in N27 cells
- IV. Descriptions of polymer EC₅₀ values
- V. Validation of compatible treatment conditions for flow cytometry
- VI. Additional characterization of CCMs by ¹H NMR spectroscopy, DLS and SEC chromatography
- VII. Supplimentary confocal and flow cytometry investigations for evaluating therapeutic nanomaterials

Abbreviations

ROS reactive oxygen species GPX4 glutathione peroxidase 4 DMT1 Divalent metal transporter 1 ACSL3/4 acyl-CoA synthetase long chain family member 3 and 4 ALOX Arachidonate lipoxygenase Alzheimer's disease AD Fer-1 ferrostatin-1 Lip-1 liproxstatin-1 cyanine 5 Cv5 RTA radical trapping antioxidants BBB blood brain barrier POx-poly(oxazoline)s PDCs polymer drug conjugates PD pharmacodynamics MeOx-2-methyl-2-oxazoline PhOx 2-phenyl-2-oxazoline DPhOx 2-(4-(1,3-dioxolan-2-yl)phenyl)-2-oxazoline AldOx aldehyde functional deprotected-2-(4-(1,3-dioxolan-2-yl)phenyl)-2-oxazoline BuOx 2-butyl-2-oxazoline CCMs core crosslinked micelles CMC critical micelle concentration SAR structure activity relationship C₁₁-BODIPY membrane sensor for lipid peroxidation

BODIPY-(488/530) oxidized membrane sensor for lipid peroxidation

Polymer library

M45F4R	MeOx45Ferrostatin4 reduced
M45D4	MeOx45Diarylamine4
M45P5	MeOx45PhOx5
M20P40	MeOx20PhOx40
M30P20	MeOx30PhOx20
M40P10	MeOx40PhOx10
M30P15Ald5	MeOx30PhOx15AldOx5
M30P15D4	MeOx30PhOx15Diarylamine5
M36B23	MeOx36BuOx23
Et-CCM	ethylenediamine crosslinked core crosslinked micelles
Ph-CCM	p-phenylenediamine crosslinked core crosslinked micelles

Polymer	DP (MeOx)	DP (co-monomer)	Pre-modification		
			M _{n, NMR} (g mol-1)	M _{n, SEC} (g mol-1)	Ð
M45F4R	45	4	5606	12500	1.21
M45D4	45	4	4861	10600	1.14
M45P5	45	5	4598	9300	1.14

 Table S1. Further characterization of DPhOx based copolymers and related nanomaterials.

Table S2. EC50 values for bioactive polymers in this study

Polymer	EC50 (mM)	
M45P5	1.32	
M45D4	0.13	
M45F4R	0.66 x 10 ⁻³	
M40P10	0.25	
M30P20	0.11	
M30P15D5	0.052	
M20P40	0.03	
Ph-CCM	0.008	
Et-CCM	0.024	

Figure S1. ¹H NMR spectra of the PhOx containing polymers at different stages of synthesis.

Figure S2. N-Benzylaniline (NBA) suppresses ferroptosis at concentration equal to number of polymeric units of arylalkylamine.

Figure S3. Characterization of P(MeOx-grad-PhOx) library. A) H NMR spectra of copolymers with increasing % benzamide content and B) their resulting SEC chromatograms. C) AlamarBlue cell viability assay in N27 cells of M30P20 after 24 hours with up to 5.0 mg mL⁻¹ polymer.

Figure S4. DLS study showing normalized % intensity traces of P(MeOx-grad-PhOx) library and Ph-CCM_{cv5}.

Figure S5. % Viable cells determined by PI for treatment conditions used in flow cytometry experiments with C₁₁-BODIPY. A) P(MeOx-grad-PhOx) library and M30P15D5. B) CCMs and series. C) Controls for C₁₁-BODIPY probe showing average ROS activated BODIPY- (488/530) MFI of cell populations (red-no treatment, light green-H₂O₂ 500 μ M, blue-RSL3 1 μ M, orange-RSL3+Fer-1 1 μ M, blue-RSL3+M36B23 1 mg mL⁻¹).

Figure S6. ¹H NMR spectra of linear polymer arm containing AldOx (M30P15Ald5), its modification with Cy5 (M30P15D5-Cy5), aniline (M30P15D5) and then Ph-CCM_{cy5}.

Figure S7. DLS of CCMs in different solvents (left: Ph-CCM, right: Et-CCM). M30P20 "arm" was attempted in DMF but did not self-assembly in this solvent. Concentration used for all samples -1 mg mL^{-1} .

Figure S8. Dose-response curves of M30P20 and Ph-CCM plotted against mg mL⁻¹ highlighting comparison of relatively similar % benzamide content and response to ferroptosis and additionally the lack of effect of CMC on ferroptosis suppression.

Figure S9. Bright field images from C_{11} -BODIPY confocal experiment highlighting cell appearance (black arrows: healthy cells with neurite outgrowth, orange: unhealthy constricted cells). RSL3 – 1 μ M, polymer – 1 mg mL⁻¹.

Figure S10. Fluorescent images from C₁₁-BODIPY experiment showing the M36B23 control producing ROS-activated BODIPY-(488/530) from membrane lipid peroxidation. RSL3 – 1 μ M, polymer – 1 mg mL⁻¹.

Figure S11. Ph-CCM_{Cy5} characterization by SEC chromatography (Normalized UV absorbance at 646 nm).

Figure S12. Lysosomal colocalization experiment in RSL3 treated cells (RSL3 at 1 μ M for 4 hours as cotreatment). Arm-M30P15D5_{cy5}, CCM-Ph-CCM_{cy5}. Green channel-lysotrackerGreen, red channel- polymer Cy5, grey channel-colocalization using "AND" function in FIJI image calculator. Scale bar 20 μ m.

Figure S13. Bioactive polymers attenuate alternate models of ferroptosis in N27 and SH-SY5Y.