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1. General remarks
Meterials: the materials used for the preparation of DNA complexes, including DNA (5’-
CCTCGCTCTGCTAATCCTGTTA-3’, M.W. = 6612.4，5’-
TAACAGGATTAGCAGAGCGAGG-3’, M.W. = 6857.5) purchased from Sangon Biotech 
(Shanghai) Co. Ltd., dioctyldimethylammonium bromide (DOAB) purchased from TCI (Tokyo 
Chemical Industry Co., Ltd), were used directly without further purifications. All the solutions 
were prepared using ultrapure water through a Millipore Milli-Q 185 water purification system 
(Millipore, USA).

Characterizations of AZO and DNA materials: TGA was carried out using a Netzsch STA 
449C thermal analyzer in a nitrogen atmosphere and with a heating/cooling rate of 10 oC min−1. 
DSC was performed by a Netzsch DSC204F1 machine with a heating rate of 5 oC min−1. POM 
was conducted on a Nikon ECLIPSE LV100NPOL machine with a computational controlled 
heating plate. SAXS was performed by employing a conventional X-ray source with radiation 
wavelength of λ = 1.54 Å. The sample holder is a metal plate with a small hole (diameter ≈ 0. 5 
cm, thickness ≈ 0. 5 cm), where the X-ray beam passes through and the sample-to-detector 
distance was 18 cm. The scattering vector q is defined as q = 4π sinθ/λ with 2θ being the 
scattering angle. Rheology was investigated by a Discovery HR-2 hybrid rheometer (TA 
instruments-Waters LLC, USA). The viscoelastic properties were determined by an oscillatory 
measurement from 0.01 to 20 Hz. The UV-Vis absorption spectra were recorded on a Shimadzu 
UV-2600 UV-Vis spectrophotometer, and all the related studies were carried out on fast scan 
mode with slit widths of 1.0 nm, using matched quartz cells. Test solutions were 200 µL. All 
absorption scans were saved as ACS II files and further processed in OriginLab software to 
produce all graphs shown. The wavelengths of UV and Vis photoirradiations are 365 nm (32 mW 
cm-2) and 520 nm (96 mW cm-2), respectively.

2. Synthesis of surfactant AZO
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Scheme S1. Synthesis of AZO.

The synthetic route from 1 to 4 was followed a reported work:1

Ethyl 2,4-dihydroxybenzoate (2): To a solution of 2,4-dihydroxybenzoic acid 1 (10 g, 64.88 
mmol) in ethanol (50 mL) was added H2SO4 (2.0 mL) dropwisely. The resulted mixture was 



refluxed overnight. The mixture was cooled to room temperature and the pH was adjusted to 5~6 
by adding saturated NaHCO3 (aq). The mixture was extracted with Et2O, and the combined 
organic layers were dried over Na2SO4, concentrated in vacuo. The residue was purified by a 
quick column chromatography on silica gel (petroleum ether/EtOAc = 8 : 1) and put into use 
directly. 
Ethyl 4-(hexyloxy)-2-hydroxybenzoate (3): To a solution of 2 (6.0 g, 32.93 mmol) in acetone 
(40 mL) were added 1-bromohexane (5.55 mL, 39.53 mmol, 1.2 eq) and K2CO3 (13.66 g, 98.84 
mmol, 3 eq). The resulted mixture was refluxed over 24 h. After cooling to r.t., the mixture was 
concentrated in vacuo and subsequently dissolved in CHCl3. The mixture was filtered and the 
filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica 
gel (petroleum ether/EtOAc = 6 : 1) to afford 3 (6.23 g, 48% yield) as a white crystal. 1H NMR 
(500 MHz, CDCl3) δ 11.05 (s, 1 H)，7.73 (d, J = 9.5 Hz, 1 H), 6.43-6.41 (m, 2 H)，4.37 (q, J = 
7.0 Hz, 2 H)，3.97 (t, J = 6.5 Hz, 2 H)，1.80-1.75 (m, 2 H)，1.46-1.43 (m, 2 H)，1.39 (t, J = 7.0 
Hz, 3 H), 1.34-1.33 (m, 4 H)，0.90 (t, J = 6.5 Hz, 3 H).
Ethyl 2-(4-bromobutoxy)-4-(hexyloxy)benzoate (4): To a solution of 3 (5.0 g, 18.77 mmol) in 
acetone (30 mL) were added 1,4-dibromobutane (2.69 mL, 22.53 mmol, 1.2 eq) and K2CO3 (3.89 
g, 28.15 mmol, 1.5 eq). The resulted mixture was refluxed over 24 h. After cooling to r.t., the 
mixture was filtered and the filtrate was concentrated in vacuo. The residue was purified by 
column chromatography on silica gel (petroleum ether/EtOAc = 10 : 1) to afford 4 (6.78 g, 90% 
yield) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.4 Hz, 1 H)，6.48-6.43 (m, 2 H)，
4.31 (q, J = 7.2 Hz, 2 H)，4.03 (t, J = 6.0 Hz, 2 H)，3.97 (t, J = 6.4 Hz, 2 H)，3.50 (t, J = 6.4 Hz, 
2 H)， 2.16-2.10 (m, 2 H)，2.02-1.95 (m, 2 H)，1.80-1.73 (m, 2 H)，1.48-1.41 (m, 2 H)，1.37-
1.31 (m, 7 H), 0.92-0.88 (t, J = 7.2 Hz, 3 H).
(E)-N-(4-(5-(hexyloxy)-2-((4-((4-
(octyloxy)phenyl)diazenyl)phenoxy)carbonyl)phenoxy)butyl)-N,N-dimethyl-2,5,8,11-
tetraoxatridecan-13-aminium (AZO): to solution of 4 (4.0 g, 9.97 mmol) in CH3CN (15 mL) 
was added 5 (2.11 g, 8.97mmol, 0.9 eq). The resulted mixture was refluxed over 24 h. After 
cooling to r.t., the mixture was concentrated in vacuo, and the residue 6 was put into next step 
without further purification. To a solution of 6 in MeOH/H2O (30 mL, 10:1) was added sodium 
hydroxide pellets (1.0 g, 25.00 mmol, 2.6 eq). The resulted mixture was refluxed over 12 h. After 
cooling to r.t., the mixture was acidified to pH ~2-4 by HCl (conc., 12 M). The mixture was 
concentrated in vacuo to remove the MeOH and the residue was extracted with CHCl3, and the 
organic layer was separated, dried and concentrated in vacuo. The residue 7 was put into next step 
without further purification. To a solution of 7 in dry CH2Cl2 (15 mL) were added 8 (3.25 g, 9.97 
mmol, 1.0 eq), EDC (1.90 g, 9.97 mmol, 1.0 eq), HOBt (1.35 g, 9.97 mmol, 1.0 eq) and DIPEA 
(1.65 mL, 9.97 mmol, 1.0 eq). The resulted mixture was stirred at r.t. over 24 h. The filtrate was 
concentrated in vacuo and subsequently purified by column chromatography on silica gel 
(EtOAc/EtOH/H2O ＝ 6 : 4 : 1) twice to afford AZO (1.92 g, 21% yield over 3 steps) as yellow 
oil. It is worth noting that a small amount of 5 and 8 could not be separated from AZO, due to 
their strong molecular interactions with AZO. The mass concentration of AZO in 95% could be 
calculated according to 1H NMR analysis. 
Note: 5 and 8 were prepared following a reported procedure from us.2 
1H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 9.0 Hz, 1 H), 7.90 (d, J = 9.0 Hz, 2 H), 7.87 (d, J = 9.0 
Hz, 2 H), 7.25 (d, J = 9.5 Hz, 2 H), 6.98 (d, J = 9.0 Hz, 2 H), 6.53 (dd, J = 9.0, 2.0 Hz, 1 H), 6.47 



(d, J = 2.0 Hz, 1 H), 4.08 (t, J = 5.0 Hz, 2 H), 4.01 (dd, J = 12.0, 6.5 Hz, 4 H), 3.77-3.72 (m, 4 H), 
3.652-3.645 (m, 2H), 3.55-3.48 (m, 10 H), 3.45-3.43 (m, 2 H), 3.28 (s, 3 H), 3.17 (s, 6 H), 2.09-
2.01 (m, 2 H ), 1.92-1.89 (m, 2 H), 1.82-1.75 (m, 4 H), 1.48-1.42 (m, 4 H), 1.35-1.23 (m, 12 H), 
0.90-0.85 (m, 6 H); 13C NMR (100 MHz, CDCl3) δ 165.0, 163.2, 161.9, 161.6, 152.5, 150.3, 146.7, 
134.4, 124.8, 123.7, 122.6, 114.8, 110.0, 106.1, 100.0, 71.8, 70.5, 70.4, 70.2, 70.1, 68.5, 68.4, 68.0, 
65.5, 64.9, 63.0, 58.9, 51.6, 31.8, 31.5, 29.3, 29.22, 29.18, 29.0, 26.0, 25.6, 22.7, 22.6, 20.0, 14.1, 
14.0; HRMS (ESI) m/z calcd for C48H74N3O9

+ [M − Br]+ 836.5420, found 836.5411.
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13C NMR of AZO

3. Synthesis of DNA melts
DNA-AZO (1:5): the aqueous solution of ssDNA (10 mM MgCl2, 50 mM NaCl, and 10 mM Tris-
HCl, pH 7.5) with sequence of (5’-CCTCGCTCTGCTAATCCTGTTA-3’) (2 mM) and aqueous 
solution of ssDNA with sequence of (5’-TAACAGGATTAGCAGAGCGAGG-3’) (2 mM) were 
mixed together. The mixture was heated to 90 oC for 15 min and cooling down to room 
temperature slowly to form the needed double stranded DNA. The formation of double stranded 
DNA was confirmed by the PAGE analysis, see below. 

The aqueous solution of AZO (23.6 mM, 186.4 μL) was added into the aqueous double stranded 
DNA solution (1 mM, 20 μL) using a pipette, which leads to a mixture of ~5 mol of surfactants 
with 1 mol of phosphate group within DNA. The resulted mixture became cloudy because of the 
formation of DNA-AZO precipitate. After a centrifugation, the aqueous supernatant was removed, 
leaving the precipitate at the bottom of vial. The precipitate was washed with Milli-Q water, 
centrifuged, and separated from the aqueous supernatant for a further purification in twice. The 
final obtained precipitate was lyophilization to afford the needed DNA-AZO (1:5) TLC.
DNA-AZO-DOAB: DNA-AZO-DOAB (1:x:y) was prepared following a procedure as that of 
DNA-AZO (1:5), but using AZO (23.6 mM, 149 μL) and DOAB (65 mM, 13.5 μL) for DNA-
AZO-DOAB (1:4:1), AZO (23.6 mM, 112 μL) and DOAB (65 mM, 27 μL) for DNA-AZO-
DOAB (1:3:2), AZO (23.6 mM, 74.6 μL) and DOAB (65 mM, 40.5 μL) for DNA-AZO-DOAB 
(1:2:3), AZO (23.6 mM, 37.3 μL) and DOAB (65 mM, 54 μL) for DNA-AZO-DOAB (1:1:4), 
respectively.

4. Characterizations of surfactant AZO and DNA TLCs

300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Ab
so

rb
an

ce
 (a

.u
.)

Wavelength (nm)

 UV-0s
 UV-30s 
 Vis-200s

340 nm

438 nm

Figure S1. UV-Vis absorption spectra changes of aqueous solution of AZO (60 μM) under UV 



and Vis light at r.t.. 
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Figure S2. a) Time-dependent UV-Vis absorption spectral changes of AZO in aqueous solution 
(60 μM) at r.t. under firstly UV light irradiation over 1 min and then storing in dark. The 
maximum absorption peak at 340 nm for π-π* absorption is used for drawing the plotted graphs. 
The absorbance at 340 nm with time is fitted by a single-exponential function as A = 0.1448 + 
0.0048*t. An assumption that the thermodynamic cis-trans isomerization of AZO fits such a 
single-exponential function within the half-life period is used for determining the half-life of cis-
AZO under dark condition at r.t.. Therefore, 0.991/2 = 0.1447 + 0.0048*t1/2 provides the half-life 
of cis-AZO with ~71.4 h.

b) Time-dependent UV-Vis absorption spectral changes of control azobenzene surfactant in 
aqueous solution (60.0 μM) at r.t. under firstly UV light over 60 s and then in dark. The control 
azobenzene surfactant was synthesized by following the reported procedure from us.2 The 
maximum absorption peak at 360 nm for π-π* absorption is used for drawing the plotted graph. 
Equation of ln[(A∞-At)/(A∞-A0)] = -κrevt is used for obtaining the thermodynamic cis-trans 
isomerization rate of AZO, κrev = 0.05015 h-1, and t1/2 = ln2/κrev is used for obtaining the half-life 
of AZO, t1/2 = ln2/0.05015 = 13.82 h. A∞ is the absorption intensity of trans-AZO rich state before 
UV illumination. At is the absorption intensity of AZO at “t” time. A0 is the absorption intensity of 
cis-AZO rich state after UV irradiation.
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Figure S3. Different perspective images on the visualization of van der Waals interaction between 
the two alkyl chains, which can be achieved from the cis-isomer of AZO through the reduced 
density gradient (RDG) calculation based on the electron density of cis-AZO3-4. As depicted, the 
low-density and low gradient region in cis-AZO mainly corresponds to the non-bounded overlaps 
between alkyl chains, which are originated from van der Waals interaction. The geometric 
optimizations of the proposed states of cis-AZO were performed within Gaussian 16 program 
package (Revision D.01)5 at the level of density functional theory (DFT) B3LYP functional6 
coupled with Grimme D3 dispersion correction7 and 6-31G (d, p) basis set. To confirm the nature 
of obtained minima, vibrational frequency calculations were then carried out at the same level of 
theory as geometric optimizations. It is conceivable that, the AZO molecules investigated here 
should have several possible conformations, in particular the alkyl chains of cis-AZO. Two 
possible conformations of cis-AZO-1 and cis-AZO-2 have been optimized using the hybrid 
B3LYP functional coupled with the 6-31G (d,p) basis set. With the same theory level, frequency 
analysis was performed to confirm the nature of obtained minima, and it is shown that cis-AZO-1 
is more stable with lower relative energies than cis-AZO-2.

  

O
C

N



 
0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

120

140

 

 

In
te

ns
ity

q (A-1)

0.170

0.238

AZOa

0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

90

100

 

 

In
te

ns
ity

q (A-1)

0.165

AZO after Vis light irradiationb

Figure S4. SAXS profiles of AZO a) before and b) after Vis light irradiation at room temperature. 
Pristine AZO gives peaks at 0.170 Å and 0.238 Å, corresponding to the d-spacing distances of 
3.69 nm and 2.64 nm. Here, we attribute these two peaks to trans-AZO and cis-AZO, which could 
be confirmed by the disappearance of cis-AZO peak after treating AZO with Vis light. trans-AZO 
and cis-AZO are in nematic arrangement by showing no following harmonics, respectively. A 
layer spacing difference of 1.05 nm is much larger than the the length change of 0.35 nm between 
trans-azobenzene and cis-azobenzene.8 This phenomenon is caused by the different positionings 
of two alkyl chains in the conformation of trans-AZO and cis-AZO, refferring to the extended 
positioning in trans-AZO and closed positioning in cis-AZO (this also gives an indirect evidence 
for the interaction between two alkyl chains). 

Figure S5. POM picture of the isotropic liquid state of DNA-AZO-DOAB (1:1:4). The scale bar 
is 50 μm.
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Figure S6. DSC profiles of DNA-AZO-DOAB TLCs.

Figure S7. A summary on the temperature-dependent POM analysis of DNA TLCs. The scale bar 
is 50 μm.
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Figure S8. SAXS profile of ssDNA-AZO (1:5) at room temperature.

Figure S9. A summary on the light-induced phase transitions of DNA-AZO (1:5), DNA-AZO-
DOAB (1:4:1), DNA-AZO-DOAB (1:3:2) at r.t., recorded by POM. The scale bar is 50 μm.
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Figure S10. SAXS profile of DNA-AZO-DOAB (1:2:3) after UV illumination at r.t..
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Figure S11. The SAXS profile of DNA-AZO-DOAB (1:2:3) after subsequence UV and Vis light 
illuminations at r.t.. A broad peak at ~0.195 Å with low intensity was observed, indiacting a 
recovery of nematic ordered structure but not to the original state.
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