Electronic Supplementary Information (ESI) for Chemical Communications. This journal is (c) The Royal Society of Chemistry 2022.

Electronic Supplementary Information (ESI)

Engineering a ternary one-dimensional Fe₂P@SnP_{0.94}@MoS₂ mesostructure through magnetic field-induced self-assembly as high-performance lithium-ion battery anode

Jinyun Liu^{a,*}, Ting Zhou^a, Tianli Han^a, Liying Zhu^a, Yan Wan^a, Yunfei Hu^{b,*}, Zhonghua Chen^{c,*}

Experimental

Chemicals: FeCl₃·6H₂O, urea, sodium hypophosphite (NaH₂PO₂·H₂O), trisodium citrate dehydrate, and K₂SnO₃·3H₂O were obtained from Aladdin. Tetraethyl silicate (TEOS) was purchased from Macklin. NH₃·H₂O, CH₄N₂S, Na₂MoO₄·2H₂O, and anhydrous ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used directly without further purification.

Preparation of 1D $Fe_3O_4@SiO_2$: The Fe₃O₄ nanospheres were prepared by dispersing FeCl₃·6H₂O (4.3 g), NaAc (4.0 g), and trisodium citrate dehydrate (1.0 g) in 70 ml of ethylene glycol. Then, a transparent solution was transferred into a Teflonlined stainless steel autoclave and kept in an oven at 200 °C for 10 h. After that, the sample was collected, washed and dried. 0.05 g of Fe₃O₄ nanospheres were ultrasonically dispersed in 240 mL of anhydrous ethanol, and 30 mL of ammonia was added under a strong mechanical rate (800 rpm) for 10 min. Subsequently, 2 mL of TEOS was slowly added under a low agitation (350 rpm). After stirring for 15 min, the solution was held under an external magnetic field for 100 s. Finally, after standing for 12 h, the 1D Fe₃O₄@SiO₂ was synthesized by washing with deionized water and ethanol, and drying at 60 °C for 12 h. **Preparation of 1D yolk-shell Fe_3O_4@void@SnO_2:** 0.1 g of the Fe₃O₄@SiO₂ was ultrasonically dispersed in a mixture of 12 mL H₂O and 18 mL anhydrous ethanol. Then, 0.9 g of urea and 0.12 g of K₂SnO₃·3H₂O were added to the above solution and stirred magnetically for 30 min, which was placed in an autoclave and kept in an oven at 170 °C for 6 h. At last, the Fe₃O₄@void@SnO₂ was obtained by washing several times with deionized water.

Preparation of Fe_2P@SnP_{0.94}: The Fe₂P@SnP_{0.94} was prepared through a thermal phosphorization. Typically, 0.05 g of Fe₃O₄@void@SnO₂ and 1 g of NaH₂PO₂·H₂O were mixed evenly. Then, the mixture was placed in a tubular furnace and calcined at 300 °C for 30 min under Ar gas at a ramping rate of 2 °C per min.

Preparation of ternary 1D Fe₂P@SnP_{0.94}@MoS₂: 0.05 g of Fe₂P@SnP_{0.94}, 0.154 g of Na₂MoO₄·2H₂O, and 0.4 g of CH₄N₂S were stirred magnetically in 30 mL of H₂O for 30 min. Then, the above solution was transferred into an autoclave and kept in an oven at 190 °C for 16 h. After that, the sample was collected, washed and dried for further use.

Characterization: A field emission scanning electron microscopy (SEM, Hitachi S-4800), a transmission electron microscopy (TEM, HT-7700), and a X-ray diffractomerter (XRD, Bruker D8 Advance) were used to characterize the morphology and phase of the samples. The elemental mapping was tested on an energy dispersive X-ray spectrometer. The different valence states of the final product were detected by X-ray photoelectron spectroscopy tester (XPS, ESCALAB 250). Micrometritics ASAP 2460 analyzer was used to measure the specific surface area and pore-size distribution.

Electrochemical tests: The electrochemical properties of Fe₂P@SnP_{0.94}@MoS₂ were analyzed by using CR2032 coin cells, assembling in an Ar glove box (H₂O and O₂ < 0.01 ppm). The composite (65 w%), conductive carbon black (25 w%) and

carboxymethylcellulose (CMC,10 w%) in sodium carboxymethylcellulose (SBR) was evenly coated on a Cu foil, drying in a vacuum oven at 80 °C for 24 h, which was cut into a 12 mm-diameter disc. The electrolyte contained with 1 M of LiPF₆ in ethylene carbonate (EC) and ethyl methyl carbonate (EMC, volume ratio=1:1). Li metal was used as the counter electrode. The electrochemical performance of cells was tested on a CT-4008 system (Shenzhen Neware Technology Co., Ltd). An electrochemical workstation (CHI-660D) was used to measured cyclic voltammetry (CV) in the potential range of 0.01-3 V and electrochemical impedance spectra (EIS).

Fig. S1 (a) SEM and (b) TEM images of Fe₃O₄@SiO₂. (c) SEM and (d) TEM images of 1D Fe₃O₄@void@SnO₂.

Fig. S2 (a,b) TEM images of the yolk-shell Fe₂P@void@SnP_{0.94}.

Fig. S3 (a,b) SEM and (c,d) TEM images of the Fe₂P@SnP_{0.94}@MoS₂.

Fig. S4 (a) SEM and (b-f) mapping images of the $Fe_2P@SnP_{0.94}@MoS_2$ composite. (g) line-scanning curves.

Fig. S5 (a, b) XRD patterns of each sample.

Fig. S6 SEM image of the Fe₂P@void@SnP_{0.94}.

Fig. S7 (a) XPS spectra of $Fe_2P@SnP_{0.94}@MoS_2$: (a) survey spectrum, (b) Fe 2p, (c) P 2p, (d) Sn 3d, (e) Mo 3d, and (f) S 2p.

Fig. S8 (a) The N₂ adsorption-desorption isotherms of the composite. (b) The pore-size distribution.

Fig. S9 CV curve of the Fe₂P@SnP_{0.94} at a scanning speed of 0.1 mV s⁻¹.

Fig. S10 Capacity and Coulombic efficiency of Fe₂P@SnP_{0.94} cycling at 2 A g⁻¹.

Fig. S11 (a) Charge-discharge profiles of the Fe₂P@SnP_{0.94}@MoS₂ composite cycling at 0.1 A g^{-1} .

Fig. S12 Cycling performance and Coulombic efficiency of $Fe_2P@SnP_{0.94}$ at charge/discharge rates of (a) 0.5/1 A g⁻¹ and (b) 1/0.5 A g⁻¹.

Fig. S13 Charge-discharge curves of the Fe₂P@SnP_{0.94}@MoS₂ composite cycling at 0.2 A g⁻¹ under (a) -10 °C, (b) 25 °C, and (c) 45 °C.

Fig. S14 Capacities and Coulombic efficiencies of $Fe_2P@SnP_{0.94}$ under -10 °C, 25 °C, and 45 °C when cycling at 0.2 A g⁻¹.

Fig. S15 *In-situ* reaction resistances at 0.2 A g^{-1} : (a) discharging and (b) charging.

Fig. S16 EIS spectra of the Fe₂P@SnP_{0.94}@MoS₂ and Fe₂P@SnP_{0.94} (a) before and (b) after 100 cycles at 2 A g^{-1} . The inserts display the equivalent circuits.

Fig. S17 (a) SEM and (b) TEM images of the Fe₂P@SnP_{0.94}@MoS₂ composite after cycling 100 times at 2 A g⁻¹.

Fig. S18 (a) SEM and (b) TEM images of Fe₂P@SnP_{0.94} after cycling 100 times at 2 A g⁻¹.

Fig. S19 CV profile of $Fe_2P@SnP_{0.94}@MoS_2$ at 0.1 mV s⁻¹ after cycling 100 times at 2 A g⁻¹.

Fig. S20 (a) CV profiles at different scanning speeds from 0.1 to 1.0 mV s⁻¹. (b) Relationship of the $\log(i) vs. \log(v)$. (c) Contribution ratios. (d) Peak currents *vs.* scan rate^{1/2}.

Anode	Preparation method	Cycling rate (mA g ⁻¹)	Cycle number	Capacity (mAh g ⁻¹)	Ref.
Fe ₂ P/C composite nanofibers	Electrospinning	200	300	573	1
Butyl-capped Ge gels and SnP _{0.94} nanoparticles	Vacuum annealing	440	200	500	2
Yolk–shell MoS ₂ powders	Applying spray pyrolysis	1000	100	651	3
SnO_2/MoS_2	Hydrothermal method	1000	230	602	4
MoS ₂ @carbon	Hydrothermal method	2000	210	480	5
Graphene supported MoS ₂ nanosheets	One-pot thermal annealing	150	50	1010	6
MoS ₂ @C	Hydrothermal method/carbonization	2000	500	530	7
Ternary 1D Fe ₂ P@SnP _{0.94} @MoS ₂	Self-assembly and phosphorization	2000	800	797.5	This study

Table S1. Comparison on the electrochemical performance of some anodes.

References

- 1 Y. Yang, W. B. Fu, C. Bell, D. C. Lee, M. Drexler, Y. Nuli, Z. F. M, A. Magasinski, G. Yushin and F. M. Alamgir, *ACS Appl. Mater. Interfaces*, 2021, **13**, 34074–34083.
- 2 M. G. Kim and J. Cho, J. Electrochem. Soc., 2019, 156, A277–A282.
- 3 Y. N. Ko, Y. C. Kang and S. B. Park, Nanoscale, 2014, 6, 4508–4512.
- 4 Y. Chen, J. Lu, S. Wen, L. Lu and J. M Xue, J. Mater. Chem. A, 2014, 2, 17857-17866.
- 5 R. Zhou, J. G. Wang, H. Z. Liu, H. Y. Liu, D. D. Jin, X. R. Liu, C. Shen, K. Y. Xie and B. Q. Wei, *Materials*, **2017**, 10, 174.
- 6 Q. H. Liu, Z. J. Wu, Z. L. Ma, S. Dou, J. H. Wu, L. Tao, X. Wang, C. B. Ouyang, A. L. Shen and S. Y. Wang, *Electrochim. Acta*, 2015, **177**, 298–303.
- 7 J. G. Wang, H. Y. Liu, R. Zhou, X. R. Liu and B.Q. Wei, J. Power Sources, 2019, 413, 327-333.