Supplementary Information

Substrate selectivity and inhibition of histidine JmjC hydroxylases MINA53 and NO66

Vildan A. Türkmen,^a Jordi C. J. Hintzen,^a Anthony Tumber,^b Laust Moesgaard,^a Eidarus Salah,^b Jacob Kongsted,^a Christopher J. Schofield,^{*b} and Jasmin Mecinović^{*a}

^a Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

^b Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom

Table of Contents

1. Characterisation of Rpl peptides	3
2. Turnover assays with MINA53 and NO66	5
3. Inhibition supporting figure	13
4. Molecular dynamics simulations	13

1. Characterisation of Rpl peptides

Entry	Peptide	Sequence	Formula	m/z	m/z	Purity
				Calculated	Found	
1	(L)His39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{100}H_{148}N_{38}O_{25}$	2282.15	2282.14	>99%
2	(D)His39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{100}H_{148}N_{38}O_{25}$	2282.15	2282.19	>99%
3	N_{α} -Me-His39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{101}H_{150}N_{38}O_{25}$	2296.16	2297.62	>99%
4	2PyrA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{102}H_{149}N_{37}O_{25}$	2293.15	2293.28	~94%
5	4ThiA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C100H147N37O25S	2299.11	2299.81	~98%
6	N ^τ -Me-His39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C100H148N38O25	2296.16	2296.88	>99%
7	N ^π -Me-His39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{100}H_{148}N_{38}O_{25}$	2296.16	2298.06	>99%
8	3PyrA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C102H149N37O25	2293.15	2295.04	~98%
9	4PyrA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C102H149N37O25	2293.15	2293.94	>99%
10	TetrA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C98H146N40O25	2284.14	2293.94	>99%
11	4-TriaA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C99H147N39O25	2283.14	2284.14	~98%
12	Orn39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C99H151N37O25	2259.17	2260.43	~95%
13	1-TriaA39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C98H146N40O25	2283.14	2283.15	>99%
14	Gln39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C99H149N37O26	2274.51	2273.17	>99%
15	hGln39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{100}H_{151}N_{37}O_{26}$	2288.54	2287.23	>99%
16	Arg39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{100}H_{153}N_{39}O_{25}$	2302.57	2302.41	>99%
17	Cit39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	$C_{100}H_{152}N_{38}O_{26}$	2303.56	2302.40	>99%
18	Asn39	GRGNAGGL <mark>H</mark> HHRINFDKYHP	C98H149N37O26	2259.49	2259.18	>99%

Table S1. Characterisation of Rpl27a peptides. All peptides were prepared with C-terminal amides.

Entry	Peptide	Sequence	Formula	m/z	m/z	Purity
				Calculated	Found	
1	(L)His216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C92H136N30O28	2110.01	2109.52	>99%
2	(D)His216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C92H136N30O28	2110.01	2110.81	~95%
3	Nα-Me-His216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C93H138N30O28	2124.03	2123.65	~95%
4	2PyrA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C94H137N29O28	2121.02	2120.50	>99%
5	4ThiA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	$C_{92}H_{135}N_{29}O_{28}S$	2126.98	2126.01	>99%
6	N ^τ -Me-His216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	$C_{93}H_{138}N_{30}O_{28}$	2124.03	2123.39	>99%
7	N ^π -Me-His216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C93H138N30O28	2124.03	2123.02	>99%
8	3PyrA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C94H137N29O28	2121.02	2120.72	>99%
9	4PyrA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C94H137N29O28	2121.02	2120.72	~95%
10	TetrA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	$C_{90}H_{134}N_{32}O_{28}$	2112.00	2120.72	~97%
11	4-TriaA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	$C_{91}H_{135}N_{31}O_{28}$	2112.01	2111.14	>99%
12	Orn216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	$C_{91}H_{139}N_{29}O_{28}$	2087.03	2186.23	>99%
13	1-TriaA216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	$C_{91}H_{135}N_{31}O_{28}$	2112.01	2112.42	>99%
14	Gln216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C91H137N29O29	2101.01	2100.37	>99%
15	hGln216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C92H139N29O29	2115.03	2114.28	~91%
16	Arg216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C92H141N31O28	2129.06	2128.58	>99%
17	Cit216	NPVEHPFGGGN <u>H</u> QHIGKPST	C92H130N30O29	2130.04	2129.45	>99%
18	Asn216	NPVEHPFGGGN <mark>H</mark> QHIGKPST	C90H135N29O29	2087.00	2086.50	~94%

 Table S2. Characterisation of Rpl8 peptides. All peptides were prepared with C-terminal amides.

2. Turnover assays with MINA53 and NO66

Figure S1. LC-MS data investigating the potential oxidation of Rpl27a-His39 peptides as catalysed by MINA53. a) Rpl27a-His39, b) Rpl27a-D-His39, c) Rpl27a-ThiA39, d) Rpl27a-N_{α}-His39, e) Rpl27a-N^{π}-Me-His39, f) Rpl27a-N^{τ}-me-His39, g) Rpl27a-2PyrA39, h) Rpl27a-3PyrA39, i) Rpl27a-4PyrA39, j) Rpl27a-4-TriaA39, k) Rpl27a-1-TriaA39, l) Rpl27a-TetrA39, m) Rpl27a-Orn39, n) Rpl27a-Arg39 and o) Rpl27a-Cit39, p) Rpl27a-Asn39, q) Rpl27a-Gln39 and r) Rpl27a-hGln39. Conditions: 2 μ M MINA53, 10 μ M Rpl peptide, 100 μ M ascorbate, 10 μ M ferrous ammonium sulfate, 10 μ M 2OG, pH 7.5, 2 hours at room temperature.

Figure S2. MALDI-TOF MS data investigating the pH dependency of Rpl27a in the presence of MINA53 in 50 mM HEPES at pH 4.5 (a, d and g), 6 (b, e and h) and 7.5 (c, f and i). a, b, c) Rpl27a-His39, d, e, f) Rpl27a-4-TriA and g, h, i) Rpl27a-TetrA. Control reactions in the absence of MINA53 are in black. Potential MINA53-catalysed reactions are in red.

Figure S3. MALDI-TOF MS data investigating the pH dependency of Rpl8 in presence of NO66 in 50 mM HEPES at pH 4.5 (a, d and g), 6 (b, e and h) and 7.5 (c, f and i). a, b, c) Rpl8-His39, d, e, f) Rpl8-4-TriA and g, h, i) Rpl8-TetrA. Control reactions in the absence of NO66 are in black. Potential NO66-catalysed reactions are in red.

Figure S4. LC-MS data showing potential oxidation of Rpl27a-His39 peptides as catalysed by MINA53. a) Rpl27a-His39, b) Rpl27a-D-His39, c) Rpl27a-ThiA39, d) Rpl27a-N_{α}-His39, e) Rpl27a-N^{π}-Me-His39, f) Rpl27a-N^{τ}-me-His39, g) Rpl27a-2PyrA39, h) Rpl27a-3PyrA39, i) Rpl27a-4PyrA39, j) Rpl27a-4-TriaA39, k) Rpl27a-TetrA39, l) Rpl27a-Orn39, m) Rpl27a-Arg39 and n) Rpl27a-Cit39, o) Rpl27a-Asn39, p) Rpl27a-Gln39 and q) Rpl27a-hGln39. Conditions: 2 μ M MINA53, 50 μ M Rpl27a peptide, 100 μ M ascorbate, 10 μ M ferrous ammonium sulfate, 10 μ M 2OG, pH 7.5, 2 hours at room temperature. All reactions were analyzed by LC-MS with 3 blank injections of water between each assay sample to minimize 'carry-over'.

Figure S5. LC-MS data showing no-enzyme controls using Rpl27a-His39 peptides. a) Rpl27a-His39, b) Rpl27a-D-His39, c) Rpl27a-ThiA39, d) Rpl27a-N_a-His39, e) Rpl27a-N^{π}-Me-His39, f) Rpl27a-N^rme-His39, g) Rpl27a-2PyrA39, h) Rpl27a-3PyrA39, i) Rpl27a-4PyrA39, j) Rpl27a-4-TriaA39, k) Rpl27a-TetrA39, l) Rpl27a-Orn39, m) Rpl27a-Arg39 and n) Rpl27a-Cit39, o) Rpl27a-Asn39, p) Rpl27a-Gln39 and q) Rpl27a-hGln39. No enzyme control as enzyme reaction using 50 μ M Rpl27a peptides (as in Figure S4) acidified with final concentration of 1% formic acid (v/v). All reactions were analyzed by LC-MS with 3 blank injections of water 3 between each assay sample to minimize 'carry-over'.

Figure S6. MALDI-TOF MS data showing evidence for hydroxylation (+16 Da) of the Rpl8-4-TriA216 peptide with NO66. This sample was used for fragmentation MALDI-TOF MS/MS analysis (Figure S8).

Figure S7. MALDI-TOF MS/MS fragmentation data for the unmodified Rpl8-4-TriA216 peptide. The inset shows a close up for the y_8' , y_9' and y_{10}' peaks.

Figure S8. MALDI-TOF MS/MS fragmentation data showing the hydroxylated Rpl8-4-TriA216 peptide. The inset shows close up the y_9' peak; note the y_9' mass is 16 Da greater than the corresponding y_9' peak of the unmodified peptide (Figure S7).

3. Inhibition supporting figure

Figure S9. Results from NO66 inhibition at A) 5 μ M and B) 50 μ M of Rpl8-based peptides. Error bars are standard errors (SE) of duplicate analyses.

4. Molecular dynamics simulations

Figure S10. Average coordinates from the MD simulations of a-c): MINA53 and d-f) NO66 in complex with a,d) His39/His216, b,e) Asn39/Asn216 and c,f) Gln39/Gln216. Yellow dashed lines: hydrogen bonds. The simulations were based on crystal structures with PDB codes: ID 4BXF and 4Y3O.