Electronic Supplementary Information (ESI)

Lysine-targeting inhibition of amyloid $\boldsymbol{\beta}$ oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo

Kazuma Murakami, ${ }^{1, *}$ Yoshiki Sakaguchi, ${ }^{1}$ Kota Taniwa, ${ }^{1}$ Naotaka Izuo, ${ }^{2,{ }^{2}}$ Mizuho Hanaki, ${ }^{1}$ Taiji Kawase, ${ }^{3}$ Kenji Hirose, ${ }^{3}$ Takahiko Shimizu, ${ }^{2,8}$ and Kazuhiro Irie ${ }^{1, *}$
${ }^{1}$ Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
${ }^{2}$ Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
${ }^{3}$ Nihon Waters, K.K., Tokyo 140-0001, Japan
${ }^{\text { P Present }}$ address: Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
${ }^{\text {§ }}$ Present address: Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
*Corresponding authors:
murakami.kazuma.4v@kyoto-u.ac.jp (K.M.)
irie.kazuhiro.2z@kyoto-u.ac.jp (K.I.)

ORCiD

0000-0003-3152-1784 (K.M.)
0000-0001-7109-8568 (K.I.)

This PDF file includes:

- Synthetic schemes of 1-3
- Experimental procedures for synthesis of $\mathbf{1 - 3}$
- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 - 3}$
- Figure S1-S6

Synthetic schemes of 1-3

Synthesis of 1

Synthesis of 2

Synthesis of 3

(a) (1) $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{KOH}, 40^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; (2) conc. $\mathrm{HCl}, 103{ }^{\circ} \mathrm{C}, 4 \mathrm{~h} ; 40 \%$ in 2 steps. (b) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, $100{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 77 \%$. (c) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone/DMF, $59{ }^{\circ} \mathrm{C}, 17.5 \mathrm{~h}, 76 \%$. (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}(4 \mathrm{~atm}), \mathrm{THF}, 100{ }^{\circ} \mathrm{C}$, $4.5 \mathrm{~h}, 11 \%$. (e) (1) $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{KOH}, 40^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (2) conc. $\mathrm{HCl}, 103{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h} ; 22 \%$ in 2 steps. (f) BBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $51^{\circ} \mathrm{C}$, 7.5 h . (g) MOMCl, ($\left.i-\mathrm{Pr}\right)_{2} \mathrm{EtN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 19 \mathrm{~h}, 29 \%$. (h) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, $4 \mathrm{~h}, 35 \%$. (i) benzaldehyde, NaOH , EtOH , rt, 44 h , quant. (j) AcOH , reflux, $20.5 \mathrm{~h}, 25 \%$. (k) AlCl_{3}, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $2 \mathrm{~h}, 49 \%$. (l) MOMCl , ($\left.i-\mathrm{Pr}\right)_{2} \mathrm{EtN}^{2}, \mathrm{CHCl}_{3}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}, 83 \%$. (m) MOMCl, $\mathrm{NaOH}, \mathrm{Bu} 4 \mathrm{NBr}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $18 \mathrm{~h}, 84 \%$. (n) benzaldehyde, NaOH , EtOH , rt, $123 \mathrm{~h}, 76 \%$. (o) AcOH, reflux, $5.5 \mathrm{~h}, 72 \%$. (p) $\mathrm{AlCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $2 \mathrm{~h}, 36 \%$.

Experimental procedures for synthesis of 1-3

General remarks

The following spectroscopic and analytical instruments were used: Optical rotation, P-2000 Digital Polarimeter (Jasco, Tokyo, Japan); FT/IR, FT/IR-470 Plus (Jasco); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, AVANCE III 400 and AVANCE III 500 (Reference: Si(Me) 4 , Bruker, Billerica, MA, USA); HPLC, Model 600E with a Model 2487 UV detector (Waters, Milford, MA); HR-FAB-MS, JMSMS700V (JEOL, Tokyo, Japan). HPLC was carried out on a YMC-Pack ODS-A AA12S051520WT (YMC Co., Ltd., Kyoto, Japan). Silica gel column chromatography was performed with Wakogel C-200 (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) or Kieselgel 60 (Merck, Darmstadt, Germany). Flash column chromatography was performed with a Model pump 800E with Model prep UV-10 UV detector (Yamazen, Osaka, Japan) using Wakogel C-200 as the stationary phase. Analytical thin-layer chromatography was performed with TLC Silica gel 60 F254 or TLC Silica gel 60 RP-18 F254 (Merck). All other chemicals and reagents were purchased from FUJIFILM Wako Pure Chemical Industries, NACALAI TESQUE, INC. (Kyoto, Japan) or Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), and used without further purification.

Synthesis of 1

Compound S1: To a solution of chrysin (4) $(934 \mathrm{mg}, 3.67 \mathrm{mmol})$ in 10% potassium hydroxide $(\mathrm{w} / \mathrm{v})(7.05 \mathrm{~mL}, 14.0 \mathrm{mmol}, 3.8$ equiv.) was added a solution of potassium persulfate ($2.08 \mathrm{~g}, 7.71$ mmol, 2.1 equiv.) in water (30 mL) dropwise at $0^{\circ} \mathrm{C}$. After stirring for 2.5 h at $40^{\circ} \mathrm{C}$, the mixture was washed with EtOAc ($40 \mathrm{~mL} \times 3$). The resultant aqueous layers were added sodium hydrogen sulfite ($1.80 \mathrm{~g}, 17.3 \mathrm{mmol}, 4.7$ equiv.), and acidified to pH 1 with con. HCl . The reaction mixture was refluxed for 4 h and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane: EtOAc : $\mathrm{AcOH}=80: 20: 0.5$) to afford $\mathbf{S 1}(394 \mathrm{mg}, 5.50$ mmol, 40\%).
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 1)=0.60$.
${ }^{1}$ H NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{6}, d_{6}, 037 \mathrm{M}, 297 \mathrm{~K}\right): \delta 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 3 \mathrm{H})$,
8.15-8.17 (m, 2H), $8.84(\mathrm{~s}, 1 \mathrm{H}), 10.55(\mathrm{~s}, 1 \mathrm{H}), 12.26(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

HR-ESI-MS: $m / z, 269.0456\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{5}$ 269.0450).

Compound 5: To a solution of $\mathbf{S 1}(180 \mathrm{mg}, 0.67 \mathrm{mmol})$ in DMF $(2.20 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($193 \mathrm{mg}, 1.40 \mathrm{mmol}, 2.1$ equiv.). The mixture was stirred for 10 min at room temperature and added $\operatorname{BnBr}\left(166 \mu \mathrm{~L}, 1.40 \mathrm{mmol}, 2.1\right.$ equiv.). After stirring for 2 h at $100^{\circ} \mathrm{C}$ under Ar , the reaction was quenched with water $(10 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(193 \mathrm{mg})$ in $\mathrm{MeOH}(2.2 \mathrm{~mL})$. The mixture was filtered to afford 5 ($230 \mathrm{mg}, 0.51 \mathrm{mmol}, 77 \%$).
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 1)=0.78$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.044 \mathrm{M}, 297 \mathrm{~K}$): $\delta 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}$, $1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.54(\mathrm{~m}, 10 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 12.56(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{OH}) \mathrm{ppm}$.
HR-ESI-MS: $m / z, 449.1395\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{O}_{5} 449.1389\right)$.

Compound S2: To a solution of $\mathbf{5}(154 \mathrm{mg}, 0.34 \mathrm{mmol})$ in acetone $(2.0 \mathrm{~mL})$ and DMF $(2.0 \mathrm{~mL})$ was added potassium carbonate ($235 \mathrm{mg}, 1.70 \mathrm{mmol}, 5.0$ equiv.). The reaction mixture was stirred for 10 min at room temperature and iodomethane ($106 \mu \mathrm{~L}, 1.70 \mathrm{mmol}, 5.0$ equiv.) was added. After stirring for 17.5 h at $59^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction was quenched with water (15 mL) and extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : EtOAc $=75: 25)$ to afford $\mathbf{S 2}(121 \mathrm{mg}, 0.26 \mathrm{mmol}, 76 \%)$.
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 1)=0.19$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.044 \mathrm{M}, 297 \mathrm{~K}$): $\delta 3.91(3 \mathrm{H}, \mathrm{s}), 5.12(2 \mathrm{H}, \mathrm{s}), 5.27(2 \mathrm{H}, \mathrm{s}), 6.49(1 \mathrm{H}$, s), $6.68(1 \mathrm{H}, \mathrm{s}), 7.30-7.33(3 \mathrm{H}, \mathrm{m}), 7.37-7.51(10 \mathrm{H}, \mathrm{m}), 7.81-7.84(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.

HR-ESI-MS: $m / z, 465.1691\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}_{5} 465.1702\right)$.

Compound 1: Compound $\mathbf{S} 2(54.8 \mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in THF (2.4 mL), and Pd / C ($38 \mathrm{mg}, 0.30$ equiv.) was added. The mixture was stirred under hydrogen at the pressure of 4 atm for 4.5 h at room temperature. The reaction mixture was filtered thorough Sep-Pak Silica and concentrated in vacuo. The residue was purified by HPLC [column, YMC Pack ODS-A (20 mm
i.d. x 150 mm ; YMC); solvent, $30 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ ($0.1 \% \mathrm{TFA}$), flow rate, $8.0 \mathrm{~mL} / \mathrm{min}$; UV detector, 254 nm] to afford $\mathbf{1}(3.6 \mathrm{mg}, 12.6 \mu \mathrm{~mol}, 11 \%)$.
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=2: 1)=0.39$.
${ }^{1} \mathbf{H}^{\prime}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 0.025 \mathrm{M}, 297 \mathrm{~K}$): $\delta 2.78(1 \mathrm{H}, \mathrm{dd}, J=3.0,16.7 \mathrm{~Hz}, 3-\mathrm{H}), 3.04(1 \mathrm{H}$, $\mathrm{dd}, J=12.0,16.7 \mathrm{~Hz}, 3-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{OCH}_{3}\right), 5.50(1 \mathrm{H}, \mathrm{dd}, J=2.8,11.9 \mathrm{~Hz}, 2-\mathrm{H}), 6.17(1 \mathrm{H}$, s, 6-H), $7.34-7.37\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 7.39-7.42\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.54-7.55\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$ ppm.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 0.025 \mathrm{M}, 297 \mathrm{~K}$): $\delta 46.5(\mathrm{C}-3), 56.3\left(5-\mathrm{OCH}_{3}\right), 80.8(\mathrm{C}-2), 94.3$ (C-6), 106.0 (C-4a), 127.7 (C-2', C-6'), 128.0 (C-8), 129.7 (C-3', C-4', C-5'), 140.6 (C-1'), 153.2 (C-8a), 155.3 (C-7), 156.8 (C-5), 192.3 (C-4) ppm.
HR-ESI-MS: $m / z, 285.0771$ ([M-H] ${ }^{-}$, calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5} 285.0763$).
IR (KBr): 3215, 2970, 1666, 1598, 1516, 1455, 1357, 1281, 1201, 1095, 925, 883, $820 \mathrm{~cm}^{-1}$.

Synthesis of 2

Compound 7: To a solution of 4',6'-dimethoxy-2'-hydroxyacetophenone (6) ($4.98 \mathrm{~g}, 25.4 \mathrm{mmol}$) in 10% potassium hydroxide (w / v) $(4.36 \mathrm{~g}, 77.7 \mathrm{mmol}, 3.1$ equiv.) was added a solution of potassium persulfate ($14.4 \mathrm{~g}, 53.3 \mathrm{mmol}, 2.1$ equiv.) in water (30 mL) dropwise at room temperature. After stirring for 1.5 h at $40^{\circ} \mathrm{C}$, the mixture was washed with EtOAc ($90 \mathrm{~mL} \times 3$). The resultant aqueous layer was added sodium hydrogen sulfite ($12.4 \mathrm{~g}, 119 \mathrm{mmol}, 4.7$ equiv.), and acidified to pH 1 with HCl . The reaction mixture was refluxed for 3.5 h and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane: EtOAc : $\mathrm{AcOH}=85: 15: 0.5)$ to afford $7(1.17 \mathrm{~g}, 5.50 \mathrm{mmol}, 22 \%)$ as a yellow solid. $\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 1)=0.38$.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.098 \mathrm{M}, 296 \mathrm{~K}\right): \delta 2.68(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}$, s), $6.26(1 \mathrm{H}, \mathrm{s}), 13.19(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.

HR-FAB-MS (matrix: m-nitrobenzyl alcohol): $m / z, 212.0684$ (M^{+}, calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} 212.0685$).

Compound S3: To a solution of $7(504 \mathrm{mg}, 2.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added boron tribromide ($5.04 \mathrm{~mL}, 5.04 \mathrm{mmol}$, 2.1 equiv.) dropwise at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. After
stirring for 10 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to room temperature and stirred for 7.5 h . The reaction was quenched with water $(50 \mathrm{~mL})$ and concentrated in vacuo. The mixture was acidified to pH 1 with 1 M HCl , and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : EtOAc : AcOH $=85: 15: 0.5$) to afford $\mathbf{S 3}$ (241 $\mathrm{mg}, 1.21 \mathrm{mmol}, 51 \%)$.
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 1)=0.26$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.030 \mathrm{M}, 298 \mathrm{~K}\right): \delta 2.67(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 6.33(1 \mathrm{H}, \mathrm{s}), 12.91$ $(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
HR-ESI-MS: $m / z, 197.0455\left([M-H]^{-}\right.$, calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{5}$ 197.0450).

Compound S4: To a solution of $\mathbf{S 3}(241 \mathrm{mg}, 1.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23.7 \mathrm{~mL})$ was added DIPEA ($0.83 \mathrm{~mL}, 4.85 \mathrm{mmol}, 4.0$ equiv.) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and methoxymethyl chloride ($96.8 \mu \mathrm{~L}, 1.27 \mathrm{mmol}, 1.1$ equiv.) was added. After stirring for 19 h at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}$ x 3). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : $\mathrm{EtOAc}: \mathrm{AcOH}=85: 15$: $0.3)$ to afford $\mathbf{S 4}(84.0 \mathrm{mg}, 0.35 \mathrm{mmol}, 29 \%)$.
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 3)=0.19$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.083 \mathrm{M}, 296 \mathrm{~K}$): $\delta 2.68(3 \mathrm{H}, \mathrm{s}), 3.51(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 5.27(2 \mathrm{H}$, s), $6.50(1 \mathrm{H}, \mathrm{s}), 12.96(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.

HR-FAB-MS (matrix: m-nitrobenzyl alcohol): $m / z, 243.0866\left([M+H]^{+}\right.$, calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{6}$ 243.0869).

Compound 8: To a solution of $\mathbf{S 4}(124 \mathrm{mg}, 0.51 \mathrm{mmol})$ in acetone $(0.86 \mathrm{~mL})$ was added potassium carbonate ($353 \mathrm{mg}, 2.56 \mathrm{mmol}, 5.0$ equiv.). The reaction mixture was stirred for 10 \min at $0{ }^{\circ} \mathrm{C}$ and iodomethane ($33.4 \mu \mathrm{~L}, 0.54 \mathrm{mmol}, 1.1$ equiv.) was added. After stirring for 10 min at room temperature, the mixture was refluxed for 4 h under Ar atmosphere. The reaction was quenched with water (15 mL) and adjusted to pH 8 with 1 M HCl and extracted with EtOAc (30 $\mathrm{mL} x 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : EtOAc : $\mathrm{AcOH}=95$:
$5: 0.3)$ to afford $\mathbf{8}(46.4 \mathrm{mg}, 0.18 \mathrm{mmol}, 35 \%)$.
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 3)=0.40$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.078 \mathrm{M}, 297 \mathrm{~K}\right): \delta 2.66(3 \mathrm{H}, \mathrm{s}), 3.51(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.00(3 \mathrm{H}$, s), $5.26(2 \mathrm{H}, \mathrm{s}), 6.47(1 \mathrm{H}, \mathrm{s}), 13.23(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.

HR-FAB-MS (matrix: m-nitrobenzyl alcohol): $m / z, 256.0942\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$ 256.0947).

Compound 9: To a solution of $\mathbf{8}(46.4 \mathrm{mg}, 0.18 \mathrm{mmol})$ in EtOH $(2.9 \mathrm{~mL})$ was added sodium hydroxide ($72.4 \mathrm{mg}, 1.81 \mathrm{mmol}, 10$ equiv.). After stirring for 10 min at room temperature, to the reaction mixture was added benzaldehyde ($24.0 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.3$ equiv.) in $\mathrm{EtOH}(76.0 \mu \mathrm{~L})$. The mixture was stirred for 44 h at room temperature and quenched with water $(10 \mathrm{~mL})$ and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : $\mathrm{EtOAc}=95: 5)$ to afford $9(61.6 \mathrm{mg}, 0.18 \mathrm{mmol}, 99 \%)$ as yellow oil.
\mathbf{R}_{f} (silica, $\mathrm{EtOAc} /$ hexane $\left.=1: 3\right)=0.29$.
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.066 \mathrm{M}, 298 \mathrm{~K}\right): \delta 3.53(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s}), 5.28(2 \mathrm{H}$, s), $6.54(1 \mathrm{H}, \mathrm{s}), 7.41-7.43(3 \mathrm{H}, \mathrm{m}), 7.64-7.66(2 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, \alpha-\mathrm{H}), 7.94(1 \mathrm{H}$, d, $J=15.7 \mathrm{~Hz}, \beta-\mathrm{H}) \mathrm{ppm}, 13.39\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{OH}\right) \mathrm{ppm}$.
HR-FAB-MS (matrix: m-nitrobenzyl alcohol): $m / z, 344.1253\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} 344.1260$).

Compound 10: A solution of $9(61.6 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{AcOH}(1.5 \mathrm{~mL})$ was refluxed for 20.5 h under Ar atmosphere. The reaction mixture was azeotroped with toluene to remove AcOH . The residue was purified by column chromatography (silica gel, hexane : EtOAc $=85: 15$) to afford 10 ($13.3 \mathrm{mg}, 0.044 \mathrm{mmol}, 25 \%$).
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 1)=0.46$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.067 \mathrm{M}, 297 \mathrm{~K}\right): \delta 2.81(1 \mathrm{H}, \mathrm{dd}, J=2.9,16.8 \mathrm{~Hz}, 3-\mathrm{H}), 3.01(1 \mathrm{H}$, dd, $J=13.2,16.8 \mathrm{~Hz}, 3-\mathrm{H}), 3.93\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{OCH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{OCH}_{3}\right), 5.39(1 \mathrm{H}, \mathrm{dd}, J=2.9$, $13.2 \mathrm{~Hz}, 2-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.38-7.46\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right) \mathrm{ppm}$.
HR-FAB-MS (matrix: m-nitrobenzyl alcohol): $m / z, 323.0897$ ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$ 323.0895).

Compound 2: To a solution of $\mathbf{1 0}(13.3 \mathrm{mg}, 0.044 \mathrm{mmol})$ in $\mathrm{MeCN}(0.88 \mathrm{~mL})$ was added aluminium chloride ($23.6 \mathrm{mg}, 0.177 \mathrm{mmol}, 4.0$ equiv.). The mixture was refluxed for 2 h under Ar atmosphere. The reaction mixture was quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with EtOAc ($15 \mathrm{~mL} x 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and purified by HPLC [column, YMC-Pack ODS-A (20 mm i.d. x 150 mm ; YMC); solvent, $70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($0.05 \% \mathrm{TFA}$), flow rate, $8.0 \mathrm{~mL} / \mathrm{min}$; UV detector, 254 nm] to afford $2(6.3 \mathrm{mg}, 0.022 \mathrm{mmol}$, 49\%).
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 1)=0.65$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.035 \mathrm{M}, 297 \mathrm{~K}\right): \delta 2.83(1 \mathrm{H}, \mathrm{dd}, J=2.9,17.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.08(1 \mathrm{H}$, dd, $\left.J=13.0,17.1 \mathrm{~Hz}, 3-\mathrm{H}), 3.95(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{OCH})_{3}\right), 5.40(1 \mathrm{H}, \mathrm{dd}, J=2.8,13.0 \mathrm{~Hz}, 2-\mathrm{H}), 6.14(1 \mathrm{H}$, s, 6-H), 7.38-7.45 (5H, m, 2'-H, 3'-H, 4'-H, 5'-H, 6'-H), 12.18 (s, 1H, 5-OH) ppm.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.035 \mathrm{M}, 298 \mathrm{~K}$): $\delta 43.4(\mathrm{C}-3), 61.0\left(7-\mathrm{OCH}_{3}\right), 79.3(\mathrm{C}-2), 94.6(\mathrm{C}-$ 6), 103.1 (C-4a), 126.1 (C-2', C-6'), 128.4 (C-8), 128.9 (C-3', C-4', C-5'), 138.4 (C-1'), 154.4 (C8a), 157.5 (C-7), 158.6 (C-5), 196.6 (C-4) ppm.
HR-FAB-MS (matrix: m-nitrobenzyl alcohol): $m / z, 287.0919$ ([M+H] , calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{5}$ 287.0919).

IR (KBr): 3107, 3026, 2946, 2796, 1637, 1589, 1457, 1312, 1180, 1086, 1010, 899, $842 \mathrm{~cm}^{-1}$.

Synthesis of 3

Compound 11: To a solution of $7(56.1 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.90 \mathrm{~mL})$ was added DIPEA ($121 \mu \mathrm{~L}, 0.70 \mathrm{mmol}, 2.6$ equiv.) and methoxymethyl chloride ($59 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 2.8$ equiv.). After stirring for 2 h at $50^{\circ} \mathrm{C}$, the reaction was quenched with water $(10 \mathrm{~mL})$ and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : EtOAc : $\mathrm{AcOH}=80: 20$) to afford $\mathbf{1 1}(56.5 \mathrm{mg}, 0.22 \mathrm{mmol}, 83 \%)$.
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 1)=0.68$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.014 \mathrm{M}, 295 \mathrm{~K}$): $\delta 2.66(3 \mathrm{H}, \mathrm{s}), 3.61(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}$, s) $5.02(2 \mathrm{H}, \mathrm{s}), 6.26(1 \mathrm{H}, \mathrm{s}), 13.43(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.

HR-ESI-MS, $m / z 257.1029\left([M+H]^{+}\right.$, calcd. for $\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{6} 257.1025\right)$.

Compound 12: To a solution of sodium hydroxide ($647 \mathrm{mg}, 16.2 \mathrm{mmol}, 6.8$ equiv.) and $\mathrm{Bu}_{4} \mathrm{NBr}$ $(161.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 0.21$ equiv. $)$ in water $(10.8 \mathrm{~mL})$ was added $11(610 \mathrm{mg}, 2.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.8 \mathrm{~mL})$. After stirring for 15 min at room temperature, to the reaction mixture was added methoxymethyl chloride ($0.97 \mathrm{~mL}, 12 \mathrm{mmol}, 5.2$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 18 h at room temperature and the reaction was diluted with water $(20 \mathrm{~mL})$ and extracted with EtOAc ($40 \mathrm{~mL} x \mathrm{3}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane : $\mathrm{EtOAc}=90: 10)$ to afford $12(602 \mathrm{mg}, 2.01 \mathrm{mmol}, 84 \%)$.
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 1)=0.49$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.047 \mathrm{M}, 296 \mathrm{~K}\right): \delta 2.50(3 \mathrm{H}, \mathrm{s}), 3.48(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}$, s), $3.87(3 \mathrm{H}, \mathrm{s}), 5.06(2 \mathrm{H}, \mathrm{s}), 5.13(2 \mathrm{H}, \mathrm{s}), 6.55(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.

HR-ESI-MS, $m / z 301.1264\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. for $\left.\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{7} 301.1287\right)$.

Compound 13: To a solution of $12(215 \mathrm{mg}, 0.717 \mathrm{mmol})$ was added sodium hydroxide (287 mg , $7.17 \mathrm{mmol}, 10.0$ equiv.) in EtOH (6.3 mL). After stirring for 10 min at room temperature, to the reaction mixture was added benzaldehyde ($93.2 \mu \mathrm{~L}, 0.93 \mathrm{mmol}, 1.3$ equiv.) in $\mathrm{EtOH}(2.4 \mathrm{~mL})$. The resulting mixture was stirred for 123 h at room temperature, and quenched with water (10 mL) and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaсиo. The residue was purified by column chromatography (silica gel, hexane : $\mathrm{EtOAc}=85: 15)$ to afford $\mathbf{1 3}(212.3 \mathrm{mg}, 0.55 \mathrm{mmol}, 76 \%)$.
$\mathbf{R}_{f}($ silica, $\mathrm{EtOAc} /$ hexane $=1: 1)=0.47$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.054 \mathrm{M}, 298 \mathrm{~K}\right): \delta 3.41(3 \mathrm{H}, \mathrm{s}), 3.61(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}$, s), $5.10(2 \mathrm{H}, \mathrm{s}), 5.10(2 \mathrm{H}, \mathrm{s}), 6.60(1 \mathrm{H}, \mathrm{s}), 6.99(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.37-$ $7.39(3 \mathrm{H}, \mathrm{m}), 7.52-7.54(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.054 \mathrm{M}, 298 \mathrm{~K}\right) \delta 56.2,56.3,57.3,62.1,95.4,96.3,98.7,118.1$, $127.3,128.4$ (C2), 128.9 (C2), 130.5, 133.9, 134.8, 145.1, 151.1, 151.9, 155.0, 193.6 ppm.
HR-ESI-MS, $m / z 389.1588\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{7}$ 389.1600).

Compound 14: To a solution of $\mathbf{1 3}(91.1 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{AcOH}(2.4 \mathrm{~mL})$ was refluxed for 5.5 h under Ar atomosphere. The reaction mixture was azeotroped with toluene to remove AcOH . The residue was purified by column chromatography (silica gel, hexane : EtOAc : $\mathrm{AcOH}=75$: $25: 0.3$) to afford $\mathbf{1 4}$ ($50.4 \mathrm{mg}, 0.168 \mathrm{mmol}, 72 \%$).
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 1)=0.36$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.064 \mathrm{M}, 296 \mathrm{~K}$): $\delta 2.80(1 \mathrm{H}, \mathrm{dd}, J=2.9,16.8 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{dd}, J$ $=13.5,16.8 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{dd}, J=2.8,13.5 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{s}), 6.39$ ($1 \mathrm{H}, \mathrm{s}$), $7.39-7.48$ ($5 \mathrm{H}, \mathrm{m}$) ppm.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.064 \mathrm{M}, 298 \mathrm{~K}$) $\delta 45.5,56.3,61.7,79.5,96.3,108.6,126.1$ (C2), 128.7, 128.8 (C2), 133.9, 138.8, 146.1, 153.9, 157.2, 189.4 ppm .

HR-ESI -MS: $m / z, 301.1087\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. for $\left.\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{5} 301.1076\right)$.

Compound 3: To a solution of $\mathbf{1 4}(50.4 \mathrm{mg}, 0.168 \mathrm{mmol})$ in $\mathrm{MeCN}(3.33 \mathrm{~mL})$ was added aluminium chloride ($89.5 \mathrm{mg}, 0.671 \mathrm{mmol}, 4.0$ equiv.). The mixture was refluxed for 2 h under Ar atmosphere. The reaction mixture was quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with EtOAc ($15 \mathrm{~mL} x 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and purified by HPLC [column, YMC-Pack ODS-A (20 mm i.d. x 150 mm); solvent, $40-70 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(0.1 \%$ TFA) under the linear gradient for 40 min , flow rate, $8.0 \mathrm{~mL} / \mathrm{min}$; UV detector, 254 nm] to afford 3 ($17.5 \mathrm{mg}, 0.061 \mathrm{mmol}, 36 \%$).
$\mathbf{R}_{f}($ silica, EtOAc/hexane $=1: 1)=0.49$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.027 \mathrm{M}, 296 \mathrm{~K}$): $\delta 2.83(1 \mathrm{H}, \mathrm{dd}, J=3.0,17.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.10(1 \mathrm{H}$, dd, $J=13.3,17.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.91\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{OCH}_{3}\right), 5.05(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH}), 5.41(1 \mathrm{H}, \mathrm{dd}, J=2.9,13.3$ $\mathrm{Hz}, 2-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.38-7.44\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6^{\prime}-\mathrm{H}\right), 11.7(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{OH}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.027 \mathrm{M}, 296 \mathrm{~K}$): $\delta 43.6(\mathrm{C}-3), 56.4\left(7-\mathrm{OCH}_{3}\right), 79.7(\mathrm{C}-2), 91.5(\mathrm{C}-$ 8), 103.0 (C-4a), 126.2 (C-2', C-6'), 127.5 (C-6), 128.9 (C-3', C-4', C-5'), 138.5 (C-1'), 148.0 (C5), 154.8 (C-7), 155.9 (C-8a), 196.6 (C-4) ppm.

HR-ESI -MS: $m / z, 285.0757$ ([M-H] ${ }^{-}$, calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5} 285.0763$).
IR (KBr): 3228, 3066, 2967, 1649, 1581, 1504, 1454, 1369, 1297, 1246, 1208, 1166, $1096 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 - 3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left(500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{MeOD}-d_{4}, 0.025 \mathrm{M}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ ($125 \mathrm{MHz}, 297 \mathrm{~K}$, MeOD- $d_{4}, 0.025 \mathrm{M}$)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}\left(500 \mathrm{MHz}, 297 \mathrm{~K}, \mathrm{CDCl}_{3}, 0.007 \mathrm{M}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}, 0.035 \mathrm{M}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(500 \mathrm{MHz}, 296 \mathrm{~K}, \mathrm{CDCl}_{3}, 0.027 \mathrm{M}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}, 0.027 \mathrm{M}\right)$

Fig. S1. Nucleation-dependent polymerization model of A β aggregation in vitro and inhibitory mode of action by natural products. After the nucleation phase, the subsequent elongation and saturation phases occur. The inhibitory mechanism of A β aggregation by flavonoids, triterpenoids, and curcuminoids based on the following structural features: [1] catechol structure, [2] planarity structure due to α, β-unsaturated carbonyl groups conjugated with aromatic structure, and [3] carboxy acid group.

Fig. S2. Th-T fluorescence curves showing inhibitory activities of DDC and 1-3 against A $\beta 42$ aggregation. The IC_{50} values were calculated from nonlinear regression based on the inhibitory rate (\%) of each compound on aggregation of $\mathrm{A} \beta 42(25 \mu \mathrm{M})$ after 24 h of incubation at $37^{\circ} \mathrm{C}$ in $\mathrm{Th}-\mathrm{T}$ fluorescence assay. Data are presented as the mean \pm s.d. $(\mathrm{n}=4)$.

Fig. S3. Quantitative analysis of transmission electron microscopy performed in this study. Width of fibrils marked with red arrowheads from (A) Fig. 1D, (B) Fig. 3B, and (C) Fig. S5B were measured by Image J 1.53 k software (Wayne Rasband, NIH, MD, USA). Data are presented as the mean \pm s.d. $(\mathrm{n}=10)$. ii, $\mathrm{p}<0.01$; iv, $\mathrm{p}<0.0001$. n.s., not significant.

Fig. S4. Effects of DDC and 1-3 on Th-T interference. Measurement of (A) Th-T fluorescence of A $\beta 42$ aggregates in the presence of each compound and (B) Th-T fluorescence of each compound itself. Data are presented as the mean \pm s.d. $(\mathrm{n}=4)$. n.s., not significant (versus $\mathrm{A} \beta 42$ alone or vehicle). Veh, vehicle.

Fig. S5. Effects of cDDC on the aggregation of Aß42. (A) Th-T test of DDC and cDDC against A $\beta 42$ aggregation. Time response curves of aggregation of $\mathrm{A} \beta 42(10 \mu \mathrm{M})$ during incubation for 24 h at $25^{\circ} \mathrm{C}$ in the presence of each compound $(50 \mu \mathrm{M})$ are indicated. Data are presented as the mean \pm s.d. $(\mathrm{n}=3)$. Green shadows indicate the nucleation phase, where the relative aggregation of $\mathrm{A} \beta 42$ is 50%. (B) TEM analysis of A $\beta 42$ aggregates incubated with DDC and cDDC after Th-T test. Scale bar $=200 \mathrm{~nm}$.

Fig. S6. Full spectra of ${ }^{\mathbf{1}} \mathrm{H}^{\mathbf{1}}{ }^{15} \mathrm{~N}$ SOFAST-HMQC NMR of Aß42 in the presence of DDC and $\mathbf{1}-\mathbf{3}$. The expanded version of which is shown in Fig. 4 in the main text. Black cross peaks, A $\beta 42$ alone; red cross peaks, A $\beta 42$ treated with each compound.

