Supporting Information

Divergent oxidative dearomatization coupling reactions to construct

polycyclic cyclohexadienones

Qian Pu,[†] Mingming Huo,[†] Guojuan Liang,[†] Lijuan Bai, Genhui Chen, Hongjiao Li, Peng Xiang, Hui Zhou^{*}, Jing Zhou^{*}

Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of pharmacy, Chongqing Medical University, Chongqing 400016, China

E-mail: 102792@cqmu.edu.cn.

Table of Contents

1.General Methods
2. Optimization of other reaction conditions
3. General procedure for the synthesis of 1
4. General procedure for the C-H oxidative dearomatization/Heck coupling reaction. 3
5. General procedure for the C-H oxidative dearomatization/Ullman coupling reaction
6. General procedure for the oxidative dearomatization coupling reaction
7. Experimental procedure for the synthesis of 2a' and 6
8. Proposed reaction mechanism
9. Characterization Data of 1 , 2 , 2a' , 3 , 4 , 5 and 6 7
10. NMR Spectra
11. Single-Crystal X-ray Crystallography of 2a' , 3a , 4a and 5a

1. General Methods

Various functional groups substituted ortho-hydroxyphenylsubstituted *p*-QMs **1** were prepared according to literature method¹. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). ¹H NMR spectra were recorded on commercial instruments (600 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. ¹³C NMR spectra were collected on commercial instruments (150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0). Reactions were monitored by TLC and visualized with ultraviolet light. Mass spectra were recorded on Xevo G2-S QTof tandem mass spectrometer.

References

1. K. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen, D. Enders. *Angew. Chem. Int. Ed.* **2016**, *55*, 12104-12108.

2. Optimization of other reaction conditions^a

Entry	Metal Complex	Base	solvent	Time (h)	Yield of
					$2a/3a/4a/5a (\%)^b$
1	$Pd_2(dba)_3$	t-BuOK	toluene	3	95/-/-/trace
2	$Pd_2(dba)_3$	t-BuOK	CH ₃ CN	18	10/-/-/trace
3	$Pd_2(dba)_3$	t-BuOK	DMF	18	92/-/-/trace
4	Cu(OAc) ₂ H ₂ O	Cs_2CO_3	toluene	72	-/91/trace/-
5	Cu(OTf) ₂	Cs_2CO_3	toluene	72	-/83/trace/-
6	CuI	Cs_2CO_3	toluene	72	-/82/trace/-
7	Cu(OAc) ₂ H ₂ O	KOH	toluene	18	-/99/-/-
8	Cu(OAc) ₂ H ₂ O	KOH	CH ₃ CN	18	-/95/-/-
9	Cu(OAc) ₂ H ₂ O	KOH	DMF	18	-/82/-/-

^{*a*} Unless otherwise noted, reactions were conducted with 0.1 mmol **1a**, 10 mol % [M], 1.0 equiv base in 1.0 mL solvent, 90 °C, air. ^{*b*} Isolated yields.

3. General procedure for the synthesis of 1

To a solution of *p*-QMs (0.5 mmol, 1 equiv) and β -Naphthol (0.5 mmol, 1 equiv) in DCM(5 mL), *p*-TSA(0.5 mmol, 1 equiv) was added. The reaction mixture was stirred for 5 hours at rt. Next, the solvent was removed under vacuum directly and the crude product was purified by silica gel column chromatography with ethyl acetate (EA) and petroleum ether (Pet) as eluent to afford the product **1**.

4. General procedure for the C-H oxidative dearomatization/Heck coupling reaction

To a 10 mL test tube were added **1** (0.1 mmol, 1.0 equiv), *t*-BuOK (0.1 mmol, 1.0 equiv), $Pd_2(dba)_3$ (10 mol%), toluene (1.0 mL). The mixture was then stirred at 90 °C for 3-12 hours (oil bath). After being cooled to room temperature, The solvent

was removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **2**.

Scaled-up version of the reaction

To a 10 mL test tube were added **1a** (3.0 mmol, 1.0 equiv), *t*-BuOK (3.0 mmol, 1.0 equiv), $Pd_2(dba)_3$ (10 mol%), toluene (30.0 mL). The mixture was then stirred at 90 °C for 3 hours (oil bath). After being cooled to room temperature, The solvent was removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **2a** (92% yield, 1.20 g).

5. General procedure for the C-H oxidative dearomatization/Ullman coupling reaction

To a 10 mL test tube were added **1** (0.1 mmol, 1.0 equiv), KOH (0.1 mmol, 1.0 equiv), Cu(OAc)₂ (5 mol%), toluene (1.0 mL). The mixture was then stirred at 90 °C for 18 hours (oil bath). After being cooled to room temperature, The solvent was removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **3**.

Scaled-up version of the reaction

To a 10 mL test tube were added **1a** (3.0 mmol, 1.0 equiv), KOH (3.0 mmol, 1.0 equiv), Cu(OAc)₂ (5 mol%), toluene (30.0 mL). The mixture was then stirred at 90 °C for 18 hours (oil bath). After being cooled to room temperature, The solvent was removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **3a** (94% yield, 1.22 g).

6. General procedure for the oxidative dearomatization coupling reaction

To a 10 mL test tube were added **1** (0.1 mmol, 1.0 equiv), Et_3N (0.1 mmol, 1.0 equiv), $Cu(OAc)_2 H_2O$ (5 mol%), toluene (1.0 mL). The mixture was then stirred at 50 °C for 5-7 hours (oil bath). After being cooled to room temperature, The solvent was removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **4**.

Scaled-up version of the reaction

To a 10 mL test tube were added **1a** (3.0 mmol, 1.0 equiv), Et_3N (3.0 mmol, 1.0 equiv), $Cu(OAc)_2 H_2O$ (5 mol%), toluene (30.0 mL). The mixture was then stirred at 50 °C for 5 hours (oil bath). After being cooled to room temperature, The solvent was

removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **4a** (87% yield, 1.34 g).

7. Experimental procedure for the synthesis of 2a' and 6

To a 10 mL test tube were added 2a (0.2 mmol, 1.0 equiv) dissovel in DCM (5.0 mL), drop slowly Mesitylene-2-sulfonyl chloride (0.31 mmol, 1.1 equiv) and Et₃N (0.31 mmol, 1.1 equiv). The mixture was then stirred at rt for about 2 hours. The crude product was recrystallized in the freezer by dissoveling in CH₃CN (1.0 mL) and overlaying with Toluene (2.0 mL). The product 2a' was isolated as a red solid with 96% yield.

To a solution of **3a** (0.2 mmol, 1 equiv) in CH_2Cl_2 (1 mL) was added Pd on carbon (6.0 mg, 10 wt%). The reaction mixture was degassed by a hydrogen balloon for 10 mins. Then the reaction was allowed to stir at room temperature for about 6 hours. Next, the solvent was removed under vacuum directly and the crude product was purified by silica gel column chromatography to afford the product **6** (96% yield, 83.7 mg).

8. Proposed reaction mechanism

9. Characterization Data of 1, 2, 2a', 3, 4, 5 and 6

Calcd for C₃₁H₃₄BrO₂ 517.1742; Found 517.1748.

1-((3,5-di-tert-butyl-4-hydroxyphenyl)(2-bromophenyl)methyl)naphthalen-2-ol (1a).

t-Bu *t-*Bu Br но

White solid; 51.10 mg, 99% yield (petroleum ether/ethyl acetate =10:1); mp 182.5-183.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.81 (d, J = 8.64 Hz, 1H), 7.64 (m, 2H), 7.56 (d, J = 8.94 Hz, 1H), 7.22 (m, 1H), 7.07-6.97 (m, 5H), 6.81 (s, 2H), 6.46 (s, 1H), 5.42 (s, 1H), 5.15 (s, 1H), 1.23 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 152.6, 152.3, 139.9, 136.8, 136.1, 132.5, 132.1, 129.7, 128.7, 128.5, 127.6, 127.5, 127.2, 127.0, 125.9, 124.3, 124.2, 122.1, 121.9, 118.9, 118.5, 47.7, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺

7-bromo-1-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1b).

White solid; 54.92 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 178.0-180.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.01 (s, 1H), 7.58 (d, J = 1.74 Hz, 2H), 7.53 (m, 1H), 7.32 (m, 1H), 7.05-6.97 (m, 4H), 6.81 (s, 2H), 6.35 (s, 1H), 5.47 (s, 1H), 5.15 (s,

1H), 1.24 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 153.3, 152.4, 139.5, 136.1, 133.9, 132.4, 129.6, 129.1, 128.5, 127.8, 127.0, 126.9, 125.5, 124.5, 124.2, 120.5, 119.3, 118.1, 47.7, 33.4, 29.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃Br₂O₂ 597.0827; Found 597.0822.

6-bromo-1-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1c).

White solid; 55.44 mg, 93% yield (petroleum ether/ethyl acetate =30:1); mp 170.0-172.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.82 (s, 1H), 7.57 (m, 1H), 7.54 (m, 2H), 7.40 (m, 1H), 7.17-6.99 (m, 4H), 6.80 (s, 2H), 6.38 (s, 1H), 5.42 (s, 1H), 5.15

(s, 1H), 1.24 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 152.8, 152.4, 139.7, 136.2, 132.3, 131.1, 129.6, 129.4, 129.1, 128.6, 127.7, 127.0, 124.2, 124.2, 123.8, 120.1, 118.7, 115.9, 47.8, 33.4, 29.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃Br₂O₂ 597.0827; Found 597.0822.

3-bromo-1-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1d).

White solid; 53.65 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 146.3-147.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.98 (s, 1H), 7.80 (m, 1H), 7.53 (m, 2H), 7.25 (m, 2H), 7.11-7.02 (m, 3H), 6.82 (s, 2H), 6.47 (s, 1H), 5.88 (s, 1H), 5.12 (s, 1H), 1.24 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 152.2, 148.2, 140.2, 135.8, 132.1,

131.8, 131.0, 130.0, 128.9, 128.7, 127.5, 126.7, 126.1, 124.5, 124.2, 123.1, 122.4, 120.7, 112.7, 48.4, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃Br₂O₂

597.0827; Found 597.0820.

1-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-7-methoxynaphthale *n-2-ol* (1*e*).

White solid; 49.16 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 168.0-170.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.57 (m, 3H), 7.55 (m, 3H), 7.02 (m, 1H), 6.88 (m, 1H), 6.82 (m, 3H), 6.39 (s, 1H), 5.37 (s, 1H), 5.14 (s, 1H), 3.75 (s, 3H), 1.24 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 157.5, 153.1, 152.3, 140.0, 136.1, 133.9, 131.9, 129.9, 128.9, 128.3, 127.5, 127.1, 124.3, 124.2, 123.7, 117.8, 116.3, 114.4, 101.2, 54.3, 48.0, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₆BrO₃ 547.1848; Found 547.1839.

1-((2-bromo-6-chlorophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1f).

White solid; 52.90 mg, 96% yield (petroleum ether/ethyl acetate =30:1); mp 181.3-182.7 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.65 (d, J = 7.56 Hz, 1H), 7.60 (d, J = 8.88 Hz, 1H), 7.49 (d, J = 8.52 Hz, 2H), 7.19 (m, 2H), 7.13 (m, 2H), 6.96 (m, 2H), 6.84 (s, 1H), 6.70 (s,

1H), 5.47 (s, 1H), 5.21 (s, 1H), 1.30 (d, J = 16.56 Hz, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 153.9, 152.7, 139.3, 135.3, 132.6, 128.7, 128.4, 127.7, 126.5, 125.6, 122.0, 121.6, 119.3, 115.5, 33.6, 33.5, 29.8, 29.3, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃BrClO₂ 551.1352; Found 551.1351.

1-((2-bromo-5-fluorophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1g).

White solid; 48.16 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 136.2-137.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.66 (m, 1H), 7.37 (m, 3H), 7.36 (m, 1H), 7.24 (m, 1H), 6.98 (m, 1H), 6.78-6.76 (m, 4H), 6.41 (s, 1H), 5.34 (s, 1H), 5.16 (s, 1H), 1.25 (s,

18H); ¹³C NMR (CDCl₃, 150 MHz) δ 162.2, 160.5, 152.6, 152.4, 142.4, 142.4, 136.2, 132.4, 129.0, 128.6, 128.3, 127.7, 126.0, 124.1, 122.3, 121.6, 119.1, 118.3, 118.3, 117.9, 117.0, 116.9, 114.9, 114.7, 47.8, 33.4, 29.1. ¹⁹F NMR (CDCl₃, 377 MHz) δ –113.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃BrFO₂ 535.1648; Found 535.1636.

1-((2-bromo-5-methoxyphenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthale n-2-ol (1h).

White solid; 49.31 mg, 93% yield (petroleum ether/ethyl acetate =30:1); mp 114.0-116.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.82 (d, *J* = 8.64, 1H), 7.69 (d, *J* = 8.04, 1H), 7.64 (d, *J* = 8.88, 1H), 7.36 (m, 2H), 7.23 (m, 1H), 6.98 (m, 1H), 6.84 (s, 2H), 6.59 (m, 2H), 6.39 (s, 1H), 5.39 (s, 1H), 5.13 (s, 1H), 3.52 (s, 3H), 1.25 (s,

18H); ¹³C NMR (CDCl₃, 150 MHz) δ 158.3, 152.6, 152.3, 141.1, 136.0, 132.6, 132.6, 128.8, 128.7, 128.5, 127.6, 125.9, 124.2, 122.1, 121.9, 119.0, 118.4, 115.7, 114.7, 113.0, 54.2, 47.8, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₆BrO₃ 547.1848; Found 547.1839.

1-((2-bromo-4-methylphenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1i).

White solid; 47.81 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 124.6-125.2 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.82 (d, J = 8.64 Hz, 1H), 7.69-7.62 (m, 2H), 7.39 (m, 2H), 7.16 (m, 1H), 6.97-6.90 (m, 3H), 6.84 (s, 2H), 6.40 (s, 1H), 5.40 (s, 1H), 5.12 (s, 1H), 2.21 (s, 3H), 1.24 (s, 18H);

¹³C NMR (CDCl₃, 150 MHz) δ 158.3, 152.6, 152.3, 141.1, 137.5, 136.8, 136.0, 132.6, 132.5, 129.4, 129.3, 128.6, 128.5, 127.8, 127.6, 125.9, 124.3, 124.0, 122.1, 121.9, 118.9, 118.7, 118.4, 115.7, 114.7, 113.0, 54.2, 47.8, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₆BrO₂ 531.1899; Found 531.1887.

5-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-6-hydroxy-2-naphthonitrile (1j).

White solid; 53.03 mg, 98% yield (petroleum ether/ethyl acetate =30:1); mp 161.1-162.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.06

(m, 1H), 7.85 (m, 1H), 7.70 (m, 1H), 7.49 (m, 2H), 7.12-7.06 (m, 3H), 6.98 (m, 1H), 6.80 (s, 2H), 6.40 (s, 1H), 5.69 (s, 1H), 5.18 (s, 1H), 1.25 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) & 155.2, 152.6, 139.4, 136.4, 134.4, 1335.5, 132.4, 129.4, 129.2, 128.1, 127.9, 127.5, 127.1, 126.7, 124.2, 124.2, 123.1, 120.8, 118.9, 118.4, 105.5, 47.8, 33.4, 29.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₃BrNO₂ 542.1616; Found 542.1615.

1-((1-bromonaphthalen-2-yl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1k).

White solid; 53.88 mg, 95% yield (petroleum ether/ethyl acetate =30:1); mp 138.6-139.2 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.33 (d, J = 8.58 Hz, 1H), 7.86 (d, J = 8.64 Hz, 1H), 7.69 (m, 3H), 7.41 (m, 2H), 7.29 (m, 1H), 7.16 (m, 3H), 7.00 н∩ (d, J = 8.88 Hz, 1H), 6.88 (s, 2H), 6.78 (s, 1H), 5.49 (s, 1H), 5.13 (s, 1H), 1.21 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 152.6, 152.3, 138.2, 136.2, 132.7, 132.7, 131.6, 129.0, 128.8, 128.5, 127.6, 127.1, 126.4, 126.0, 125.3, 124.3, 123.9, 122.2, 122.0, 119.0, 118.7, 49.0, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₆BrO₂ 567.1899; Found 567.1896.

6-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)benzo[d][1,3]dioxol-5 -ol (11).

White solid; 46.00 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 160.0-162.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.50 (m, 1H), 7.13 (m, 1H), 7.02 (m, 1H), 6.89 (m, 1H), 6.81 (s, 2H), 6.35 (s, 1H), 6.12 (s, 1H), 5.79 (m, 2H), 5.72 (s, 1H), 5.05 (s, 1H),

4.37 (s, 1H), 1.28 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 151.7, 147.3, 145.6, 141.6, 140.4, 135.1, 132.1, 129.8, 129.8, 127.1, 126.3, 124.9, 124.4, 120.9, 108.3, 100.0, 97.9, 49.4, 33.3, 29.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₂BrO₄ 511.1484; Found 511.1479.

1-((2-chlorophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1m).

White solid; 43.06 mg, 91% yield (petroleum ether/ethyl acetate =30:1); mp 116.0-118.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.83 (m, 1H), 7.82-7.68 (m, 2H), 7.64 (m, 2H), 7.25 (m, 1H), 7.10 (m, 3H), 6.99 (m, 1H), 6.83 (s, 2H), 6.52 (s, 1H), 5.39 (s, 1H), 5.13 (s, 1H),

1.24 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 152.6, 152.3, 138.3, 136.1, 133.3, 132.5, 129.6, 129.1, 128.7, 128.5, 127.6, 127.3, 126.3, 125.9, 124.1, 122.1, 121.7, 119.0, 118.4, 45.0, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₄ClO₂ 473.2247; Found 473.2236.

1-((3,5-di-tert-butyl-4-hydroxyphenyl)(2,6-dibromophenyl)methyl)naphthalen-2-ol (1n).

White solid; 55.34 mg, 93% yield (petroleum ether/ethyl acetate =30:1); mp 227.8-228.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.64-7.60 (m, 2H), 7.51-7.50 (m, 2H), 7.42 (d, J = 8.64, 1H), 7.23-7.09 (m, 4H), 6.88-6.82 (m, 2H), 6.69 (s, 1H), 5.48 (s, 1H),

5.22 (s, 1H), 1.31 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 154.1, 152.7, 140.5, 132.5, 128.8, 128.4, 128.0, 127.7, 126.4, 125.6, 122.1, 121.6, 119.3, 115.4, 51.5, 33.5, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃Br₂O₂ 595.0847; Found 595.0835. *1-((3,5-di-tert-butyl-4-hydroxyphenyl)(2-methoxyphenyl)methyl)naphthalen-2-ol* (10).

White solid; 45.05 mg, 96% yield (petroleum ether/ethyl acetate =30:1); mp 134.2-135.7 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.92 (d, J = 8.64 Hz, 1H), 7.59 (m, 2H), 7.20 (m, 1H), 7.13 (m, 4H), 6.77 (m, 4H), 6.52 (s, 1H), 5.51 (s, 1H), 5.06 (s, 1H), 3.69 (s, 3H), 1.23

(s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 156.0, 152.4, 151.9, 135.6, 132.7, 130.3, 129.2, 128.9, 128.5, 128.0, 127.5, 127.2, 125.4, 124.1, 122.1, 121.8, 120.1, 119.4, 118.9, 109.8, 54.7, 41.0, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₇O₃ 469.2743; Found 469.2744.

1-((4-(tert-butyl)phenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1p).

1-((4-(benzyloxy)phenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)naphthalen-2-ol (1q).

OH Wh t-Bu t-Bu acet BnO HO 7H)

White solid; 51.16 mg, 94% yield (petroleum ether/ethyl acetate =30:1); mp 116.3-117.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.94 (d, *J* = 8.64 Hz, 1H), 7.62 (m, 2H), 7.33-7.23 (m, 7H), 7.09 (m, 2H), 6.98 (m, 3H), 6.85-6.83 (m, 2H), 6.15 (s,

1H), 5.35 (s, 1H), 5.11 (s, 1H), 4.95 (s, 2H), 1.25 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 156.7, 152.1, 152.0, 136.1, 135.8, 133.4, 132.5, 131.1, 129.0, 128.6, 128.3, 127.5, 126.9, 126.4, 125.6, 124.6, 122.0, 121.9, 119.5, 118.9, 114.3, 69.1, 46.8, 33.4, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₈H₄₁O₃ 545.3056; Found 545.3044. *1-((3,5-di-tert-butyl-4-hydroxyphenyl)(naphthalen-1-yl)methyl)naphthalen-2-ol* (*1r*).

White solid; 44.03 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 178.0-179.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.86 (m, 1H), 7.80 (d, J = 8.70 Hz, 2H), 7.71 (t, J = 6.96 Hz, 2H), 7.64 (d, J = 8.88 Hz, 1H), 7.38-7.28 (m, 5H), 7.22 (m, 1H),

7.06-6.80 (m, 4H), 5.51 (s, 1H), 5.09 (s, 1H), 1.20 (s, 18H); ¹³C NMR (CDCl₃, 150 MHz) δ 153.0, 152.0, 137.3, 135.7, 133.1, 132.3, 130.8, 130.4, 128.6, 128.4, 127.9, 127.7, 127.1, 125.8, 125.4, 124.8, 124.7, 123.0, 122.0, 121.7, 118.8, 118.8, 44.9, 33.3, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₇O₂ 489.2794; Found 489.2784.

1-((2-bromophenyl)(4-hydroxy-3,5-diisopropylphenyl)methyl)naphthalen-2-ol (1s).

White solid; 46.36 mg, 95% yield (petroleum ether/ethyl acetate =10:1); mp 116.9-117.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.79 (m, 1H), 7.70-7.64 (m, 2H), 7.57 (d, *J* = 7.98 Hz, 1H), 7.23 (m, 2H), 7.07 (m, 3H), 6.97 (m, 1H), 6.69 (s, 2H), 6.48 (s, 1H), 5.44 (s, 1H), 4.75 (s, 1H), 2.96-3.03 (m, 2H), 1.02-1.06 (m, 12H); ¹³C NMR

 $(CDCl_3, 150 \text{ MHz}) \delta 152.7, 148.5, 139.7, 134.0, 132.5, 132.2, 130.6, 129.7, 128.7, 128.5, 127.6, 127.0, 126.0, 124.3, 122.8, 121.8, 119.0, 118.4, 47.7, 26.3, 21.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₃₀BrO₂ 489.1429; Found 489.1426.$

2,4-di-tert-butyl-9-(2-hydroxynaphthalen-1-yl)-3H-fluoren-3-one (2a).

t-BuRed solid; 41.25 mg, 95% yield (petroleum ether/ethyl acetateHOH

131.8, 130.1, 127.8, 127.7, 127.2, 125.8, 124.1, 122.8, 122.2 116.7, 110.3, 34.8, 34.0, 29.7, 28.5. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{31}H_{31}O_2$ 435.2324; Found 435.2334.

9-(7-bromo-2-hydroxynaphthalen-1-yl)-2,4-di-tert-butyl-3H-fluoren-3-one (2b).

Red solid; 47.12 mg, 92% yield (petroleum ether/ethyl acetate =10:1); mp 106.6-107.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.76 (d, J = 8.94 Hz, 1H), 7.66-7.63 (m, 4H), 7.22 (m, 1H), 7.07 (m, 1H), 6.93 (m, 1H), 6.57 (d, J = 7.44 Hz, 1H), 6.32 (s, 1H),

5.27 (s, 1H), 1.53 (s, 9H),1.09 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.7, 154.3, 151.0, 147.5, 143.2, 140.7, 137.9, 136.4, 135.3, 133.0, 130.0, 128.9, 127.8, 126.6, 126.3, 126.2, 123.9, 121.9, 120.4, 117.2, 109.7, 34.9, 34.0, 29.7, 28.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀BrO₂ 513.1429; Found 513.1421.

2, 4-di-tert-butyl-9-(2-hydroxy-7-methoxynaphthalen-1-yl)-3H-fluoren-3-one~(2c).

t-Bu H₃CO O O H Red solid; 42.71 mg, 92% yield (petroleum ether/ethyl acetate =10:1); mp 178.3-179.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.71 (d, J = 8.82 Hz, 1H), 7.67-7.63 (m, 2H), 7.05-6.93 (m, 4H), 6.80 (s, 1H), 6.65 (m, 1H), 6.41 (s, 1H), 5.19 (s, 1H), 3.63 (s, 3H), 1.52 (s,

9H),1.09 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.9, 157.4, 153.8, 150.8, 147.1, 143.2, 140.9, 139.4, 136.5, 134.8, 133.1, 129.8, 128.8, 127.6, 126.4, 124.4, 123.4, 122.3, 114.8, 114.2, 109.5, 103.7, 54.3, 34.9, 33.9, 29.7, 28.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₃O₃ 465.2430; Found 465.2433.

5-(2,4-di-tert-butyl-3-oxo-3H-fluoren-9-yl)-6-hydroxy-2-naphthonitrile (2d).

Red solid; 42.24 mg, 92% yield (petroleum ether/ethyl acetate =10:1); mp 121.2-122.2 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.15 (s, 1H), 7.86 (m, 1H), 7.58 (m, 2H), 7.43 (m, 1H), 7.34 (m, 1H), 7.08 (m, 1H), 6.92 (m, 1H), 6.51 (d, *J* = 7.38 Hz, 1H), 6.27 (s, 1H), 5.63

(s, 1H), 1.51 (s, 9H),1.08 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.7, 154.7, 152.8, 147.8, 143.2, 140.6, 137.2, 135.5, 133.6, 133.3, 130.5, 127.8, 127.0, 126.7, 126.4, 125.4, 123.5, 121.8, 118.7, 118.2, 110.9, 106.2, 34.9, 34.0, 29.6, 28.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₀NO₂ 460.2277; Found 460.2283.

9-(6-bromo-2-hydroxynaphthalen-1-yl)-2,4-di-tert-butyl-3H-fluoren-3-one (2e).

t-Bu

OH .OH

Red solid; 45.58 mg, 89% yield (petroleum ether/ethyl acetate =10:1); mp 177.8-178.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.92 (s, 1H), 7.64 (m, 2H), 7.38 (m, 2H), 7.08 (m, 1H), 6.94 (m, 1H), 6.91 (m, 1H), 6.54 (d, J = 7.32 Hz, 1H), 6.32 (s, 1H), 5.25 (s, 1H), 1.52

(s, 9H), 1.08 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.7, 154.3, 150.4, 147.6, 143.4, 140.7, 138.2, 136.3, 135.2, 130.3, 129.0, 127.7, 126.6, 126.0, 123.8, 122.0, 117.9, 116.6, 110.6, 34.9, 34.0, 29.7, 28.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀BrO₂ 513.1429; Found 513.1432.

Red solid; 40.26 mg, 86% yield (petroleum ether/ethyl acetate =10:1); mp 209.4-210.4 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.80-7.75 (m, 2H), 7.45 (m, 2H), 7.31 (m, 2H), 7.16 (s, 1H), 6.99 (m, 1H), 6.88 (d, *J* = 8.04 Hz, 1H), 6.24 (s, 1H), 5.06 (s, 1H), 1.51 (s, 9H), 1.04 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.8, 155.2, 149.6, 147.6, 139.6, 139.5, 138.8, 137.7, 137.1, 132.6, 129.8, 129.8, 128.8, 127.0, 126.2, 126.0, 123.9, 123.5, 122.7, 116.4, 112.0, 35.0, 33.9, 29.7, 28.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀ClO₂ 469.1934; Found 469.1944.

2,4-di-tert-butyl-9-(2-hydroxynaphthalen-1-yl)-7-methyl-3H-fluoren-3-one (2g).

Red solid; 40.34 mg, 90% yield (petroleum ether/ethyl acetate =10:1); mp 187.0-188.0 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.81-7.76 (m, 2H), 7.51 (m, 1H), 7.51 (s, 1H), 7.29 (m, 2H), 7.21 (m, 1H), 6.72 (d, J = 7.56 Hz, 1H), 6.46 (d, J = 7.56 Hz,

1H), 6.35 (s, 1H), 5.20 (s, 1H), 2.29 (s, 3H), 1.52 (s, 9H), 1.08 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.7, 153.7, 150.0, 146.8, 141.0, 141.0, 139.4, 136.9, 136.6, 134.4, 131.8, 130.0, 129.1, 127.2, 125.7, 124.3, 122.8, 122.0, 116.7, 110.4, 34.8, 33.9, 29.7, 28.5, 20.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₃O₂ 449.2481; Found 449.2491.

2,4-di-tert-butyl-9-(2-hydroxynaphthalen-1-yl)-7-methoxy-3H-fluoren-3-one (2h).

Red solid; 41.78 mg, 90% yield (petroleum ether/ethyl acetate =10:1); mp 201.9-202.9 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.81-7.76 (m, 2H), 7.51 (m, 2H), 7.31-7.28 (m, 2H), 7.21 (m, 1H), 6.54 (d, *J* = 8.46 Hz, 1H), 6.31 (s, 1H), 6.13 (s, 1H), 5.21 (s, 1H), 3.56 (s, 3H), 1.50 (s, 9H), 1.07 (s, 9H); ¹³C

NMR (CDCl₃, 150 MHz) δ 193.7, 159.4, 151.7, 150.1, 147.4, 145.7, 140.6, 138.4, 136.3, 131.8, 130.0, 128.5, 127.2, 125.8, 124.0, 122.8, 116.7, 110.2, 110.1, 109.1, 54.4, 34.6, 33.9, 29.6, 28.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₃O₃ 465.2430; Found 465.2440.

2,4-di-tert-butyl-7-fluoro-9-(2-hydroxynaphthalen-1-yl)-3H-fluoren-3-one (2i).

Red solid; 41.15 mg, 91% yield (petroleum ether/ethyl acetate =10:1); mp 114.7-115.7 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.82-7.77 (m, 2H), 7.48 (m, 2H), 7.35-7.29 (m, 2H), 7.20 (m, 1H), 6.73 (m, 1H), 6.35 (s, 1H), 6.27 (d, *J* = 8.04 Hz, 1H), 5.19

(s, 1H), 1.50 (s, 9H), 1.07 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.7, 163.1, 163.0, 161.4, 153.7, 150.1, 147.7, 146.4, 146.4, 139.8, 137.8, 137.8, 136.5, 132.0, 131.9, 131.6, 130.3, 128.6, 127.4, 126.0, 124.0, 124.0, 123.0, 116.7, 112.3, 112.2, 109.8, 109.7, 109.7, 34.8, 34.0, 29.7, 28.5. ¹⁹F NMR (CDCl₃, 377 MHz) δ –112.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀FO₂ 453.2230; Found 453.2220.

8-bromo-9-(6-bromo-2-hydroxynaphthalen-1-yl)-2,4-di-tert-butyl-3H-fluoren-3-one (2j).

Red solid; 53.31 mg, 90% yield (petroleum ether/ethyl acetate =10:1); mp 96.5-97.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.91 (s, 1H), 7.60 (m, 4H), 7.20 (s, 1H), 7.09 (d, *J* = 8.04 Hz, 1H), 6.93 (t, *J* = 7.92 Hz, 1H), 6.18 (s, 1H), 5.10 (s, 1H), 1.50 (s, 9H), 1.04 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.8, 155.6,

150.2, 148.0, 140.8, 139.0, 137.6, 137.6, 133.2, 131.4, 129.1, 128.9, 127.2, 126.8, 125.3, 117.6, 116.9, 116.6, 112.0, 35.0, 34.0, 29.7, 28.5, 28.4. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{31}H_{29}Br_2O_2$ 593.0514; Found 593.0519.

9-(2-hydroxynaphthalen-1-yl)-2,4-düsopropyl-3H-fluoren-3-one (2k).

Red solid; 34.53 mg, 85% yield (petroleum ether/ethyl acetate =10:1); mp 134.2-135.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.82 (m, 2H), 7.60 (m, 2H), 7.53 (m, 3H), 7.08 (m, 1H), 6.93 (m, 1H), 6.63 (d, J = 7.32 Hz, 1H), 6.46 (s, 1H), 5.24 (s, 1H),

3.61-3.56 (m, 1H), 2.91-2.87 (m, 1H), 1.43-1.41 (m, 6H), 0.92-0.86 (m, 6H); 13 C NMR (CDCl₃, 150 MHz) δ 187.3, 150.0, 145.0, 143.9, 143.1, 142.3, 141.2, 136.7, 134.2, 131.7, 130.2, 128.3, 127.7, 127.3, 125.8, 124.5, 124.2, 122.9, 122.7, 116.8, 110.3, 28.7, 25.7, 21.0, 20.9, 19.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₂₇O₂ 407.2011; Found 407.2020.

1-(2,4-di-tert-butyl-3-oxo-3H-fluoren-9-yl)naphthalen-2-yl 2,4,6-trimethylbenzenesulfonate (2a').

Red solid; 58.17 mg, 96% yield (petroleum ether/ethyl acetate) =30:1; mp 118.4-119.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.93 (d, J = 9.00 Hz, 1H), 7.86 (d, J = 8.16 Hz, 1H), 7.69 (m, 1H), 7.46-7.43 (m, 3H), 7.34-7.32 (m, 1H),

6.95 (t, J = 7.62 Hz, 1H), 6.76 (t, J = 7.38 Hz, 1H), 6.45 (s, 2H), 6.25 (d, J = 7.32 Hz, 1H), 6.18 (s, 1H), 2.18 (s, 6H), 2.02 (s, 3H), 1.49 (s, 9H), 1.06 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.6, 152.8, 138.6, 135.4, 134.1, 131.2, 131.1, 130.5, 129.5, 127.3, 127.2, 127.0, 125.9, 125.5, 125.4, 125.0, 122.5, 121.9, 121.0, 34.6, 33.8, 28.4, 21.7, 20.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄₀H₄₁O₄S 617.2726; Found 617.2736.

4-(12H-benzo[a]xanthen-12-ylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (3a).

Orange solid; 42.98 mg, 99% yield (petroleum ether/ethyl acetate =30:1); mp 248.8-249.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.00 (d, J = 8.40 Hz, 1H), 7.78 (m, 2H), 7.68 (m, 2H), 7.38-7.28 (m, 6H), 7.01 (d, J = 2.10 Hz, 1H), 1.25 (s, 9H), 0.93 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.8, 153.0, 151.9, 146.9, 146.1, 134.9, 130.8, 129.7, 128.4, 127.1, 127.1, 125.7, 124.8, 124.0, 122.6, 117.7, 115.8, 115.8, 34.6, 34.2, 28.7, 28.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₁O₂ 435.2324; Found 435.2321.

4-(2-bromo-12H-benzo[a]xanthen-12-ylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1 -one (3b).

Orange solid; 47.11 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 237.4-237.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.14 (s, 1H), 7.76 (m, 1H), 7.67-7.63 (m, 3H), 7.38-7.29 (m, 5H), 6.99 (s, 1H), 1.25 (s, 9H), 0.99 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.6, 152.8, 152.6, 147.2, 146.6, 133.9, 130.9, 129.6, 128.7,

127.4, 127.3, 127.1, 125.0, 123.8, 122.8, 121.5, 120.5, 116.5, 116.4, 115.7, 34.6, 34.3, 28.6, 28.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀BrO₂ 513.1429; Found

513.1432.

4-(3-bromo-12H-benzo[a]xanthen-12-ylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1 -one (3c).

Orange solid; 47.62 mg, 93% yield (petroleum ether/ethyl acetate =30:1); mp 242.9-243.9 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.94 (m, 2H), 7.73-7.65 (m, 3H), 7.44-7.28 (m, 5H), 6.92 (d, J = 2.58 Hz, 1H), 1.25 (s, 9H), 0.95 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.7, 152.9, 152.1, 147.2, 146.5, 134.1, 130.8,

130.2, 128.8, 128.3, 127.1, 126.7, 125.0, 123.8, 122.8, 117.7, 117.4, 117.1, 115.8, 34.6, 34.3, 28.6, 28.3. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{31}H_{30}BrO_2$ 513.1429; Found 513.1426.

4-(6-bromo-12H-benzo[a]xanthen-12-ylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1 -one (3d).

Orange solid; 48.65 mg, 95% yield (petroleum ether/ethyl acetate =30:1); mp 183.4-184.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.10 (s, 1H), 7.94 (m, 1H), 7.67 (m, 3H), 7.42-7.30 (m, 5H), 6.90 (s, 1H), 1.25 (s, 9H), 0.92 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.8, 152.9, 148.1, 147.4, 146.5, 133.8, 132.1, 130.1, 128.3, 126.2,

125.6, 124.9, 123.9, 123.1, 118.9, 116.2, 109.8, 34.6, 34.3, 28.6, 28.2. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{31}H_{30}BrO_2$ 513.1429; Found 513.1426.

2,6-di-tert-butyl-4-(2-methoxy-12H-benzo[a]xanthen-12-ylidene)cyclohexa-2,5-dien -1-one (3e).

Orange solid; 41.78 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 205.6-206.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.73-7.67 (m, 4H), 7.28 (m, 5H), 7.09-7.04 (m, 2H), 3.75 (s, 3H), 1.25 (s, 9H),0.95 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.7, 157.7, 152.9, 152.6, 146.8, 146.0, 135.5, 131.1,

130.8, 128.8, 128.5, 127.1, 125.1, 124.3, 124.1, 122.5, 116.4, 115.8, 113.3, 104.0, 54.4, 34.6, 34.3, 28.6, 28.3. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{32}H_{33}O_3$ 465.2430; Found 465.2433.

2,6-di-tert-butyl-4-(11-chloro-12H-benzo[a]xanthen-12-ylidene)cyclohexa-2,5-dien-1-one (3f).

Orange solid; 41.66 mg, 89% yield (petroleum ether/ethyl acetate =30:1); mp 251.3-252.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.06 (d, J = 8.46 Hz, 1H), 7.80-7.79 (m, 2H), 7.47 (m, 3H), 7.29-7.25 (m, 3H), 7.16 (m, 1H), 6.96 (d, J = 2.58 Hz, 1H), 1.22 (s, 9H), 0.92 (s,

9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.9, 154.8, 151.3, 146.6, 146.5, 131.2, 129.7, 129.4, 128.4, 126.8, 126.1, 124.7, 124.3, 123.5, 118.2, 115.6, 114.2, 34.4, 34.3, 28.5, 28.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀ClO₂ 469.1934; Found 469.1940.

2,6-di-tert-butyl-4-(10-fluoro-12H-benzo[a]xanthen-12-ylidene)cyclohexa-2,5-dien-1-one (3g).

Orange solid; 42.05 mg, 93% yield (petroleum ether/ethyl acetate =30:1); mp 213.4-214.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.96 (m, 1H), 7.84-7.68 (m, 2H), 7.68 (d, *J* = 2.70 Hz, 1H), 7.38 (m, 4H), 7.28 (m, 1H), 7.10-7.07 (m, 1H), 6.96 (d, *J* = 2.64 Hz, 1H),

1.27 (s, 9H), 0.92 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.7, 158.5, 156.9, 152.1, 149.2, 149.2, 147.4, 146.4, 133.5, 130.6, 130.1, 129.7, 129.7, 127.8, 127.1, 125.8, 125.2, 125.1, 125.3, 124.8, 124.1, 117.0, 116.9, 116.6, 115.2, 113.3, 113.1, 34.6, 34.3, 28.6, 28.2. ¹⁹F NMR (CDCl₃, 377 MHz) δ –118.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀FO₂ 453.2230; Found 453.2239.

2,6-di-tert-butyl-4-(10-methoxy-12H-benzo[a]xanthen-12-ylidene)cyclohexa-2,5-die n-1-one (3h).

Orange solid; 42.71 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 228.5-229.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.99 (d, J = 8.40 Hz, 1H), 7.80 (m, 3H), 7.76-7.35 (m, 3H), 7.25 (m, 2H), 7.00-6.94 (m, 2H), 3.83 (s, 3H), 1.27

(s, 9H), 0.92 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.7, 154.8, 152.3, 147.4, 146.9, 145.0, 137.7, 135.1, 130.9, 129.6, 128.1, 127.0, 125.7, 124.9, 124.7, 124.4, 123.9, 116.8, 116.6, 115.9, 115.7, 110.4, 54.9, 54.7, 34.6, 34.2, 28.8, 28.2. HRMS (ESI-TOF)

m/z: [M+H]⁺ Calcd for C₃₂H₃₃O₃ 465.2430; Found 465.2419.

2,6-di-tert-butyl-4-(9-methyl-12H-benzo[a]xanthen-12-ylidene)cyclohexa-2,5-dien-1 -one (3i).

Orange solid; 41.24 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 271.3-272.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.00 (d, J = 8.40 Hz, 1H), 7.78 (m, 3H), 7.56 (m, 1H), 7.40-7.35 (m, 3H), 7.16 (s, 1H), 7.09 (d, *J* = 7.86 Hz, 1H), 7.00 (s, 1H), 2.39 (s, 3H), 1.26 (s, 9H),0.92 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.8, 152.9, 151.9, 146.7, 145.8, 139.2, 135.3, 130.9, 129.6, 128.7, 127.0, 126.8, 125.6,

125.0, 124.3, 123.9, 123.7, 121.4, 117.3, 116.1, 115.8, 34.6, 34.2, 28.7, 28.2, 20.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₃O₂ 449.2481; Found 449.2487.

2,6-di-tert-butyl-4-(8-chloro-12H-benzo[a]xanthen-12-ylidene)cyclohexa-2,5-dien-1 -one (3j).

Orange solid; 43.54 mg, 93% yield (petroleum ether/ethyl acetate =30:1); mp 258.2-259.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.97 (d, J = 8.34 Hz, 1H), 7.84 (d, J = 7.84 Hz, 1H), 7.78 (d, J = 7.98 Hz, 1H), 7.61 (m, 3H), 7.38 (m, 3H), 7.18 (m, 1H), 6.98 (s, 1H), 1.24 (s, 9H), 0.92 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.8, 151.7,

148.9, 147.3, 146.5, 133.7, 130.5, 130.1, 130.0, 128.8, 128.1, 127.2, 125.8, 125.6, 125.5, 124.9, 124.3, 122.7, 121.5, 117.1, 115.9, 34.6, 34.3, 28.6, 28.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₀ClO₂ 469.1934; Found 469.1924.

2,6-di-tert-butyl-4-(14H-dibenzo[a,h]xanthen-14-ylidene)cyclohexa-2,5-dien-1-one (3k).

Orange solid; 44.07 mg, 91% yield (petroleum ether/ethyl acetate =30:1); mp 266.7-267.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.49 (d, J = 8.16 Hz, 1H), 8.09 (d, J = 8.40 Hz, 1H), 7.78 (m, 6H), 7.58-7.51 (m, 3H), 7.38 (m, 2H), 7.08 (d, J = 2.58 Hz, 1H), 1.25 (s, 9H), 0.94 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.4,

151.8, 148.9, 146.9, 145.9, 130.8, 129.7, 129.6, 128.8, 127.1, 126.8, 126.6, 125.8, 125.7, 125.1, 124.3, 124.2, 124.1, 122.8, 122.2, 121.1, 118.6, 117.4, 115.8, 34.6, 34.3, 28.7, 28.2. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{35}H_{33}O_2$ 485.2481; Found 485.2487.

1'-(2-bromophenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]fur an]-2,5-dien-4-one (4a).

White solid; 50.90 mg, 99% yield (petroleum ether/ethyl acetate =30:1); mp 157.8-158.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.80 (d, *J* = 8.76 Hz, 2H), 7.50 (m, 1H), 7.21 (m, 3H), 7.06-7.00 (m, 3H), 6.70 (d, *J* = 2.94 Hz, 1H), 6.53 (m, 1H), 5.98 (d, *J* = 2.88 Hz,

1H), 5.46 (s, 1H), 1.18 (s, 9H),0.89 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.6, 155.7, 146.0, 144.8, 137.2, 137.2, 136.0, 132.0, 130.0, 129.2, 129.0, 127.9, 126.5, 126.3, 124.6, 122.5, 122.1, 118.4, 111.6, 84.7, 54.5, 33.8, 33.7, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₂BrO₂ 515.1586; Found 515.1596.

4'-bromo-1'-(2-bromophenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho [2,1-b]furan]-2,5-dien-4-one (4b).

White solid; 55.65 mg, 94% yield (petroleum ether/ethyl acetate =30:1); mp 166.5-167.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.02 (m, 1H), 7.72 (m, 1H), 7.50 (m, 1H), 7.24 (m, 2H), 7.02 (m, 3H), 6.69 (m, 1H), 6.53 (d, *J* = 5.82 Hz, 1H), 6.00 (s, 1H), 5.56 (s,

1H), 1.19 (s, 9H), 0.89 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.4, 152.8, 146.1, 145.0, 136.8, 136.7, 135.7, 132.1, 131.9, 129.9, 129.1, 128.1, 127.0, 126.6, 126.5, 124.5, 123.4, 122.3, 119.9, 104.4, 85.4, 55.5, 33.8, 30.0, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₁Br₂O₂ 595.0670; Found 595.0686.

7'-bromo-1'-(2-bromophenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho [2,1-b]furan]-2,5-dien-4-one (4c).

White solid; 57.43 mg, 97% yield (petroleum ether/ethyl acetate =30:1); mp 183.5-184.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.95 (s, 1H), 7.70 (m, 1H), 7.50 (m, 1H), 7.20 (m, 2H), 6.92 (m, 3H), 6.68 (m, 1H), 6.48 (m, 1H), 5.96 (d, *J* = 3.12 Hz,

1H), 5.44 (s, 1H), 1.18 (s, 9H), 0.88 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.5,

156.0, 146.1, 145.0, 136.9, 136.9, 135.7, 132.1, 129.5, 129.1, 129.0, 127.9, 126.5, 124.6, 123.8, 118.8, 116.1, 112.7, 84.9, 54.4, 33.8, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₁Br₂O₂ 595.0670; Found 595.0686.

8'-bromo-1'-(2-bromophenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho [2,1-b]furan]-2,5-dien-4-one (4d).

2H), 6.65 (m, 1H), 6.49 (m, 1H), 5.92 (d, J = 3.12 Hz, 1H), 5.39 (s, 1H), 1.18 (s, 9H),0.89 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.4, 156.5, 146.2, 145.0, 136.8, 136.6, 135.6, 132.2, 130.1, 128.9, 128.1, 127.3, 126.6, 126.0, 124.6, 124.1, 120.8, 117.7, 112.0, 85.0, 54.2, 33.8, 28.7, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₁Br₂O₂ 595.0670; Found 595.0686.

1'-(2-bromophenyl)-3,5-di-tert-butyl-8'-methoxy-1'H-spiro[cyclohexane-1,2'-napht ho[2,1-b]furan]-2,5-dien-4-one (4e).

White solid; 52.24 mg, 96% yield (petroleum ether/ethyl acetate =30:1); mp 136.7-137.7 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.71-7.67 (m, 2H), 7.49 (m, 1H), 6.99 (m, 3H), 6.89 (m, 1H), 6.87 (m, 1H), 6.58 (m, 1H), 6.29 (d, *J*

= 2.22 Hz, 1H), 6.01 (d, J = 3.06 Hz, 1H), 5.41 (s, 1H), 3.55 (s, 3H), 1.18 (s, 9H), 0.88 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.6, 157.6, 156.2, 145.9, 144.8, 137.4, 136.8, 136.2, 131.9, 130.7, 129.2, 127.9, 126.5, 124.5, 124.2, 117.7, 114.7, 108.9, 100.9, 84.6, 54.6, 54.0, 33.8, 33.7, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₄BrO₃ 545.1691; Found 545.1697.

1'-(2-bromophenyl)-3,5-di-tert-butyl-4-oxo-1'H-spiro[cycl ohexane-1,2'-naphtho[2,1-b]furan]-2,5-diene-7'-carbonit rile (4f).

White solid; 51.76 mg, 96% yield (petroleum ether/ethyl

acetate =30:1); mp 133.4-134.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.17 (s, 1H), 7.86 (d, *J* = 8.94 Hz, 1H), 7.51 (m, 1H), 7.36-7.30 (m, 2H), 7.01 (m, 3H), 6.66 (d, *J* = 3.12 Hz, 1H), 6.47 (m, 1H), 5.95 (d, *J* = 3.12 Hz, 1H), 5.47 (s, 1H), 1.19 (s, 9H),0.88 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.3, 158.2, 146.4, 145.3, 136.5, 136.4, 135.2, 134.0, 132.3, 130.8, 128.9, 128.3, 127.8, 126.9, 126.6, 124.7, 123.3, 119.2, 118.3, 113.6, 105.8, 85.5, 54.1, 33.9, 33.8, 30.0, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₁BrNO₂ 540.1538; Found 540.1528.

8'-(2-bromophenyl)-3,5-di-tert-butyl-8'H-spiro[cyclohexane-1,7'-[1,3]dioxolo[4,5-e] benzofuran]-2,5-dien-4-one (4g).

White solid; 49.80 mg, 98% yield (petroleum ether/ethyl acetate =30:1); mp 145.6-146.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.43 (d, *J* = 7.92 Hz, 1H), 7.16 (m, 1H), 7.01 (m, 1H), 6.68 (m, 2H), 6.45 (d, *J* = 3.48 Hz, 2H), 5.91 (m, 3H), 5.04 (s, 1H), 1.18 (s, 9H),

0.85 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.5, 152.4, 147.6, 145.8, 144.9, 141.6, 138.0, 137.2, 135.7, 131.9, 129.4, 127.9, 126.4, 124.8, 118.2, 104.6, 100.5, 92.7, 84.8, 55.1, 33.8, 33.7, 28.7, 28.3, 27.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₀BrO₄ 509.1327; Found 509.1332.

3-(2-bromophenyl)-3',5'-di-tert-butyl-4,5-dimethoxy-3H-spiro[benzofuran-2,1'-cycl ohexane]-2',5'-dien-4'-one (4h).

White solid; 51.37 mg, 98% yield (petroleum ether/ethyl acetate =30:1); mp 188.0-189.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.44 (d, *J* = 7.92 Hz, 1H), 7.05 (m, 1H), 7.02 (m, 1H), 6.68 (m, 2H), 6.55 (s, 1H), 6.51 (s, 1H), 5.91 (d, *J* = 3.06 Hz, 1H), 5.10 (s, 1H),

3.85 (s, 3H), 3.72 (s, 3H), 1.19 (s, 9H), 0.86 (s, 9H); 13 C NMR (CDCl₃, 150 MHz) δ 184.5, 152.0, 149.5, 145.8, 144.8, 143.4, 138.2, 137.4, 135.9, 131.9, 129.5, 127.9, 126.4, 124.8, 116.9, 108.1, 94.4, 84.7, 55.7, 55.4, 55.1, 33.8, 33.7, 28.3, 27.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₃₄BrO₄ 525.1640; Found 525.1650.

1'-(2-bromo-5-methoxyphenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphth o[2,1-b]furan]-2,5-dien-4-one (4i).

H₃C

White solid; 53.33 mg, 98% yield (petroleum ether/ethyl acetate =30:1); mp 170.2-171.5 °C. ¹H NMR (CDCl₃, 600 MHz) 7.78 (d, J = 9.00 Hz, 2H), 7.38-7.17 (m, 4H), 7.09 (d, J = 8.70 Hz, 1H), 6.67 (s, 1H), 6.57 (m, 1H), 6.08 (d, J = 3.06 Hz, 1H), 6.03 (d, J = 3.12 Hz, 1H), 5.38 (s, 1H), 3.44 (s, 3H), 1.17 (s, 9H), 0.92 (s,

9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.6, 158.0, 155.6, 146.1, 144.8, 138.2, 137.2, 135.9, 132.5, 130.1, 129.5, 128.9, 127.9, 126.3, 122.4, 122.1, 118.3, 115.6, 115.0, 112.9, 111.6, 84.7, 54.5, 54.3, 33.8, 33.7, 28.7, 28.4, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₄BrO₃ 545.1691; Found 545.1697.

1'-(2-bromo-4-methylphenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]furan]-2,5-dien-4-one (4j).

2.70 Hz, 1H), 5.42 (s, 1H), 2.19 (s, 3H), 1.17 (s, 9H),0.90 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.6, 155.6, 145.9, 144.7, 138.1, 137.3, 136.2, 134.0, 132.3, 129.9, 128.9, 128.8, 127.3, 126.2, 124.3, 122.4, 122.1, 118.6, 111.6, 84.8, 54.2, 33.8, 33.7, 28.4, 28.0, 19.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₄BrO₂ 529.1742; Found 529.1748.

3,5-di-tert-butyl-1'-(2,6-dibromophenyl)-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b] furan]-2,5-dien-4-one (4k).

White solid; 55.65 mg, 94% yield (petroleum ether/ethyl acetate =30:1); mp 149.3-150.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.77 (d, *J* = 8.70 Hz, 2H), 7.54 (m, 1H), 7.22 (m, 3H), 7.11 (m, 1H), 6.95 (m, 1H), 6.87-6.85 (m, 1H), 6.76-6.73 (m,

2H), 5.99 (s, 1H), 1.19 (s, 9H), 0.88 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.7, 156.9, 146.7, 144.4, 138.0, 136.3, 135.2, 133.8, 131.8, 129.9, 129.7, 128.4, 127.4, 126.2, 123.7, 122.3, 121.0, 118.1, 111.6, 84.7, 56.3, 33.8, 28.3, 28.1. HRMS

(ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₁Br₂O₂ 595.0670; Found 595.0673.

1'-(2-bromo-6-chlorophenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]furan]-2,5-dien-4-one (4l).

White solid; 52.62 mg, 96% yield (petroleum ether/ethyl acetate =30:1); mp 142.6-143.6 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.78-7.50 (m, 2H), 7.21 (m, 3H), 7.12 (m, 2H), 6.98-6.94 (m, 2H), 6.75-6.70 (m, 2H), 5.98-5.94 (m, 1H), 1.18

(s, 9H),0.87 (d, J = 3.84 Hz, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.7, 156.8, 156.3, 146.7, 146.6, 144.4, 138.1, 138.0, 136.1, 134.9, 134.4, 133.8, 133.0, 131.1, 129.5, 127.9, 126.9, 126.1, 123.7, 122.3, 121.0, 120.8, 118.2, 117.8, 111.6, 111.6, 84.8, 55.5, 53.3, 33.8, 28.3, 28.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₁BrClO₂ 549.1196; Found 549.1186.

3,5-di-tert-butyl-1'-(2-chlorophenyl)-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]fur an]-2,5-dien-4-one (4m).

White solid; 45.14 mg, 96% yield (petroleum ether/ethyl acetate =30:1); mp 141.3-142.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.79 (d, *J* = 8.70 Hz, 2H), 7.24 (m, 4H), 7.06 (m, 2H), 6.95 (m, 1H), 6.70 (d, *J* = 3.12 Hz, 1H), 6.55 (d, *J* = 9.12 Hz, 1H), 5.99 (s, 1H), 5.47

(s, 1H), 1.18 (s, 9H),0.87 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.6, 155.7, 145.9, 144.8, 137.3, 135.9, 135.4, 133.7, 130.0, 128.9, 128.9, 128.7, 127.9, 127.6, 126.2, 125.9, 122.4, 122.1, 117.9, 111.6, 84.8, 52.2, 33.7, 28.7, 28.3, 27.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₂ClO₂ 471.2091; Found 471.2099.

3,5-di-tert-butyl-1'-phenyl-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]furan]-2,5-die n-4-one (4n).

White solid; 41.88 mg, 96% yield (petroleum ether/ethyl acetate =30:1); mp 174.2-175.2 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.78 (d, *J* = 8.40 Hz, 2H), 7.22-7.15 (m, 9H), 6.74 (d, *J* = 3.06 Hz, 1H), 6.09 (d, *J* = 3.00 Hz, 1H), 4.89 (s, 1H), 1.20 (s, 9H),0.82 (s, 9H);

¹³C NMR (CDCl₃, 150 MHz) δ 185.1, 155.5, 145.6, 145.3, 138.0, 137.2, 136.8, 129.8, 129.8, 129.0, 127.9, 127.6, 127.0, 126.6, 125.9, 122.3, 118.5, 111.7, 85.4, 57.3, 33.8,

33.5, 28.4, 27.8, 27.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃O₂ 437.2481; Found 437.2487.

3,5-di-tert-butyl-1'-(2-methoxyphenyl)-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]f uran]-2,5-dien-4-one (40).

White solid; 46.16 mg, 99% yield (petroleum ether/ethyl acetate =30:1); mp 80.3-81.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.79-7.75 (m, 2H), 7.22-7.09 (m, 5H), 7.09 (m, 2H), 6.61 (m, 1H), 6.48 (d, *J* = 5.94 Hz, 1H), 6.05 (d, *J* = 3.06 Hz, 1H), 5.44

(s, 1H), 3.61 (s, 3H), 1.21 (s, 9H),0.85 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.8, 155.9, 155.7, 144.7, 143.9, 138.3, 136.9, 129.8, 129.5, 128.8, 127.3, 125.8,122.5, 122.1, 119.1, 117.9, 111.5, 108.8, 85.0, 53.8, 49.1, 33.6, 33.5, 28.4, 28.0, 27.9, 27.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₅O₃ 467.2586; Found 467.2595.

3,5-di-tert-butyl-1'-(4-(tert-butyl)phenyl)-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]furan]-2,5-dien-4-one (4p).

White solid; 47.75 mg, 97% yield (petroleum ether/ethyl acetate =30:1); mp 202.2-203.2 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.79-7.77 (m, 2H), 7.23-7.17 (m, 7H), 6.73 (d, *J* = 3.00 Hz, 2H), 6.06 (d, *J* = 3.00 Hz, 1H), 4.88 (s, 1H), 1.20 (s,

9H), 1.18 (s, 9H),0.79 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ185.1, 155.5, 149.6, 145.3, 145.2, 138.0, 137.5, 133.7, 129.8, 129.7, 128.9, 127.8, 125.8, 124.5, 122.5, 122.2, 118.6, 111.6, 85.5, 56.9, 33.7, 33.5, 33.4, 30.3, 28.4, 27.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₄₁O₂ 493.3107; Found 493.3117.

1'-(4-(benzyloxy)phenyl)-3,5-di-tert-butyl-1'H-spiro[cyclohexane-1,2'-naphtho[2,1b]furan]-2,5-dien-4-one (4q).

White solid; 53.14 mg, 98% yield (petroleum ether/ethyl acetate =30:1); mp 161.5-162.8 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.77 (m, 2H), 7.22-7.16 (m, 10H), 6.72 (m, 4H), 6.09 (d, *J* = 3.00 Hz, 1H), 4.93 (s, 1H), 4.84 (s, 2H), 1.19 (s, 9H),

0.84 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ186.2, 158.3, 156.4, 146.6, 146.3, 139.2, 139.0, 138.7, 138.1, 136.9, 130.8, 130.7, 130.3, 130.0, 128.9, 128.5, 127.9, 127.3,

126.8, 123.4, 123.3, 123.2, 119.8, 115.0, 112.8, 112.6, 86.6, 70.0, 57.5, 34.6, 29.4, 29.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₈H₃₉O₃ 543.2899; Found 543.2893. *3,5-di-tert-butyl-1'-(naphthalen-1-yl)-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]fur* an]-2,5-dien-4-one (4r).

White solid; 46.19 mg, 95% yield (petroleum ether/ethyl acetate =30:1); mp 103.5-104.7 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.84-7.77 (m, 4H), 7.64 (d, *J* = 8.16 Hz, 1H), 7.34 (m, 4H), 7.17 (m, 2H), 7.04 (m, 1H), 6.87 (s, 1H), 6.73 (s, 1H), 5.92 (d, *J* =

2.52 Hz, 1H), 5.80 (s, 1H), 1.27 (s, 9H), 0.38 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz) δ 184.4, 155.8, 145.3, 145.1, 137.5, 136.3, 133.4, 132.9, 131.3, 129.8, 129.0, 127.8, 126.9, 126.0, 124.9, 124.2, 122.5, 122.3, 122.3, 118.2, 111.6, 84.9, 51.7, 51.1, 33.9, 33.2, 28.6, 28.3, 27.5,27.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₅O₂ 487.2637; Found 487.2640.

1'-(2-bromophenyl)-3,5-diisopropyl-1'H-spiro[cyclohexane-1,2'-naphtho[2,1-b]fura n]-2,5-dien-4-one (4s).

White solid; 44.24 mg, 91% yield (petroleum ether/ethyl acetate =30:1); mp 125.1-125.3 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.81-7.79 (m, 2H), 7.48 (m, 1H), 7.26-7.18 (m, 3H), 7.06-6.99 (m, 3H), 6.67 (s, 1H), 6.55 (t, *J* = 7.26 Hz, 1H), 5.95 (s, 1H),

5.47 (s, 1H), 3.01-2.94 (m, 1H), 2.84-2.77 (m, 1H), 1.04 (d, J = 6.84 Hz, 3H), 0.99 (d, J = 6.90 Hz, 3H), 0.76 (d, J = 6.84 Hz, 3H), 0.58 (d, J = 6.90 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 183.6, 155.7, 144.4, 142.8, 137.3, 137.0, 135.6, 132.1, 130.0, 129.3, 129.0, 127.9, 126.3, 124.6, 122.5, 122.1, 118.4, 111.7, 84.3, 54.2, 25.4, 25.1, 21.2, 20.4, 20.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₂₈BrO₂ 487.1273; Found 487.1265.

2,6-di-tert-butyl-4-((2-bromophenyl)(2-hydroxynaphthalen-1-yl)m ethylene)cyclohexa-2,5-dienone (5a).

Yellow solid; 43.30 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 210.4-211.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ

7.74-7.58 (m, 5H), 7.23-6.98 (m, 6H), 6.60 (s, 1H), 5.54 (s, 1H), 1.20 (s, 9H), 1.05 (s, 3H),0.93 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ 185.5, 151.2, 149.6, 148.8, 148, 147.7, 147.3, 141.8, 138.4, 130.7, 128.7, 126.4, 122.1, 118.5, 117.9, 117.1, 116.5, 34.4, 34.1, 28.5, 28.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₂BrO₂ 515.1586; Found 515.1595.

2,6-di-tert-butyl-4-(12H-benzo[a]xanthen-12-yl)phenol (6).

White solid; 41.88 mg, 96% yield (petroleum ether); mp 115.2-116.5 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.95 (d, J = 8.52 Hz, 1H), 7.67 (m, 2H) 7.31 (m, 4H), 7.14-7.09 (m, 2H), 6.99-6.96 (m, 3H), 5.64 (s, 1H), 4.85 (s, 1H), 1.21 (s, 18H); ¹³C NMR (CDCl₃, 150

MHz) δ 151.1, 149.9, 148.6, 135.7, 134.7, 130.7, 129.8, 128.2, 127.6, 127.5, 126.3, 125.4, 125.1, 122.9, 122.8, 122.6, 122.1, 117.0, 116.2, 115.5, 40.6, 33.2, 29.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₃₃O₂ 437.2481; Found 437.2487.

10. NMR Spectra

¹³C NMR Spectrum of **1b** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 1c (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 1d (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1e** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1f** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1g** (CDCl₃, 150 MHz)

-4E+08

¹⁹F NMR Spectrum of **1g** (CDCl₃, 377 MHz)

¹³C NMR Spectrum of **1j** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **11** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1m** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1n** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **10** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1p** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1q** (CDCl₃, 150 MHz)

 ^{13}C NMR Spectrum of 1r (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **1s** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2a** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2b** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2c** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2d** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2f** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2g** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2h** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2i** (CDCl₃, 150 MHz)

¹⁹F NMR Spectrum of **2i** (CDCl₃, 377 MHz)

¹³C NMR Spectrum of **2j** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **2k** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 2a' (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3a** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3b** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3c** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3d** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3e** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3g** (CDCl₃, 150 MHz)

¹⁹F NMR Spectrum of **3g** (CDCl₃, 377 MHz)

¹³C NMR Spectrum of **3h** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3i** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3j** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **3k** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4a** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4b** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4c** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 4d (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4e** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4f** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 4g (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4h** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4i** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 4j (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4k** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4l** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4m** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4n** (CDCl₃, 150 MHz)

 ^{13}C NMR Spectrum of **40** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4p** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 4q (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4r** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **4s** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of **5a** (CDCl₃, 150 MHz)

¹³C NMR Spectrum of 6 (CDCl₃, 150 MHz)

11. Single-Crystal X-ray Crystallography of 2a', 3a, 4a and 5a

Single-Crystal X-ray Crystallography of Product 2a' (CCDC number: 2116525)

S96

Data completeness= 0.999	Theta(max)= 67.072
R(reflections)= 0.0449(5440)	wR2(reflections)= 0.1302(6753)
S = 1.031	Npar= 415

Single-Crystal X-ray Crystallography of Product **3a** (CCDC number: 2116523)

$\begin{array}{c} c_{27} \\ c_{25} \\ c_{24} \\ c_{20} \\ c_{19} \\ c_{1} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{1} \\ c_{4} \\ c_{1} \\ c_{5} \\ c_{1} \\ c_{1} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{1} \\ c_{1} \\ c_{1} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{1} \\ c_{1} \\ c_{2} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{2} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_$	C29 C30 C22 C22 C28 C31 C31 C23 8 C14 C15 C12 C17 C10 C10	O But tBu	
Bond precision	•	C-C = 0.0027 A	Wavelength=1.54184
Cell:	a=10.8263(3)	b=21.7654(4)	c=11.6633(4)
	alpha=90	beta=117.279(4)	gamma=90
Temperature:	293 K		
		Calculated	Reported
Volume		2442.67(15)	2442.67(13)
Space group		P 21/c	P 1 21/c 1
Hall group		-P 2ybc	-P 2ybc
Moiety formula	l	C31 H30 O2	C31 H30 O2
Sum formula		C31 H30 O2	C31 H30 O2
Mr		434.55	434.55
Dx,g cm-3		1.182	1.182
Z		4	4
Mu (mm-1)		0.559	0.559
F000		928.0	928.0
F000'		930.53	
h,k,lmax		12,26,13	12,26,13
Nref		4346	4339
Tmin,Tmax		0.904,0.946	0.549,1.000
Tmin'		0.889 ^{\$97}	

Correction method= # Reported T Limits: Tmin=0.549 Tmax=1.000

AbsCorr = MULTI-SCAN

Data completeness= 0.998	Theta(max)= 67.063
R(reflections)= 0.0429(3487)	wR2(reflections)= 0.1292(4339)

S = 1.060 Npar= 305

Single-Crystal X-ray Crystallography of Product 4a (CCDC number: 2116524)

h,k,lmax	22,14,32	22,14,32
Nref	5184	5147
Tmin,Tmax	0.767,0.811	0.857,1.000
Tmin'	0.696	

Correction method= # Reported T Limits: Tmin=0.857 Tmax=1.000

AbsCorr = MULTI-SCAN

Data completeness= 0.993	Theta(max) = 67.075
R(reflections)= 0.0406(4540)	wR2(reflections)= 0.1168(5147)
S = 1.022	Npar= 313

Single-Crystal X-ray Crystallography of Product **5a** (CCDC number: 2127166)

	C25 C26 C24 C27 C19 C1 C2 C1 C2 C1 C2 C24 C20 C20 C24 C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	02 C21 C29 C28 C28 C28 C23 C28 C23 C23 C23 C23 But C22 C28 C21 C29 C28 C21 C29 C28 But C21 C29 C28 C21 But C29 C29 C28 C29 C28 C21 C29 C28 C21 C29 C29 C29 C29 C29 C29 C29 C29	O fBu HO	
Bond precision:	C-C	= 0.0071 A	Wavelength=1.54184	
Cell: a=1	1.4412(3)	b=13.3055(4)	c=21.0185(6)	
alpha	a=107.066(2)	beta=90.028(2)	gamma=112.861(3)	
Temperature:	293 K			
	Calcu	lated	Reported	
Volume	2794.	60(16)	2794.59(14)	
Space group	P - 2	l	P -1	
Hall group	-P 1		-P 1	
Moiety formula	2(C31 H31 B	c O2), C H4 O	2(C31 H31 Br O2), C H4	4 O
Sum formula	C63 H66 I	Br2 O5	C63 H66 Br2 O5	
Mr	106	2.96	1062.97	
Dx,g cm-3	1.26	53	1.263	
Z	2		2	
Mu (mm-1)	2.20	6	2.206	

F000	1108.0		1108.0	
F000'	1107.	.95		
h,k,lmax	13,15,25		13,15,25	
Nref	9984		9972	
Tmin,Tmax	0.809,0.896		0.962,1.000	
Tmin'	0.751			
Correction method= # Reported T Limits: Tmin=0.962 Tmax=1.000				
AbsCorr = MULTI-SCA	N			
Data completeness= 0.999		Theta(Theta(max)= 67.078	
R(reflections) = 0.0667(7068)	wR2(refle	ections)=0.2103(9972)	
S = 1.009		Npar	r= 656	