# Janus-type homo-, hetero- and mixed valence-bimetallic complexes with one metal encapsulated in a cyclodextrin <br> Zhonghang Wen, a Emmanuel Maisonhaute, ${ }^{\text {b }}$ Yongmin Zhang, ${ }^{\text {a }}$ Sylvain Roland*a and Matthieu Sollogoub*a 

## Supporting information

## Table of contents

$$
\text { 1. General information } \longrightarrow \mathrm{S} 2
$$

2. Synthesis and characterisation of metal complexes ..... S3
BBI and iodobenzene dichloride ..... S3
$\alpha-\mathrm{CD}^{\mathrm{Bn}}$ (BBI) bis-azolium bis-chloride (1) ..... S4
Di-iodo- $\alpha-\mathrm{CD}^{\mathrm{Bn}}(3)$ ..... S6
$\alpha-\mathrm{CD}^{\mathrm{Bn}}$ (BBI) mono-azolium iodide (4) ..... S8
$\alpha-\mathrm{CD}^{\mathrm{Bn}}$ (BBI) bis-silver complex (5) ..... S10
$\alpha-\mathrm{CD}^{\mathrm{Bn}}$ (BBI) bis-gold(I) complex (6) ..... S12
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ mono-gold(I) complex (7) ..... S14
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(I)/silver(I) complex (8) ..... S16
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(I)/copper(I) complex (9) ..... S18
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ palladium(II)(allyl)Cl complex (10) ..... S20
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ palladium(II)/silver(I) complex (11) ..... S22
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(III)/gold(I) complex (12) ..... S24
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(III)/silver(I) complex (13) ..... S26
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(III)/copper(I) complex (14) ..... S28
3. Cyclic Voltametry ..... S30

## 1. General information

Reactions in organic solvents were performed in oven-dried screw-cap tube flushed with argon. Reagents were purchased from commercial sources and used as received unless stated otherwise. Acetone $99.5 \%$ and DMSO $99.5 \%$ for synthesis were used as received as dry solvents. Dichloromethane (DCM) and acetonitrile were distilled from $\mathrm{CaH}_{2}$. DCM was degassed by running 4-5 vacuum/argon cycles. The bis-mesylate 2 was prepared according to a reported procedure. ${ }^{1}$ Purifications by column chromatography were performed on silica gel (Kieselgel 60 Merck, granulometry 40-60 or 15-40 $\mu \mathrm{m}$ ). High Resolution Mass Spectroscopy (HRMS) were recorded on a Bruker micrOTOF spectrometer, using Agilent ESI-L Low Concentration Tuning-Mix as reference. NMR spectra were recorded on a Bruker AM- 400 MHz or Brucker Avance II 600 MHz using the signal of the residual solvent as an internal reference. Assignments were aided by COSY, HSQC, NOESY, TOCSY and HMBC experiments. The following numbering was used for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signal attributions in the glycosyl units (Figure S1-A). The six different glycosyl units of the $\alpha$-CD core are named with capital letters according to the order shown in Figure S1-B.


Figure S1. Identification of protons, carbons and glycosyl units for of NMR signal attributions.

[^0]
## 2. Synthesis and characterisation of metal complexes

## Benzobis(imidazole) (BBI) ${ }^{2}$



A mixture of 1,2,4,5-benzenetetraamine tetrahydrochloride ( $716 \mathrm{mg}, 2.52$ mmol ) in formic acid ( 21 mL ) was heated at $100^{\circ} \mathrm{C}$ for 48 h . After cooling, the reaction mixture was poured into ice-cold water ( 21 mL ) and neutralized by addition of aqueous $\mathrm{NaOH} 10 \%$. The product was precipitated by cooling, collected via vacuum filtration, rinsed with cold water, and dried in a freeze dryer to give Benzobis(imidazole) as a brown powder in $87 \%$ yield ( 347 mg , 2.19 mmol ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ): $\delta 12.24$ ( $\mathrm{s}, 2 \mathrm{H}$ ), 8.17 ( $\mathrm{s}, 2 \mathrm{H}$ ), 7.69 ( $\mathrm{s}, 2 \mathrm{H}$ ) ppm. The NMR data are in agreement with the literature. ${ }^{2}$

## Iodobenzene dichloride ( $\mathrm{PhICl}_{2}$ )



The title compound was freshly prepared according to a reported procedure: ${ }^{3}$ To a vigorously stirred emulsion of iodobenzene ( $1.12 \mathrm{~mL}, 10$ mmol ) in diluted $\mathrm{HCl}\left(20 \mathrm{~mL}\right.$ conc. HCl in $50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ ), $\mathrm{NaClO}_{2}$ ( $5.66 \mathrm{~g}, 50$ mmol ) was added portionwise over a period of 0.5 h . The flask was protected from light by an aluminium foil and the mixture was stirred for 4.5 h . The yellow precipitate was collected by filtration, washed with water ( 500 mL ), ice-cooled $n$-hexane ( 300 mL ), and dried overnight in a freeze dryer with exclusion of light, to give Iodobenzene dichloride as a fluffy yellow powder in $87 \%$ yield $(2.4 \mathrm{~g}, 8.7 \mathrm{mmol}){ }^{1}{ }^{\mathbf{H}}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. The NMR data are in agreement with the literature.

[^1]
## $\alpha$ - $\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ bis-azolium bis-chloride (1)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{164} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28}$ Molecular Weight: 2637,9500

A mixture of mono-azolium iodide 4 ( $1 \mathrm{~g}, 0.389$ mmol ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(59.1 \mathrm{mg}, 0.428 \mathrm{mmol})$ in dry acetonitrile ( 30 mL ) was stirred at $20^{\circ} \mathrm{C}$ for 0.5 h . Iodomethane ( $0.048 \mathrm{~mL}, 0.778 \mathrm{mmol}$ ) was added and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 27 h . The mixture was poured into DCM ( 50 mL ) and washed with water ( $3 \times 30 \mathrm{~mL}$ ). The organic phase was dried over $\mathrm{MgSO}_{4}$ and concentrated under vacuum. The as-obtained residue was dissolved in dry acetonitrile ( 10 mL ) and a second portion of iodomethane ( $0.25 \mathrm{~mL}, 4.02 \mathrm{mmol}$ ) was added. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 22 h . After cooling, the reaction mixture was poured into DCM ( 50 mL ), washed with water ( $3 \times 30 \mathrm{~mL}$ ), and dried over $\mathrm{MgSO}_{4}$. After filtration, the solution was concentrated to ca. $10-15 \mathrm{~mL}$, Amberlite ${ }^{\circledR}$ IRA- 410 chloride form ( 3 g ) was added, and the suspension was stirred for 2 h . The chloride resin was filtered off, rinsed with DCM ( 20 mL ), and the filtrate was concentrated under vacuum. The residue was purified by column chromatography on silica gel (DCM/MeOH, 25:1) to give compound 1 as a pale yellow powder in $55 \%$ yields over three steps ( $562 \mathrm{mg}, 0.213$ mmol). Rf 0.4 ( $\mathrm{DCM} / \mathrm{MeOH}, 7: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 600 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta 10.88$ (s, 1H, external $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ ), 10.45 ( $\mathrm{s}, 1 \mathrm{H}$, internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ ), 8.93 (s, $2 \mathrm{H}, 2 \times \mathrm{CH}_{\text {arom }} \mathrm{BBI}$ ), 7.38$7.07\left(\mathrm{~m}, 66 \mathrm{H}, 66 \times \mathrm{H}_{\text {arom }}\right), 7.02-6.99\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.90-6.83\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{\text {arom }}\right), 6.64$ (d, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}$ ), $5.78(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1 \mathrm{C}, \mathrm{F}), 5.46(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-\mathrm{CHPh}), 5.35\left(\mathrm{t},{ }^{2} \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}\right), 5.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh})$, $4.90\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}\right), 4.89-4.77\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 6 \times \mathrm{H}-\right.$ CHPh), 4.76 (d, $\left.J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}\right), 4.71(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.65(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.61-4.34(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}, 14 \times \mathrm{H}-\mathrm{CHPh}), 4.12-3.92(\mathrm{~m}$, $\left.16 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{N}-\mathrm{CH}_{3}\right), 3.91-3.84(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}$ ), 3.79 (d, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $3.67(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-\mathrm{CHPh}), 3.65-3.55\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{BE},}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}\right.$ ), 3.32 (dd, $J=9.9$ and $3.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}$ ), $3.16\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{BE}}\right), 2.78(\mathrm{dd}, J=11.2$ and 6.4 $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}$ ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta 148.62$ (external N$C \mathrm{H}=\mathrm{N}+$ ), 140.28, 140.01, 139.88, 139.58, 139.47, 139.29, 139.18, 138.83 ( $16 \times \mathrm{Cq} \mathrm{Ar}$ ), 132.63 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 132.39 ( $2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), $129.38,129.25,129.21$, 129.05, 128.97, 128.95, 128.91, 128.89, 128.81, 128.79, 128.74, 128.67, 128.64, 128.61, 128.15, 128.12, 128.10, 128.07, 127.67, $127.04(80 \times \mathrm{CH} \mathrm{Ar}$ ), 100.75 ( $2 \times$ central CH BBI), $99.00\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 98.69\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 97.84\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 82.79\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 82.07(2 \times$ $\left.\mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 81.96\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 81.33\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 81.16\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 80.56\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 80.21(2$ $\left.\times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 78.29\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 77.36\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 77.11\left(2 \times \mathrm{C}-\mathrm{A}^{\mathrm{A}, \mathrm{D}}\right), 76.49,74.69,74.67(6$ $\left.\times \mathrm{CH}_{2} \mathrm{Ph}\right), 74.43(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.96,73.84\left(4 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.75\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 73.64,72.95(4$ $\left.\times \mathrm{CH}_{2} \mathrm{Ph}\right), 71.50\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 70.52\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 70.17\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 51.63\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right)$,
$34.97\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. The ${ }^{13} \mathrm{C}$ signal of internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ was not detected. HRMS (ESI, micrOTOF) $m / z$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{164} \mathrm{~N}_{4} \mathrm{O}_{28}[\mathrm{M}-2 \mathrm{Cl}]^{2+} 1282.5761$, found 1282.5774 (err. -1.1 ppm).


${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}(300 \mathrm{~K}, 151 \mathrm{MHz})$


A mixture of di-0Ms- $\boldsymbol{\alpha}-\mathbf{C D}^{\mathrm{Bn}}(\mathbf{2})^{1}(5.0 \mathrm{~g}, 1.94 \mathrm{mmol})$ and $\mathrm{NaI}(2.92 \mathrm{~g}, 19.45 \mathrm{mmol})$ in dry acetone ( 100 mL ) was refluxed at $65^{\circ} \mathrm{C}$ for 18 h . After cooling, DCM ( 100 mL ) and water ( 100 mL ) were added. The organic phase was separated and the aqueous layer was extracted with DCM ( $50 \mathrm{~mL} \times 2$ ). The combined organic phases were washed with brine ( 50 mL ), dried over $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure. The as-obtained residue was purified by column chromatography on silica gel ( $c \mathrm{Hex} / \mathrm{EtOAc}, 7: 1$ ) to give compound $\mathbf{3}$ as a white powder in $92 \%$ yield ( $4.7 \mathrm{~g}, 1.78 \mathrm{mmol}$ ). Rf 0.5 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 1$ ). ( ${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.26-6.97 (m, 80H, $80 \times \mathrm{H}_{\text {arom }}$ ), 5.13 (dd, $J=11.0$ and $2.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 5.10-5.02 (m, 4H, $2 \times \mathrm{H}-\mathrm{CHPh}, 2 \times \mathrm{H}-1^{\mathrm{CF}}$ ), 4.96 (dd, $J=11.0$ and $2.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.91 (d, $J=$ $\left.4.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{BE}}\right), 4.85\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{AD}}\right), 4.79(\mathrm{dd}, J=11.0$ and $2.8 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{H}-\mathrm{CHPh}), 4.77-4.68(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}-\mathrm{CHPh}), 4.47-4.26(\mathrm{~m}, 20 \mathrm{H}, 20 \times \mathrm{H}-\mathrm{CHPh}), 4.10-$ $3.96\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{BE}}, 2 \times \mathrm{H}-3^{\mathrm{AD}}, 2 \times \mathrm{H}-3^{\mathrm{CF}}, 2 \times \mathrm{H}-6^{\mathrm{BE}}\right.$ ), $3.92-3.87(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{H}-$ $4{ }^{\mathrm{BE}}, 2 \times \mathrm{H}-5^{\mathrm{BE}}$ ), $3.89-3.78\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{CF}}, 2 \times \mathrm{H}-5^{\mathrm{CF}}, 2 \times \mathrm{H}-4^{\mathrm{CF}}\right), 3.66(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{H}-6^{\mathrm{CF}}$ ), 3.59 (dd, $J=8.8$ and $\left.4.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{AD}}\right), 3.50\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{BE}}\right)$, $3.48-3.33\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{CF}}, 2 \times \mathrm{H}-2^{\mathrm{BE}}, 4 \times \mathrm{H}-6^{\mathrm{AD}}, 2 \times \mathrm{H}-4^{\mathrm{AD}}\right.$ ), $3.29(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-2^{\mathrm{AD}}$ ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 139.40,139.38,139.31,138.46,138.27$, 138.17, 138.16, 138.09 ( $16 \times$ Cqarom), 128.38, 128.34, 128.20, 128.17, 128.16, 128.12, 127.98, 127.97, 127.86, 127.81, 127.79, 127.69, 127.63, 127.62, 127.49, 127.42, 127.20, 126.99, 126.94, 126.91, 126.89 ( $80 \times \mathrm{CH}_{\text {arom }}$ ), $99.39\left(2 \times \mathrm{C}-1^{\mathrm{BE}}\right)$, $99.35\left(2 \times \mathrm{C}-\mathrm{C}^{\mathrm{AD}}\right), 98.42$ $\left(2 \times \mathrm{C}-1^{\mathrm{CF}}\right), 84.41\left(2 \times \mathrm{C}-4^{\mathrm{AD}}\right), 80.89\left(2 \times \mathrm{C}-3^{\mathrm{BE}}\right), 80.73\left(2 \times \mathrm{C}-3^{\mathrm{CF}}\right), 80.57\left(2 \times \mathrm{C}-4^{\mathrm{CF}}\right), 80.21$ $\left(2 \times \mathrm{C}-4^{\mathrm{BE}}\right), 80.17\left(2 \times \mathrm{C}-3^{\mathrm{AD}}\right), 79.40\left(2 \times \mathrm{C}-2^{\mathrm{AD}}\right), 78.93\left(2 \times \mathrm{C}-2^{\mathrm{BE}}\right), 78.65\left(2 \times \mathrm{C}-2^{\mathrm{CF}}\right)$, 75.74, 75.52, $75.30\left(6 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 73.64,73.53,72.94,72.85,72.67\left(10 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 71.97$ $\left(2 \times \mathrm{C}-5^{\mathrm{CF}}\right), 71.39\left(2 \times \mathrm{C}-5^{\mathrm{BE}}\right), 70.36\left(2 \times \mathrm{C}-5^{\mathrm{AD}}\right), 69.55\left(2 \times \mathrm{C}-6^{\mathrm{CF}}\right), 69.33\left(2 \times \mathrm{C}-6^{\mathrm{BE}}\right), 9.84$ ( $2 \times \mathrm{C}-6^{\text {AD }}$ ) ppm. HRMS (ESI, micrOTOF) $m / z$ calcd. for $\mathrm{C}_{148} \mathrm{H}_{154} \mathrm{I}_{2} \mathrm{O}_{28}[\mathrm{M}+\mathrm{Na}]+2655.8608$, found 2655.8703 (err. -3.6 ppm ).

[^2]

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ mono-azolium iodide (4)



Chemical Formula: $\mathrm{C}_{156} \mathrm{H}_{159} \mathrm{IN}_{4} \mathrm{O}_{28}$ Molecular Weight: 2664,8919

A solution of di-iodo- $\boldsymbol{\alpha}-\mathbf{C D}^{\mathrm{Bn}} \mathbf{3}(2.0 \mathrm{~g}, 0.76 \mathrm{mmol})$ and benzobis(imidazole) (BBI) ( $1.2 \mathrm{~g}, 7.6 \mathrm{mmol}$ ) in dry DMSO ( 20 mL ) was heated at $120^{\circ} \mathrm{C}$ for 32 h. After cooling, DMSO was eliminated under vacuum. DCM was added. After stirring, the solid residue which is obtained was filtered off and rinsed with several portions of DCM. The filtrate (DCM solution) was washed with water, dried over $\mathrm{MgSO}_{4}$, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (DCM/MeOH, 80:1) to give compound 4 as a pale yellow powder in $51 \%$ yield ( 1.04 g , 0.39 mmol ). Rf 0.4 ( $\mathrm{DCM} / \mathrm{MeOH}, 7: 1$ ). ${ }^{\mathbf{1} H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 600 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 9.58(\mathrm{~s}, 1 \mathrm{H}$, internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ ), 8.42 ( $\mathrm{s}, 1 \mathrm{H}$, external $\mathrm{N}-$ $\mathrm{CH}=\mathrm{N}$ ), 7.88 ( $\mathrm{s}, 2 \mathrm{H}, 2 \times \mathrm{CH}$ arom BBI ), 7.40-7.26 (m, 20H, $20 \times \mathrm{H}_{\text {arom }}$ ), 7.25-7.06 (m, 46H, $46 \times \mathrm{H}_{\text {arom }}$ ), 6.99 (dd, $J=7.6$ and $1.9 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}$ ), $6.93-6.83\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{\text {arom }}\right), 6.68$ (d, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}$ ), 5.73 (d, $\left.{ }^{3} \mathrm{~J}_{1,2}=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{C}, \mathrm{F}}\right), 5.39(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{H}-\mathrm{CHPh}), 5.11(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.86(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh})$, $4.83\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}\right.$ ), $4.79(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.77(\mathrm{~d}, J=3.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}\right), 4.75\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}\right), 4.73-4.64\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}, 2 \times\right.$ H-6'A,D, $4 \times \mathrm{H}-\mathrm{CHPh}), 4.58-4.34(\mathrm{~m}, 16 \mathrm{H}, 16 \times \mathrm{H}-\mathrm{CHPh}), 4.20(\mathrm{dd}, J=10.1$ and $7.9 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}), 4.06\left(\mathrm{dd}, J=9.7\right.$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}$ ), $3.98-3.79(\mathrm{~m}, 12 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{C}, \mathrm{F}, 2 \times$ H-6'C,F, $2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}$ ), 3.66 (dd, $J=9.7$ and $8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $4^{\mathrm{B}, \mathrm{E}}$ ), 3.62-3.51(m, $\left.8 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-5^{\mathrm{BE}, ~}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 3.46(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $3.34\left(\mathrm{dd}, J=9.9\right.$ and $\left.3.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 2.83-2.71\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right.$, $2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}$ ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta 147.70$ (external $\mathrm{N}-\mathrm{CH}=\mathrm{N}$ ), 140.20, 140.01, 139.90, 139.59, 139.50, 139.21 ( $12 \times$ Cq Ar), 138.87 (internal N-CH=N), 138.71 ( $2 \times$ Cq Ar), 135.08 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 129.99 ( $2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 129.48, 129.29, 129.27, 129.25, 129.14, 129.09, 129.03, 129.00, 128.98, 128.94, 128.89, 128.74, 128.70, 128.66, 128.44, 128.22, 128.17, 128.06, 127.95, 127.71 ( $82 \times \mathrm{CH} \mathrm{Ar}), 99.08(2 \times$ $\left.\mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 98.70\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 98.25\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 82.49\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 82.36\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 81.92(2$ $\left.\times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 81.39\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 80.66\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 80.21\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 78.39(2 \times \mathrm{C}-$ $\left.2^{\mathrm{C}, \mathrm{F}}\right), 77.53\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 77.30,76.54,74.85,74.70\left(8 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 74.54(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.96$, $73.80\left(4 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.33\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.18\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.11\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 71.37(2 \times \mathrm{C}-$ $\left.5^{\mathrm{A}, \mathrm{D}}\right), 70.99\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 68.92\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 51.08\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right) \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ signal of BBI $\mathrm{CH}_{\text {arom }}$ was not detected. HRMS (ESI, micrOTOF) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{156} \mathrm{H}_{159} \mathrm{~N}_{4} \mathrm{O}_{28}$ [M-I] ${ }^{+}$ 2536.1135 , found 2536.1130 (err. 0.2 ppm).

${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}(300 \mathrm{~K}, 600 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}(300 \mathrm{~K}, 151 \mathrm{MHz})$
$\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ bis-silver complex (5)


Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{Ag}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28}$ Molecular Weight: 2851,6704

A mixture of bis-azolium 1 ( $500 \mathrm{mg}, 0.19 \mathrm{mmol}$ ) and $\mathrm{Ag}_{2} \mathrm{O}(148 \mathrm{mg}, 0.64 \mathrm{mmol})$ in dry and degassed DCM ( 1.5 mL ) was stirred at $45^{\circ} \mathrm{C}$ for 44 h with exclusion of light (protection using an aluminum foil). The brown suspension was filtered over Celite and the filtrate was concentrated and dried under vacuum to give compound 5 as a brown powder in $98 \%$ yield ( $531 \mathrm{mg}, 0.186 \mathrm{mmol}$ ). Rf 0.5 ( $\mathrm{DCM} / \mathrm{MeOH}$, 7:1). ${ }^{1} \mathbf{H}$ NMR ( $\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta 7.31$ (d, $J=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}$ ), $7.28-7.11(\mathrm{~m}, 26 \mathrm{H}, 26 \times$ $\mathrm{H}_{\text {arom }}$ ), 7.10-6.97 (m, 32H, $32 \times \mathrm{H}_{\text {arom }}$ ), 6.94 ( $\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}$ ), $6.87\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right.$ ), $6.85(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CH}$ arom BBI$), 6.78(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4$ $\left.\times \mathrm{H}_{\text {arom }}\right), 6.65\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}\right), 6.33\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 5.90(\mathrm{t}, J=$ $\left.10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}\right), 5.78(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1 \mathrm{C}, \mathrm{F}), 5.62(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ CHPh), $5.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.08-$ $5.02(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.81(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.69(\mathrm{~d}, J=$ $\left.14.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}\right), 4.63(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.56-4.45(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.1^{\mathrm{B}, \mathrm{E}}, 8 \times \mathrm{H}-\mathrm{CHPh}\right), 4.39-4.32\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right), 4.24(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.3^{\mathrm{B}, \mathrm{E}}\right), 4.20-4.15\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 4.15-4.08\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}^{-}\right.$
 $2 \times \mathrm{H}-6^{\mathrm{C}} \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{N}-\mathrm{CH}_{3}$ ), $3.61\left(\mathrm{dd}, J=10.1 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}\right.$ ), $3.53(\mathrm{~d}, J$ $=12.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 3.44\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{B}, \mathrm{E}}\right), 3.32-3.26(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.14(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 2.65\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right)$, 2.59 (dd, $\left.J=10.9 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta$ 193.38 (external $\mathrm{C}_{\text {carbene }}-\mathrm{Ag}$ ), 140.19, 139.79, 139.38, 139.09, 138.94, 138.66, 138.21, 137.98 ( $16 \times$ Cq Ar), $132.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 132.13 ( $2 \times$ external N -$C=C-\mathrm{N}), 128.80,128.51,128.50,128.47,128.42,128.40,128.35,128.31,128.24,128.04$, 128.00, 127.98, 127.95, 127.89, 127.87, 127.84, 127.77, 127.74, 127.70, 127.37, 127.28, 127.17, 127.00, 126.95, 126.87, 126.80, 125.54 ( $80 \times$ CH Ar), 98.75 ( $2 \times \mathrm{C}-1 \mathrm{C}, \mathrm{F}$ ), 98.72 ( 2 $\left.\times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 97.71\left(2 \times \mathrm{C}-1^{\mathrm{BE}}\right), 92.46(2 \times$ central CH BBI$), 82.29(2 \times \mathrm{C}-4 \mathrm{C}, \mathrm{F}), 82.24(2 \times \mathrm{C}-$ $\left.4^{\mathrm{B}, \mathrm{E}}\right), 81.60\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.10\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.84\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.23\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right)$, $77.02\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.75\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 76.67,76.42,74.38\left(6 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.66(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F})$, $73.32,72.92,72.58,72.45\left(8 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 72.13\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 71.05\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 70.75(2 \times \mathrm{C}-$ $\left.6^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 68.75\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 50.66\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 36.32\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right) \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ signal of the internal $C_{\text {carbene }}-\mathrm{Ag}$ could not be detected. HRMS ESI-TOF: $m / z$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{Ag}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 2869.8747$, found 2869.8736 (err. 0.4 ppm ).

 ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 600 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ bis-gold(I) complex (6)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28}$ Molecular Weight: 3029,8671

Complex 6 was initially obtained in low yield (8\%) from the bis-azolium salt $\mathbf{1}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and an excess of $\mathrm{AuCl} . \mathrm{SMe}_{2}$ (see Figure 3 in the main text). The alternative optimized procedure from $\mathrm{Pd}($ allyl $) \mathrm{Cl}$ complex $\mathbf{1 0}$ is presented here: A mixture of $\mathbf{1 0}$ (38.8 $\mathrm{mg}, 0.014 \mathrm{mmol}$ ), $\mathrm{AuCl} . \mathrm{SMe}_{2}(16.4 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $26.9 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) in dry and degassed DCM ( 1 mL ) was stirred at $60{ }^{\circ} \mathrm{C}$ for 43 h with exclusion of light (using an aluminum foil). After cooling, the reaction mixture was filtered off over a $0.2 \mu \mathrm{~m}$ PET filter, the precipitate was rinsed with DCM, and the filtrate was concentrated under vacuum. The as-obtained residue was purified by chromatography on a silica gel preparative glass plate ( $c \mathrm{Hex} / \mathrm{EtOAc}, 2: 1$ ) to give compound 6 as a white powder in $31 \%$ yield ( $13.1 \mathrm{mg}, 0.004 \mathrm{mmol}$ ). Rf 0.4 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 2: 1$ ). ${ }^{1} \mathbf{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 7.29-7.11\left(\mathrm{~m}, 30 \mathrm{H}, 30 \times \mathrm{H}_{\text {arom }}\right)$, $7.11-6.98\left(\mathrm{~m}, 32 \mathrm{H}, 32 \times \mathrm{H}_{\text {arom }}\right), 6.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4$ $\times \mathrm{H}_{\text {arom }}$ ), $6.79\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{\text {arom }} \mathrm{BBI}\right), 6.77\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.66-6.61(\mathrm{~m}, 4 \mathrm{H}, 2$ $\left.\times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}_{\text {arom }}\right), 6.30\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 5.77\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{1}^{\mathrm{C}, \mathrm{F}}\right)$, $5.60(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.12(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $5.09-5.03(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.80(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.69-4.60(m, 4H, $\left.2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 4.58-4.46(\mathrm{~m}, 12 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.1^{\mathrm{B}, \mathrm{E}}, 10 \times \mathrm{H}-\mathrm{CHPh}\right), 4.38-4.34\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right), 4.21-4.11(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right), 4.02-3.92\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-\right.$ $5^{C, F}$ ), $3.81-3.73\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F},} 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}\right.$ ), $3.72\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{CH}_{3}\right), 3.63-$ $3.58\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 3.42\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{B}, \mathrm{E}}\right), 3.33-3.28(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.17(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 2.72(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-6^{\mathrm{B}, \mathrm{E}}$ ), 2.62 (dd, $J=10.7$ and $\left.5.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right.$, 300 K ): $\delta 182.85$ (external $\mathrm{C}_{\text {carbene }}-\mathrm{Au}$ ), 181.85 (internal $\mathrm{C}_{\text {carbene }}-\mathrm{Au}$ ), 140.07, 139.75, $139.37,139.14,138.94,138.63,138.26,138.07(16 \times \mathrm{Cq}$ Ar), 132.42 ( $2 \times$ internal $\mathrm{N}-C=C$ N ), 131.54 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 128.79, 128.52, 128.48, 128.42, 128.32, 128.25, 128.02, 128.00, 127.96, 127.88, 127.77, 127.70, 127.69, 127.42, 127.19, 127.03, 126.95, 126.84, 126.80, 126.73, 125.28 ( $80 \times C H \mathrm{Ar}$ ), $98.72\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right)$, $98.67\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 97.61$ $\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 92.46(2 \times$ central CH BBI$), 82.36\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 82.20(2 \times \mathrm{C}-4 \mathrm{C}, \mathrm{F}), 81.89(2 \times$ $\left.\mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.27\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 80.21\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.78\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.24\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 77.10$ $\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.99(2 \times \mathrm{C}-4 \mathrm{~A}, \mathrm{D}), 76.69,76.44,74.43\left(6 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.63(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.34$, 73.29, 72.87, 72.62, $72.47\left(10 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 71.90\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 70.64\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 70.14(2 \times$ $\left.\mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 68.92\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 50.45\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 35.62\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. HRMS ESI-TOF: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 3049.9976$, found 3049.9972 (err. 0.2 ppm).

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ mono-gold(I) complex (7)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{163} \mathrm{AuClN}_{4} \mathrm{O}_{28}$ Molecular Weight: 2798,4586

A mixture of bis-azolium $1(40 \mathrm{mg}, 0.015 \mathrm{mmol})$, AuCl. $\mathrm{SMe}_{2}$ ( $4.5 \mathrm{mg}, 0.015 \mathrm{mmol}$, 1 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $4.2 \mathrm{mg}, 0.03 \mathrm{mmol}$ ) in dry and degassed DCM (1 mL ) was stirred at $40^{\circ} \mathrm{C}$ for 39 h with exclusion of light (using an aluminum foil). After cooling, the reaction mixture was filtered off over a $0.2 \mu \mathrm{~m}$ PET filter, the filter was rinsed with DCM, and the filtrate was concentrated under vacuum. The as-obtained residue was purified by column chromatography on silica gel (DCM/MeOH, 30:1) to give 7 in 32\% yield ( $13.7 \mathrm{mg}, 0.005 \mathrm{mmol}$ ). Rf 0.5 (DCM/MeOH, 7:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 600 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta 10.07(\mathrm{~s}, 1 \mathrm{H}$, internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ ), $7.98-7.88\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{\text {arom }}\right.$ BBI), 7.38-6.98 (m, 70H, $70 \times \mathrm{H}_{\text {arom }}$ ), $6.91-6.85\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{\text {arom }}\right), 6.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$, $4 \times \mathrm{H}_{\text {arom }}$ ), $5.76(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1 \mathrm{C}, \mathrm{F}), 5.43(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.12$ (d, $J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.90-4.73\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times\right.$ $\left.\mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}, 6 \times \mathrm{H}-\mathrm{CHPh}\right), 4.69(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.65(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.59-4.48 (m, 8H, $8 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.46-4.38 (m, 6H, $6 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.35$4.26\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{C}, \mathrm{F}}\right), 4.08\left(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}\right), 4.03(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.4^{\mathrm{C}, \mathrm{F}}\right), 3.99-3.92\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}\right), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{CH}_{3}\right), 3.88-$ $3.83\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-5^{\left.\mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}\right), 3.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 3.63-3.53(\mathrm{~m},}\right.$ $\left.10 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 3.35(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=3.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.05\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.73(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{H}-6^{\prime \mathrm{BB} \mathrm{E}}$ ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta 185.69$ ( $\mathrm{C}_{\text {carbene }}-\mathrm{Au}$ ), 140.21, 139.99, 139.84, 139.55, 139.47, 139.18, 139.03, 138.83 (16 $\times$ Cq Ar), 134.82 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 131.00 ( $2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 129.43, 129.27, 129.24, 129.05, 129.03, 129.00, 128.95, 128.93, 128.91, 128.80, 128.72, 128.70, 128.67, 128.64, 128.21, 128.16, 128.15, 128.13, 128.10, 127.72, 126.89 ( $80 \times$ CH Ar), $99.05(2 \times \mathrm{C}-1 \mathrm{C}, \mathrm{F}), 98.78$ ( 2 $\left.\times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 98.00\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 97.59(2 \times$ central $C \mathrm{HBB}), 82.69\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 82.18(2 \times \mathrm{C}-$ $\left.4^{\mathrm{C}, \mathrm{F}}\right), 81.88\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 81.31\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 81.18\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 80.53\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 80.20(2 \times$ $\left.\mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 78.21\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 77.36\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 77.26\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 76.51,74.74,74.69(6 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 74.49(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.92,73.84\left(4 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.56\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 73.54\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)$, $73.06\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 71.38\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 70.67\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 69.89\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 51.35(2 \times \mathrm{C}-$ $\left.6^{\mathrm{A}, \mathrm{D}}\right), 36.57\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right) \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ signal of internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ could not be detected. HRMS ESI-TOF: $m / z$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{163} \mathrm{AuClN}_{4} \mathrm{O}_{28}$ [M-Cl]+ 2796.0802, found 2796.0914 (err. -4.0 ppm).

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(I)/silver(I) complex (8)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AgAuCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28}$ Molecular Weight: 2940,7688

A solution of bis-silver complex 5 ( 500 mg , 0.175 mmol ) and $\mathrm{AuCl}^{2} \mathrm{SMe}_{2}$ ( $76.2 \mathrm{mg}, 0.259$ mmol, 1.5 equiv.) in dry and degassed DCM (10 mL ) was stirred at $20^{\circ} \mathrm{C}$ for 21 h with exclusion of light. A black purple suspension formed which was filtered off over a $0.2 \mu \mathrm{~m}$ PET filter. The black precipitate in the filter was rinsed with DCM, and the combined filtrates were concentrated under vacuum. The as-obtained residue was purified by column chromatography on silica gel ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 1$ ) to give $\mathbf{8}$ as a white powder in $59 \%$ yield ( $304 \mathrm{mg}, 0.103$ mmol). Rf 0.5 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 2$ ). ${ }^{\mathbf{1} H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 7.30\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 7.28-6.97(\mathrm{~m}, 58 \mathrm{H}, 58 \times$ $\left.\mathrm{H}_{\text {arom }}\right), 6.95\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.88\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.82-6.77(\mathrm{~m}$, $6 \mathrm{H}, 2 \times \mathrm{CH}_{\text {arom }} \mathrm{BBI}, 4 \times \mathrm{H}_{\text {arom }}$ ), $6.66\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}\right), 6.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times$ $H_{\text {arom }}$ ), $5.88\left(\mathrm{t}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}\right), 5.78\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{C}^{\mathrm{C}, \mathrm{F}}\right), 5.62(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 5.39 (d, $J=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.12(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}, 2$ $\times \mathrm{H}-\mathrm{CHPh}), 5.07(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.05-5.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}), 4.81(\mathrm{~d}, J$ $=11.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.69(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.65-4.59(\mathrm{~m}, 2 \mathrm{H}, 2 \times$ H-6 ${ }^{\mathrm{A}, \mathrm{D}}$ ) $, 4.57-4.46\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}, 8 \times \mathrm{H}-\mathrm{CHPh}\right), 4.38-4.32\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 4 \times \mathrm{H}-\right.$ CHPh ), 4.26-4.16 (m, 6H, $\left.2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 4.15-4.05(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-$ $6^{\prime} \mathrm{A}, \mathrm{D}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 3.94-3.83 (m, 6H, $2 \times \mathrm{H}-4^{\left.\mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}\right), 3.81-3.72(\mathrm{~m}, 6 \mathrm{H}, 2}$ $\left.\times \mathrm{H}-6^{\mathrm{C}, \mathrm{F},} 2 \times \mathrm{H}-6^{\mathrm{C}} \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}\right), 3.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{CH}_{3}\right), 3.63-3.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}, 2 \times\right.$ $\mathrm{H}-\mathrm{CHPh}), 3.44\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{B}, \mathrm{E}}\right), 3.33-3.25\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.17$ (d, $J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 2.66\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.58(\mathrm{dd}, J=10.8 \mathrm{~Hz}$, $\left.J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 189.93\left(\mathrm{C}_{\text {carbene }}-\mathrm{Ag}\right)$, 183.15 (C carbene -Au ), 140.20, 139.83, 139.38, 139.02, 138.95, 138.65, 138.22, 137.97 (16 $\times$ Cq Ar), 132.97 ( $\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 131.52 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 129.89, 128.78, 128.51, 128.43, 128.31, 128.25, 128.03, 128.01, 127.99, 127.90, 127.88, 127.77, 127.71, 127.37, 127.27, 127.18, 127.03, 127.01, 126.87, 126.84, 126.81, 125.41 ( $80 \times$ CH Ar), $98.78\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 98.72\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 97.76\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 92.49(2 \times$ central CH BBI) , $82.31\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 82.22\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 81.56\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.13\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 80.09$ $\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.86\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.22\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 76.98\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.76\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right)$, $76.67,76.43,74.39\left(6 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.68(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.33,73.03,72.61,72.48(8 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 72.18\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 71.02\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 70.75\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 68.73(2 \times \mathrm{C}-$ $\left.6^{\mathrm{B}, \mathrm{E}}\right), 50.68\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 35.62\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. HRMS ESI-TOF: $m / z$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AgAuClN}_{4} \mathrm{O}_{28} \mathrm{Na}[\mathrm{M}-\mathrm{Cl}]+2901.9775$, found 2901.9724 (err. 1.8 ppm ).


f1 (ppm)
${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 600 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(I) $/$ copper(I) complex (9)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AuCl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{28}$ Molecular Weight: 2896,4466

A mixture of gold(I)/silver(I) complex 8 (83.2 $\mathrm{mg}, 0.028 \mathrm{mmol}$ ) and $\mathrm{CuCl}(28 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry and degassed DCM ( 2 mL ) was stirred at $40{ }^{\circ} \mathrm{C}$ for 44 h with exclusion of light. A white suspension formed which was filtered off over a $0.2 \mu \mathrm{~m}$ PET filter and rinsed with DCM. The filtrate was concentrated under vacuum. The asobtained residue was purified by column chromatography on silica gel ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 1$ ) to give the title compound as a white powder in $78 \%$ yield ( $63.7 \mathrm{mg}, 0.022 \mathrm{mmol}$ ). Rf 0.5 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 2$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$, $300 \mathrm{~K}): \delta 7.30-7.11\left(\mathrm{~m}, 30 \mathrm{H}, 30 \times \mathrm{H}_{\text {arom }}\right), 7.10-$ $6.96\left(\mathrm{~m}, 32 \mathrm{H}, 32 \times \mathrm{H}_{\text {arom }}\right), 6.92\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times$ $H_{\text {arom }}$ ), $6.79\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{\text {arom }} \mathrm{BBI}\right), 6.75\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times H_{\text {arom }}$ ), $6.33\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.00\left(\mathrm{t}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}\right), 5.80(\mathrm{~d}, J$ $\left.=3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{C}, \mathrm{F}}\right), 5.60(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-\mathrm{CHPh}), 5.14-5.07(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.05(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh})$, $4.79(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.69\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}\right), 4.64-4.44(\mathrm{~m}$, $\left.12 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}, 10 \times \mathrm{H}-\mathrm{CHPh}\right), 4.41-4.33\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right), 4.27-4.10(\mathrm{~m}$, $\left.8 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right), 4.05\left(\mathrm{dd}, J=14.0\right.$ and $10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}$ ), $4.00-3.91\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-4 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-5 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}\right), 3.79\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{H}-6^{\left.\mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-6^{\mathrm{C}}, \mathrm{F}\right), 3.75}\right.$ $-3.70\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{N}-\mathrm{CH}_{3}\right), 3.62-3.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 3.45(\mathrm{t}, \mathrm{J}=$ $\left.9.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{B}, \mathrm{E}}\right), 3.37-3.26\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.15(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2$ $\times \mathrm{H}-\mathrm{CHPh}), 2.67\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.59(\mathrm{dd}, J=10.7$ and $4.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $6^{\text {'B,E }}$ ) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 185.66\left(\mathrm{C}_{\text {carbene }}-\mathrm{Cu}\right), 182.74\left(\mathrm{C}_{\text {carbene }}-\mathrm{Au}\right)$, $139.89,139.82,139.37,139.15,138.92,138.65,138.25,138.00(16 \times \mathrm{Cq} \mathrm{Ar}), 132.83(2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 131.40 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 128.97, 128.53, 128.50, 128.42, $128.41,128.32,128.22,128.05,128.03,128.02,127.88,127.85,127.78,127.69,127.54$, $127.40,127.22,127.18,127.01,126.78,126.76,126.65,125.40(80 \times C H$ Ar $), 98.72(2 \times$ $\left.\mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 98.55\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 97.40\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 92.30(2 \times$ central CH BBI$), 82.24(2 \times \mathrm{C}-$ $\left.4^{\mathrm{B}, \mathrm{E}}\right), 81.92\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 81.56\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.14\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 80.09\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.89(2 \times$ $\left.\mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.34\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 77.01\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.69\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 76.58,76.55,74.33(6 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 73.59\left(2 \times \mathrm{C}-5^{\mathrm{C}, \mathrm{F}}\right), 73.32,72.81,72.58,72.45\left(8 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 72.07\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right)$, $71.66\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 70.69\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 68.77\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 50.42\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right)$, $35.61\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. HRMS ESI-TOF: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AuCuCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 2915.9606, found 2915. 9692 (err. -2.9 ppm )


f1 (pom)
${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 600 \mathrm{MHz})$


## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ palladium(II)(allyl)Cl complex (10)



Chemical Formula: $\mathrm{C}_{161} \mathrm{H}_{168} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Pd}^{-}$ Molecular Weight: 2784,4355

A mixture of bis-azolium 1 ( $200 \mathrm{mg}, 0.075$ mmol), [Pd(allyl)Cl] 2 dimer ( $16.5 \mathrm{mg}, 0.045$ mmol, 0.6 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(146.7 \mathrm{mg}, 1.05$ mmol) in dry and degassed DCM ( 5 mL ) was stirred at $20^{\circ} \mathrm{C}$ for 19 h with exclusion of light. The reaction mixture was filtered off over a 0.2 $\mu \mathrm{m}$ PET filter (rinsing with DCM), and the filtrate was concentrated under vacuum. The asobtained residue was purified by column chromatography on silica gel (DCM/MeOH, 30:1) to give the title compound as a pale yellow powder in $72 \%$ yield ( $153 \mathrm{mg}, 0.054 \mathrm{mmol}$ ). Rf 0.5 (DCM/MeOH, 7:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 600$ $\mathrm{MHz}, 300 \mathrm{~K}): \delta 10.01(\mathrm{~s}, 1 \mathrm{H}$, internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}+$ ), 7.85 (s, 2H, $2 \times \mathrm{CH}_{\text {arom }}$ BBI), $7.39-6.97\left(\mathrm{~m}, 70 \mathrm{H}, 70 \times \mathrm{H}_{\text {arom }}\right.$ ), 6.91-6.86 (m, $6 \mathrm{H}, 6 \times \mathrm{H}_{\text {arom }}$ ), 6.66-6.60 (m, 4H, $4 \times \mathrm{H}_{\text {arom }}$ ), 5.75 (d, J = $3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1 \mathrm{C}, \mathrm{F}$ ), $5.59-5.49$ (m, 1H, H$2_{\text {allyl }}$, 5.42 (d, $\left.J=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 5.12(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.92-$ $4.74\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}, 6 \times \mathrm{H}-\mathrm{CHPh}\right), 4.69(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.66(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.58-4.49(\mathrm{~m}, 8 \mathrm{H}, 8 \times$ H-CHPh), 4.45-4.37 (m, 6H, $6 \times \mathrm{H}-\mathrm{CHPh}), 4.29(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}), 4.24(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\text {allyl }}$ Syn), $4.11-4.06\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}\right), 4.01\left(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}\right)$, 3.98 ( $\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{CH}_{3}$ ), $3.97-3.92\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}\right.$ ), $3.87-3.82(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-6^{\prime} \mathrm{C}, \mathrm{F}\right), 3.72(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 3.64-3.57(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.2^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{BEE}}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}\right), 3.57-3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\text {allyl }}\right.$ Syn), $3.50(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 3.34 (dd, $J=10.0 \mathrm{~Hz}$ and $3.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}$ ), $3.33(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1_{\text {allyl }}$ anti), $2.98\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.75(\mathrm{dd}, J=11.0$ and $5.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $6^{\text {'B,E }}$ ), $2.66\left(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\text {allyl }}\right.$ anti) ppm. ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}, 300 \mathrm{~K}$ ): $\delta$ 202.20 ( $\mathrm{C}_{\text {carbene }}-\mathrm{Pd}$ ), 140.20, 139.99, 139.83, 139.53, 139.47, 139.15, 138.85, 138.82 (16 $\times$ Cq Ar), $136.22(2 \times$ external $\mathrm{N}-C=C-\mathrm{N}), 130.02(2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}), 129.42,129.26$, $129.23,129.08,129.03,128.99,128.94,128.92,128.90,128.88,128.80,128.74,128.70$, 128.66, 128.64, 128.24, 128.20, 128.16, 128.13, 128.10, 128.08, 127.71, 127.17 ( $80 \times \mathrm{CH}$ Ar), 117.28 (C-2allyl), $99.01\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 98.75\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 98.02\left(2 \times \mathrm{C}-\mathrm{1}^{\mathrm{B}, \mathrm{E}}\right), 95.97(2 \times$ central $C H$ BBI), $82.61\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 82.18\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 81.86\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 81.33(2 \times \mathrm{C}-$ $\left.3^{\mathrm{B}, \mathrm{E}}\right), 81.20\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 80.50\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 80.20\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 78.23\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 77.33(2 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 77.31\left(2 \times \mathrm{C}-4 \mathrm{~A}^{\mathrm{A}, \mathrm{D}}\right), 76.50,74.74,74.71\left(6 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 74.46(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.92$, 73.82 , $73.45\left(6 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.31\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 73.23\left(\mathrm{C}-1_{\text {allyl }}\right), 73.04\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 71.36(2 \times$ C-5 ${ }^{\mathrm{A}, \mathrm{D}}$ ), $70.69\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 69.61\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 51.24\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 50.73\left(\mathrm{C}-3_{\text {allyl }}\right), 36.25(2 \times$ $\left.\mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. The ${ }^{13} \mathrm{C}$ chemical shift of internal $\mathrm{N}-\mathrm{CH}=\mathrm{N}$ could not be detected. HRMS ESITOF: $m / z$ calcd. for $\mathrm{C}_{161} \mathrm{H}_{168} \mathrm{PdClN}_{4} \mathrm{O}_{28}$ [M-Cl] ${ }^{+} 2746.0611$, found 2746.0680 (err. -2.5 ppm).


## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ palladium(II)/silver(I) complex (11)



Chemical Formula: $\mathrm{C}_{161} \mathrm{H}_{167} \mathrm{AgCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Pd}$ Molecular Weight: 2891,2952

A solution of complex $\mathbf{1 0}$ ( $50 \mathrm{mg}, 0.018 \mathrm{mmol}$ ) and $\mathrm{Ag}_{2} \mathrm{O}$ ( $41.6 \mathrm{mg}, 0.18 \mathrm{mmol}, 10$ equiv.) in dry and degassed DCM ( 2 mL ) was stirred at $20^{\circ} \mathrm{C}$ for 20 h with exclusion of light. A black suspension formed which was filtered off over a $0.2 \mu \mathrm{~m}$ PET filter (rinsing with DCM). The filtrate was concentrated under vacuum. The asobtained residue was purified by column chromatography on silica gel ( $c \mathrm{Hex} / \mathrm{EtOAc}$, 1.2:1) to give the title compound as pale brown solid in $45 \%$ yield ( $23.3 \mathrm{mg}, 0.008 \mathrm{mmol}$ ). Rf 0.7 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 1: 2$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$, $300 \mathrm{~K}): \delta 7.29\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right.$ ), $7.27-$ $6.91\left(\mathrm{~m}, 64 \mathrm{H}, 64 \times \mathrm{H}_{\text {arom }}\right), 6.85\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}\right), 6.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times$ $\left.H_{\text {arom }}\right), 6.65\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}\right), 6.44\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 5.90(\mathrm{t}, J=10.2$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}$ ), 5.77 (d, $\left.{ }^{3} \mathrm{~J}_{1,2}=3.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{C}, \mathrm{F}}\right), 5.62(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ CHPh ), $5.46-5.35\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}-2_{\text {allyl }}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 5.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh})$, 5.09-5.01 (m, 4H, $2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.81 ( $\mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.67$4.61\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 4.56-4.43\left(\mathrm{~m}, 12 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}, 8 \times \mathrm{H}-\right.$ CHPh), 4.42 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\text {allyl }}$ Syn) $4.37-4.28(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}-\mathrm{CHPh}), 4.27-4.17$ (m, $6 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 4.16-4.09 (m, 4H, $2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 3.93$3.86\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-4 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-5 \mathrm{C}, \mathrm{F}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}\right), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{CH}_{3}\right), 3.80-3.69(\mathrm{~m}, 6 \mathrm{H}, 2$
 ( $\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{BEE}}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $3.46-3.39$ (m, 2H, H-3 $\mathrm{allyl}^{\text {syn }}$ Sy- $1_{\text {allyl }}$ anti), $3.33-3.26$ (m, $4 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}$ ), $3.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $2.66(\mathrm{dd}, J=10.7 \mathrm{~Hz}$ and $\left.4.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.59\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.52\left(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\text {allyl }}\right.$ anti) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): ~ \delta 197.62$ ( $\mathrm{C}_{\text {carbene }}-\mathrm{Pd}$ ), 188.78 ( $\mathrm{C}_{\text {carbene }}-\mathrm{Ag}$ ), $140.23,139.87,139.45,139.00,138.99,138.59,138.19,137.83$ ( $16 \times$ Cq Ar), 133.19 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 131.95 ( $\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 128.76, 128.52, 128.48, 128.40, 128.34, 128.26, 128.23, 128.20, 128.14, 128.12, 127.98, 127.95, 127.85, 127.83, 127.80, 127.78, 127.71, 127.68, 127.39, 127.28, 127.10, 127.02, 126.97, 126.81, 126.80, 126.76, 125.99, 125.97 ( $80 \times$ CH Ar), 116.06 ( $\mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{C}-2$ allyl), 98.78 ( $2 \times \mathrm{C}-\mathrm{i}^{\mathrm{C}, \mathrm{F}}$ ), $98.51\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 97.78\left(2 \times \mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right), 91.46(2 \times$ central CHBBI$), 82.28\left(2 \times \mathrm{C}-4{ }^{\mathrm{C}, \mathrm{F}}\right), 82.04$ $\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 81.53\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.15\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.83\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.22(2 \times$ $\left.\mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 77.03\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.84\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 76.66,76.42\left(4 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 74.79(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, \mathrm{C}-1$ allyl), $74.30,73.64$ ( $2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}$ ), $73.28,73.26,73.03,72.51,72.40,72.34$ ( $12 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 71.95\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 71.01\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 70.65\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 70.40\left(2 \times \mathrm{H}_{2} \mathrm{Ph}\right), 68.41$ ( $2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}$ ), $50.54\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 48.99\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{C}-3\right.$ allyl), $35.63\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS ESI-TOF: $m / z$ calcd. for $\mathrm{C}_{161} \mathrm{H}_{167} \mathrm{AgPdClN}_{4} \mathrm{O}_{28}$ [M-Cl]+ 2851.9569, found 2851.9660 (err. -3.2 ppm ).


${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 600 \mathrm{MHz})$


## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(III)/gold(I) complex (12)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{Au}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{28}$ Molecular Weight: 3100,7671

To a solution of 6 ( $35.1 \mathrm{mg}, 0.012 \mathrm{mmol}$ ) in dry and degassed DCM ( 1 mL ) was injected at $0{ }^{\circ} \mathrm{C}$ with exclusion of light a solution of (dichloroiodo)benzene ( $25.5 \mathrm{mg}, 0.092 \mathrm{mmol}$ ) in DCM ( 1 mL ). After stirring for 96 h , the reaction mixture was directly transferred onto a LH-20 column, and the column was eluted with a $1: 1$ solution of DCM/MeOH. after concentration of the fractions, the title compound was isolated in $90 \%$ yield as a pale yellow powder ( $32.3 \mathrm{mg}, 0.01$ mmol). Rf 0.4 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 2: 1$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathrm{CDCl}_{3}$, $600 \mathrm{MHz}, 300 \mathrm{~K}): \delta 7.31-7.05\left(\mathrm{~m}, 46 \mathrm{H}, 46 \times \mathrm{H}_{\text {arom }}\right)$, 7.04-6.90 (m, $24 \mathrm{H}, 24 \times \mathrm{H}_{\text {arom }}$ ), $6.82(\mathrm{~s}, 2 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{\text {arom }} \mathrm{BBI}\right), 6.77\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.67\left(\mathrm{t}, \mathrm{J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}\right), 6.62(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}$ ), $6.36\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 5.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $1^{\text {C,F }}$ ), 5.61 (d, $J=10.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), 5.29 (d, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $5.15-$ $5.02(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-3 \mathrm{C}, \mathrm{F}, 4 \times \mathrm{H}-\mathrm{CHPh}), 4.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.69(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}$ ), $4.63(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.58-4.49(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}-$ $\left.1^{\mathrm{BE}, \mathrm{E}}, 6 \times \mathrm{H}-\mathrm{CHPh}\right), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.38-4.30\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 4 \times\right.$ H-CHPh), 4.22-4.11 (m, 10H, $2 \times$ H-3 ${ }^{\text {A,D }}, 2 \times$ H-3 ${ }^{\text {B, }}, 2 \times$ H-5B,,$~ 4 \times$ H-CHPh $), 4.05-3.95(m$, $6 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}$ ), 3.88 (dd, $J=11.1 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}$ ), 3.81 (s, 6H) , 3.79-3.72 (m, 4H, $2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{C}} \mathrm{C}, \mathrm{F}$ ), $3.61(\mathrm{dd}, J=10.1 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-2^{\mathrm{C}, \mathrm{F}}$ ), 3.56 ( $\mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $3.34-3.25\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}, 2 \times\right.$ $\mathrm{H}-4^{\mathrm{B}, \mathrm{E}}$ ), $2.91(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 2.88\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.61(\mathrm{dd}$, $J=10.4$ and $\left.6.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{\prime}, \mathrm{E},}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 183.86$ (internal $\mathrm{C}_{\text {carbene }}-\mathrm{Au}^{\text {I }}$ ), 155.62 (external $\mathrm{C}_{\text {carbene }}-\mathrm{Au}^{\text {III }}$ ), 140.07, 139.70, 139.38, 139.18, 138.88, 138.44, 138.17 ( $16 \times$ Cq Ar), 133.01 ( $2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 131.36 ( $2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 128.80, 128.52, 128.47, 128.43, 128.32, 128.24, 128.22, 128.01, 127.92, $127.88,127.78,127.72,127.70,127.60,127.29,127.18,126.95,126.86,126.80,126.68$, $125.14\left(80 \times\right.$ CH Ar), $98.82\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 98.69\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 97.47\left(2 \times \mathrm{C}-\mathrm{B}^{\mathrm{B}, \mathrm{E}}\right), 93.41(2 \times$ central $C H$ BBI), $82.96\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 81.98\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 81.87\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.24\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right)$, $80.10\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.79\left(2 \times \mathrm{C}-\mathrm{S}^{\mathrm{C}, \mathrm{F}}\right), 79.22\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 77.12\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.84(2 \times \mathrm{C}-$ $\left.4^{\mathrm{A}, \mathrm{D}}\right), 76.72,76.42,74.38\left(6 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.62(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F}), 73.43,73.25,72.91,72.52,72.47$ $\left(10 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 71.79\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 70.55\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 70.11\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 69.62\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right)$, $50.68\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 35.37\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. HRMS ESI-TOF: $m / z$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{Au}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+} 3135.9092$, found 3135.9150 (err. -1.8 ppm )

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(III)/silver(I) complex (13)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AgAuCl}_{4} \mathrm{~N}_{4} \mathrm{O}_{28}$ Molecular Weight: 3011,6688

To a solution of $\mathbf{8}(40 \mathrm{mg}, 0.014 \mathrm{mmol})$ in dry and degassed DCM ( 1 mL ) was injected at $-10^{\circ} \mathrm{C}$ with exclusion of light a solution of (dichloroiodo)benzene ( $22.4 \mathrm{mg}, 0.084 \mathrm{mmol}$ ) in DCM ( 1 mL ). After stirring for 72 h , the reaction mixture was directly transferred onto a LH-20 column and the column was eluted with a $1: 1$ solution of $\mathrm{DCM} / \mathrm{MeOH}$. Concentration of the fractions gave the title compound in $94 \%$ yield as a pale yellow powder ( $38.4 \mathrm{mg}, 0.013 \mathrm{mmol}$ ). Rf 0.5 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 2$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$, 300K): $\delta 7.33-6.90(\mathrm{~m}, 70 \mathrm{H}), 6.86$ (s, 2H, $2 \times$ $\left.\mathrm{CH}_{\text {arom }} \mathrm{BBI}\right), 6.78\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.65$ ( $\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}$ ), $6.38\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right.$ ), $5.92(\mathrm{t}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{H}-5^{\mathrm{A}, \mathrm{D}}$ ), $5.80\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{C}, \mathrm{F}}\right), 5.63(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.41(\mathrm{~d}, J$ $=10.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $5.12(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.08-5.03(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $\mathrm{H}-3^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $4.81(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.71(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $6^{\mathrm{A}, \mathrm{D}}$ ), $4.63(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.55-4.45\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{BE}, \mathrm{E}}, 8 \times \mathrm{H}-\mathrm{CHPh}\right)$, 4.38-4.30 (m, $\left.4 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-\mathrm{CHPh}\right), 4.24\left(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}\right), 4.22-4.09$ $\left(\mathrm{m}, 10 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 6 \times \mathrm{H}-\mathrm{CHPh}\right), 3.99\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}\right), 3.94-3.87$ ( $\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}$ ), 3.84 (dd, $J=10.9$ and $4.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{C}, \mathrm{F}$ ), $3.81(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\mathrm{N}-\mathrm{CH}_{3}$ ) , 3.80-3.70 (m, 4H, $2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{C}} \mathrm{C}, \mathrm{F}$ ), $3.61(\mathrm{dd}, J=10.2$ and $3.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ $2^{\text {C,F }}$ ), $3.54(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 3.35-3.20\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-\right.$ $4^{\mathrm{B}, \mathrm{E}}$ ), $2.94(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 2.80\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H} 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.59$ (dd, $J$ $=10.4$ and $\left.6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right) \mathrm{ppm}{ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 192.05$ (C $\mathrm{C}_{\text {carbene }}-\mathrm{Ag}$ ), 155.86 ( $\mathrm{C}_{\text {carbene }}-\mathrm{Au}^{\text {III }}$ ), 140.19, 139.77, 139.37, 138.99, 138.88, 138.45, 138.12, 138.05 ( $16 \times$ Cq Ar), 133.45 ( $\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), $131.34(2 \times$ external $\mathrm{N}-C=C-\mathrm{N}$ ), 128.77, 128.51, 128.45, 128.43, 128.29, 128.25, 128.21, 128.00, $127.98,127.92,127.87,127.76,127.74,127.71,127.55,127.32,127.16,127.01,126.94$, 126.87, 126.84, 126.81, 125.27 ( $80 \times$ CH Ar), $98.79\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right.$ ), $97.61(2 \times \mathrm{C}-$ $1^{\mathrm{BE}, \mathrm{E}}$ ), $93.46\left(2 \times\right.$ central $C H$ BBI), $82.76\left(2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}\right), 82.07\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 81.50\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right)$, $80.11\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 79.98\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.86\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.19\left(2 \times \mathrm{C}-2^{\mathrm{B}, \mathrm{E}}\right), 77.01(2 \times \mathrm{C}-$ $2^{\text {C,F }}$ ), $76.68\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 76.64\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 76.40,74.32\left(4 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.66\left(2 \times \mathrm{C}-\mathrm{S}^{\mathrm{C}, \mathrm{F}}\right)$, 73.42, 73.28, 73.11, 72.52, 72.48 ( $10 \times \mathrm{CH}_{2} \mathrm{Ph}$ ), $72.08\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 70.98\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right)$, $70.61\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 69.38\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 50.86\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 35.37\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS ESI-TOF: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AgAuCl}_{4} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 3029.8738$, found 3029.8766 (err. -0.9 ppm ).

 ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 600 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## $\alpha-\mathrm{CD}^{\mathrm{Bn}}(\mathrm{BBI})$ gold(III)/copper(I) complex (14)



Chemical Formula: $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AuCl}_{4} \mathrm{CuN}_{4} \mathrm{O}_{28}$ Molecular Weight: 2967,3466

To a solution of 9 ( $40 \mathrm{mg}, 0.014 \mathrm{mmol}$ ) in dry and degassed DCM ( 1 mL ) was injected at $-5^{\circ} \mathrm{C}$ with exclusion of light a solution of (dichloroiodo) benzene ( $22.8 \mathrm{mg}, 0.084 \mathrm{mmol}$ ) in DCM ( 1 mL ). After stirring for 70 h , the reaction mixture was di transferredrectly onto a LH-20 column and the column was eluted with a $1: 1$ solution of DCM/MeOH. Concentration of the fractions gave the title compound in $93 \%$ yield as a pale yellow powder ( $37.9 \mathrm{mg}, 0.013 \mathrm{mmol}$ ). Rf 0.5 ( $c \mathrm{Hex} / \mathrm{EtOAc}, 3: 2$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$, $300 \mathrm{~K}): \delta 7.31-6.94(\mathrm{~m}, 66 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}$ ), $6.83\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{\text {arom }} \mathrm{BBI}\right), 6.74$ $\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{H}_{\text {arom }}\right), 6.57\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}_{\text {arom }}\right), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times$ $\mathrm{H}_{\text {arom }}$ ), $6.03\left(\mathrm{t}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}\right), 5.82\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{T}^{\mathrm{C}, \mathrm{F}}\right), 5.61(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $5.23(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 5.16-5.09(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-$ $3^{\text {C,F }}, 2 \times \mathrm{H}-\mathrm{CHPh}$ ), $5.04(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.78(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-$ CHPh), 4.71 (d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}$ ), $4.66-4.57\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right)$, 4.57-4.49 (m, 4H, $4 \times \mathrm{H}-\mathrm{CHPh}), 4.46(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 4.41-4.31(\mathrm{~m}, 6 \mathrm{H}, 2$ $\left.\times \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}, 4 \times \mathrm{H}-\mathrm{CHPh}\right), 4.26-3.93\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}, 2 \times \mathrm{H}-5 \mathrm{C}, \mathrm{F}, 2 \times\right.$ $\mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, 2 \times \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}, 4 \times \mathrm{H}-\mathrm{CHPh}$ ), $3.89(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6 \mathrm{C}, \mathrm{F}), 3.82(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{N}-\mathrm{CH}_{3}$ ), $3.78-3.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-6^{\mathrm{C}, \mathrm{F}}\right.$ ), $3.60(\mathrm{dd}, \mathrm{J}=10.2$ and $3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\left.\mathrm{H}-2^{\mathrm{C}, \mathrm{F}}\right), 3.55(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 3.36-3.27\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, 2 \times \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}, 2 \times\right.$ $\mathrm{H}-4^{\mathrm{B}, \mathrm{E}}$ ), $2.94(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{CHPh}), 2.81\left(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right), 2.59$ (dd, $\left.J=10.4 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{H}-6^{\mathrm{B}, \mathrm{E}}\right) \mathrm{ppm} .^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta 187.48$ ( $\mathrm{C}_{\text {carbene }}-\mathrm{Cu}$ ), 155.28 ( $\mathrm{C}_{\text {carbene }}-\mathrm{Au}^{\text {III }}$ ), 139.88, 139.76, 139.36, 139.16, 138.86, 138.46, 138.15, 138.10 ( $16 \times$ Cq Ar), 133.36 ( $2 \times$ internal $\mathrm{N}-C=C-\mathrm{N}$ ), 131.25 ( $2 \times$ external $\mathrm{N}-C=C$ N), 128.98, 128.53, 128.45, 128.42, 128.31, 128.24, 128.19, 128.04, 128.03, 127.90, $127.84,127.78,127.72,127.57,127.52,127.28,127.16,127.02,126.94,126.77,126.60$, $125.26(80 \times$ CH Ar $), 98.81\left(2 \times \mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 98.56\left(2 \times \mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 97.24\left(2 \times \mathrm{C}-\mathrm{B}^{\mathrm{B}, \mathrm{E}}\right), 93.22(2 \times$ central $C H$ BBI), 82.81 ( $2 \times \mathrm{C}-4^{\mathrm{B}, \mathrm{E}}$ ), $81.69\left(2 \times \mathrm{C}-4^{\mathrm{C}, \mathrm{F}}\right), 81.51\left(2 \times \mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 80.11(2 \times \mathrm{C}-$ $\left.2^{\mathrm{B}, \mathrm{E}}\right), 80.00\left(2 \times \mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 79.90\left(2 \times \mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 79.33\left(2 \times \mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 77.02\left(2 \times \mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 76.60(2 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 76.58\left(2 \times \mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right), 76.54\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 74.28\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 73.58(2 \times \mathrm{C}-5 \mathrm{C}, \mathrm{F})$, 73.42, 73.27, 72.85, 72.49, 72.48 ( $10 \times \mathrm{CH}_{2} \mathrm{Ph}$ ), $71.98\left(2 \times \mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 71.62\left(2 \times \mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right)$, $70.56\left(2 \times \mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 69.40\left(2 \times \mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right), 50.61\left(2 \times \mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 35.36\left(2 \times \mathrm{N}-\mathrm{CH}_{3}\right)$ ppm. HRMS ESI-TOF: $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{158} \mathrm{H}_{162} \mathrm{AuCuCl}_{4} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{~K}[\mathrm{M}+\mathrm{K}]+3001.8723$, found 3001.8779 (err. -1.9 ppm ).

 f1 (ppm)
${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CDCl}_{3}(300 \mathrm{~K}, 151 \mathrm{MHz})$

## 3. Cyclic Voltametry


( $\mathrm{Pr}_{2}$-bimy) $\mathrm{AuCl}_{3}$


12


13


14


Figure S2. Second anodic scan, scan rate 100 mV/s

| Complex | $\mathrm{R}_{1}$ ( $A u^{\prime \prime \prime} / A u^{\prime}$ ) | $\mathrm{O}_{1}\left(2 \mathrm{Cl} / \mathrm{Cl}_{2}\right)$ |
| :---: | :---: | :---: |
| $12^{\text {a }}$ | -0.19 | 1.10 |
| $13^{\text {a }}$ | -0.15 | 1.08 |
| $14^{\text {a }}$ | -0.19 | 1.10 |
| ( $\mathrm{Pr}_{2}$-bimy) $\mathrm{AuCl}_{3}{ }^{\mathrm{b}, 5}$ | -0.26 | 1.12 |

 1 mM ; Potentials in V vs. SCE; Anodic scan rate $100 \mathrm{mV} / \mathrm{s}$. ${ }^{\text {b }}$ In DCM/0.1 M NBu ${ }_{4} \mathrm{PF}_{6}$ at a scan rate of $100 \mathrm{mV} / \mathrm{s}$.

[^3]
[^0]:    ${ }^{1}$ a) M. Guitet, P. Zhang, F. Marcelo, C. Tugny, J. Jiménez-Barbero, O. Buriez, C. Amatore, V. Mouriès-Mansuy, JP. Goddard, L. Fensterbank, Y. Zhang, S. Roland, M. Ménand, M. Sollogoub, Angew. Chem. Int. Ed. 2013, 52, 7213-7218; b) B. Bertino-Ghera, F. Perret, B. Fenet, H. Parrot-Lopez J. Org. Chem., 2008, 73, 7317-7326.

[^1]:    ${ }^{2}$ A. J. Boydston, K. A. Williams, C. W. Bielawski, J. Am. Chem. Soc. 2005, 127, 12496-12497.
    ${ }^{3}$ D. Canestrar, S. Lancianesi, E. Badiola, C. Strinna, H. Ibrahim, M. F. A. Adamo, Org. Lett. 2017, 19, 918921.

[^2]:    ${ }^{4}$ The protocol was adapted from Guangcan Xu PhD Thesis, Sorbonne-Université, 08/07/2021, Paris.

[^3]:    ${ }^{5}$ H. Vinh Huynh, S. Guo, W. Wu, Organometallics, 2013, 32, 4591-4600

