Dual-Model Molecular Imaging and Therapeutic Evaluation of Coronary Microvascular Dysfunction using Indocyanine Green-Doped Targeted Microbubbles

Alimina Awen, ‡^a Dehong Hu, ‡^b Duyang Gao,^{*b} Zihang Wang,^a Yayun Wu,^b Hairong Zheng,^b Lina Guan,^a Yuming Mu,^{*a} Zonghai Sheng ^{*b}

^a Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China

^b Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055,Guangdong, P. R. China

* Corresponding author.

E-mail address: dy.gao@siat.ac.cn (D. Gao), mym1234@126.com (Y. Mu), zh.sheng@siat.ac.cn (Z. Sheng)

‡Alimina Awen and Dehong Hu contributed equally to this work.

Figure S1. Normalized UV-Vis-NIR absorption spectra of free ICG, MBs-ICG and T-MBs-ICG solutions.

Figure S2. Fluorescence (FL) intensity of T-MBs-ICG with ICG concentration from 2 to 10 μ g/mL. The inset is fluorescence images of the corresponding T-MBs-ICG solutions.

Figure S3. Fluorescence (FL) intensity of the T-MBs-ICG microbubbles (ICG = $8 \mu g/mL$) with different concentration, Inset shows NIR FL images of the T-MBs-ICG microbubbles solution.

Figure S4. Three repeated fluorescence microscopy images of fibrin clots incubated with T-MBs-ICG, MBs-ICG, and PBS, respectively. Scale bars: 100 μm.

Figure S5. *In vitro* fluorescence images of the isolated heart at 1, 2, 4, and 12 h, The yellow arrows represent the fibrin formation area. Imaging condition: Ex: 745 nm; Em: 840 nm.

Figure S6. Quantitative analysis of NIR fluorescence imaging of isolated heart tissues at different time points (***P < 0.001).

Modality	Advantages	Disadvantages	References
PET	High-sensitivity, good	radiation exposure,	J. Med. Chem.,
	reproducibility, extensive	expensive	2022, 65, 497-506
	prognostic data		
MRI	no radiation exposure,	time consuming,	JACC Cardiovasc.
	excellent spatial resolution	expensive	Imaging, 2020, 13,
			140-155
CT	validated against invasive	radiation exposure, low	J. Clin. Med., 2021,
	measurements	sensitivity	10, 1848
US	inexpensive, high feasibility,	operator-dependent,	Front. Cardiovasc.
	deep tissue resolution	low contrast	Med., 2022, 9,
			899099.
FI	high sensitivity, high-	low tissue resolution	J. Biophotonics,
	contrast, low cost		2022, 15,
			e202200142
US&FI	high sensitivity, high	lack dual-modal	This work
	contrast, deep tissue	imaging instrument	
	resolution		

 Table S1. Comparison of different imaging modalities for CMD diagnostics.

Note: PET: Positron emission tomograpgy; MRI: Magnetic resonance imaging; CT: Computed tomography; US: Ultrasound Imaging; FI: Fluorescence Imaging.