Electronic Supplementary Information for

Phosphorus incorporation accelerates ammonia electrosynthesis over mesoporous Au film

Zechuan Dai, Wenxin Wang, Ziqiang Wang*, Shengqi Wang, Hongjie Yu, You Xu, Xiaonian Li,

Liang Wang and Hongjing Wang*

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of

Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

Corresponding authors' E-mails: zqwang@zjut.edu.cn; hjw@zjut.edu.cn

Experimental section

2.1. Chemicals and Materials. Polystyrene-*b*-poly(ethylene oxide) (PS₁₈₀₀₀-*b*-PEO₇₅₀₀) was purchased from Polymer Source Inc. Ethanol (C₂H₅OH), concentrated hydrochloric acid (HCl) sodium hydroxide (NaOH), p-dimethylaminobenzaldehyde (p-C₉H₁₁NO), hydrazine monohydrate (N₂H₄·H₂O), sodium hypochlorite solution (NaClO), chloroauric acid (HAuCl₄), sodium sulfate (Na₂SO₄), tetrahydrofuran (THF), sodium hypophosphite (NaH₂PO₂), and sodium salicylate $(C_7H_5NaO_3)$ Aladdin. Sodium nitroferricyanide purchased from dihydrate were (C₅FeN₆Na₂O·2H₂O) and ammonium chloride (NH₄Cl) were purchased from MACKLIN Inc. Pluronic F127 were purchased from Sigma-Aldrich. Carbon paper and Nafion 117 membranes were ordered from Shanghai Hesen Electric Co., Ltd.

2.2. Synthesis of mAuP/NF. In a typical synthesis, 10 mg of PS_{18000} -*b*-PEO₇₅₀₀ was dissolved in 3 mL of THF under sonication, followed by adding 1.5 mL of ethanol. Then, 2 mL of HAuCl₄ (20 mM) and 1 mL of NaH₂PO₂ (12 mM) aqueous solutions were sequentially mixed with above solution. A piece of clean Ni foam (1 × 2 cm) was added into the above solution for 20 min at room temperature. Finally, the product was collected by fully washing with ethanol, and stored in the ethanol for further characterization.

2.3. Characterizations. Scanning electron microscopy (SEM, ZEISS SUPRA 55) was performed to observe the morphology and structure of the samples using a ZEISS SUPRA 55 at the accelerating voltage of 5 kV. Transmission electron microscope (TEM) images were carried out on JEOL JEM-2010 apparatus operating at 200 kV. X-ray diffraction (XRD) pattern of samples was performed by Bruker D8 ADVANCE X-ray powder diffractometer. The atomic valence of samples was detected by X-ray photoelectron spectroscopy (XPS, ESCALAB MK II spectrometer). Nitrogen temperature-programmed desorption (N₂-TPD) experiments were conducted on a Micromeritics

AutoChem 2910 chemisorption analyzer. Before N₂-TPD experiments, the samples were purified by the thermal treatment at 100 °C under He gas for 30 min. After cooling down to 40 °C, the samples adsorbed nitrogen for 30 min, then the temperature was programmed to 650 °C with the heating rate of 10 °C min⁻¹ in the He atmosphere.

2.4. Electrochemical measurements. All the electrochemical measurements were performed by CHI 760E potentiostat using a typical three-electrode cell separated by Nafion 211 membrane, in which the obtained mAuP/NF was employed as the working electrode, Ag/AgCl electrode (saturated KCl) as the reference electrode and graphite rod as the counter electrode. Before the N_2 reduction measurements, electrolyte (0.1 M Na₂SO₄) was bubbled with N_2 for 30 min. The current density was normalized to the geometric area of Ni foam, and all potentials in this work were recorded on the reversible hydrogen electrode (RHE).

2.5. Production determination. The production of ammonia was measured by the indophenol blue method.¹ In detail, 500 µL coloring solution (0.4 M $C_7H_6O_3 + 0.32$ M NaOH), 50 µL 0.75 M NaOH and 50 µL NaClO ($\rho_{Cl} = 4$ –4.9) were first mixed with 4 mL electrolyte, which was kept in dark for 1 h. Then the ammonia was detected from the mixed solution by ultraviolet-visible (UV-vis) spectrophotometer at a wavelength of 680 nm. The concentration-absorbance curve was obtained to quantify the ammonia amount by using NH₄Cl solutions of known concentration as standards. The NH₃ yield (r_{NH3}) and Faradaic efficiency (FE) were evaluated from following equations:

$$r_{\rm NH3} = (c_{\rm NH3} \times V)/(t \times m)$$
(1)
FE = $3F \times n_{\rm NH3}/Q$ (2)

where c_{NH3} (µg mL⁻¹) is the NH₃ concentration, V (mL) is the electrolyte volume, t (h) is the electrolysis time, m (mg) is the loading catalyst mass, F (96485 C mol⁻¹) is the Faraday constant, n_{NH3} (mol) is the mole of produced NH₃ and Q (C) is the total quantity of applied electricity.

 N_2H_4 was detected using the Watt and Chrisp method.² The mixture of ethanol (300 mL), HCl (30 mL) and *p*-C₉H₁₁NO (5.99 g) was first prepared as color reagent. To detected N₂H₄, the aqueous solution (5 mL) and color reagent (5 mL) were mixed for 10 min, followed by UV-vis determination at a wavelength of 457 nm. The N₂H₄ was evaluated using a standard N₂H₄ calibration curve.

2.6 Detection of NO₃⁻ ion. The NO₃⁻ ions were detected according to the reported literature.³ The standard solutions of NO₃⁻ ions were prepared as follows.

1) 100 µg mL⁻¹ stock: 0.1 g of pre-dried KNO₃ was added into 1 L of deionized water.

2) 5 μ g mL⁻¹ stock: 5 mL of the above 100 μ g mL⁻¹ stock was mixed with deionized water to 100 mL.

3) The 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0 mL solutions were separately added into the test tubes, which was mixed with deionized water to 5 mL, and 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0 μ g mL⁻¹ standard solutions were finally obtained.

The concentration of the NO_3^- in Na_2SO_4 solution can be determined by UV-vis spectrophotometer at the wavelength of 220 nm. In a typical procedure, 5 mL of electrolytes were added to the test tubes followed by addition of 0.1 mL of 1.0 M HCl. After shaking up and standing for 5 min, the concentration of NO_3^- was measured using UV-vis spectrophotometer. The standard curve for NO_3^- determination was plotted using the standard solutions.

2.7 The calculation of the d-band center. All density functional theory calculations were performed with Vienna Ab Initio Simulation Package (VASP).^{4,5} The basis set for the electronic wave functions was plane wave below a 500 eV energy cutoff. The Au(111) model was obtained by expanding monomer 2×2 , and AuP(111) was obtained by placing P atoms in octahedral gap on the basis of Au(111) model. We use a Fermi smearing of electronic occupations with a width of 0.2 eV

and Monkhorst-Pack mesh for the Brillouin zone sampling of (5, 5, 1). The structure relaxation is performed until the maximum force on each atom drops below 0.03 eV Å⁻¹. When static calculations were performed, the K-point sampling was set to (10, 10, 1). The d-band center was obtained by the following formula:

$$\varepsilon_{d} = \frac{\int_{-\infty}^{\infty} n_{d}(\varepsilon)\varepsilon d\varepsilon}{\int_{-\infty}^{\infty} n_{d}(\varepsilon)d\varepsilon}$$
(3)

$$H_{2}PO_{2}^{-} + AuCl_{4}^{-} \longrightarrow Au + H_{2}PO_{3}^{-} (1)$$

Ni + AuCl_{4}^{-} \longrightarrow Au + Ni^{2+} (2)
$$H_{2}PO_{2}^{-} \xrightarrow{Au} AuP (3)$$

Fig. S1 Possible reactions involved in the synthesis of Au-P alloy.

Fig. S2 (a) TEM image and (b) pore size distribution of the mAuP film on Ni foam.

Fig. S3 (a) HAADF-STEM image and (b-d) the element mapping images of the mAuP film.

Fig. S4 SEM image of the mAu/NF.

Fig. S5 (a) UV-Vis curves of indophenol assays with NH_4^+ ions after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S6 The comparison of calculated NH₃ yields and FEs for mAuP/NF and mAu/NF at selected potentials.

Fig. S7 (a) UV-Vis absorption spectra of various $N_2H_4 \cdot H_2O$ concentrations after color development for 10 min temperature. (b) Calibration curve for estimation of $N_2H_4 \cdot H_2O$ concentration.

Fig. S8 (a) The UV-Vis absorption spectra and (b) corresponding yield of N_2H_4 at selected potentials.

Fig. S9 Calibration for nitrate determination. (a) UV-vis spectra for various concentrations of KNO₃. (b) Calibration curve used for calculating the concentration of nitrate.

Fig. S10 (a) UV-vis adsorption spectra for determining the concentration of NO_3^- in Na_2SO_4 . (b) The concentration of NO_3^- in various concentrations of Na_2SO_4 .

Fig. 11 UV-vis absorption spectra of the electrolytes stained with indophenols indicator under different conditions.

Fig. S12 ¹⁵N isotope labeling experiment. ¹H NMR spectra for the post-electrolysis 0.1 M Na₂SO₄ electrolytes with ¹⁵N₂, ¹⁴N₂ as the feeding gas. Also shown are the spectra for ¹⁵NH₄⁺ and ¹⁴NH₄⁺ standard samples.

Fig. S13 (a) SEM and (b) TEM images of mAuP/NF after long-term stability test.

Fig. S14 $\ensuremath{\text{N}_2}\xspace$ -TPD curve of mAu/NF and mAuP/NF.

Fig. S15 Cyclic yoltammograms for different samples.

Fig. S16 Cyclic voltammograms for different samples

Catalyst	Electrolyte	NH ₃ yield	FE	Ref.
mAuP/NF	0.1 M Na ₂ SO ₄	36.52 μ g h ⁻¹ mg ⁻¹ _{cat.}	20.32%	This work
Au flowers	0.1 M HCl	$25.57 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	6.05%	6
Au ₁ Co ₁ @GO	0.1 M K ₂ SO ₄	$36.82 \ \mu g \ h^{-1} \ m g_{cat}^{-1}$	22.03%	7
mAu ₃ Pd/NF	0.1 M Na ₂ SO ₄	$24.02 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	10.54%	8
Au@Fe ₃ O ₄ NPs	0.1 M KOH	$21.42 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	4.5%	9
Au/WO _{3-x}	0.1 M KOH	$23.15 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	14.72%	10
pAu/NF	0.1 M Na ₂ SO ₄	$9.42~\mu g~h^{-1}~mg^{-1}{}_{Pd}$	13.36%	11
Au/C	0.1 M KOH	$17.49 \ \mu g \ h^{-1} \ cm^{-2}$	5.79%	12
Au HNCs	0.5 M LiClO ₄	$3.90~\mu g~h^{-1}~cm^{-2}$	30.2%	13
Au nanorods	0.1 M KOH	$1.65 \ \mu g \ h^{-1} \ cm^{-2}$	8.9%	14

Table S1. Summary of the representative reports on electrocatalytic NRR at ambient conditions.

References

- (1) D. Zhu, L. H. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836-841,.
- (2) G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- (3) L. Li, C. Tang, D. Yao, Y. Zheng and S.-Z. Qiao, ACS Energy Lett., 2019, 4, 2111-2116.
- (4) G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- (5) G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- (6) Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang and L. Wang, *ChemSusChem*, 2018, **11**, 3480-3485
- (7) Q. Wang, G. Zheng, S. Hao, X. Liu, J. Zheng, Y. Wang, Z. Su, N. Xu, Y. He, L. Lei and X. Zhang, ACS Sustainable Chem., Eng., 2019, 8, 44-49.
- (8) H. Yu, Z. Wang, S. Yin, C. Li, Y. Xu, X. Li, L. Wang and H. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 436-442.
- (9) J. Zhang, Y. Ji, P. Wang, Q. Shao, Y. Li and X. Huang, Adv. Funct. Mater., 2019, 30, 1906579.
- (10) Y. Li, P. Yan, J. Chen, Y. Ren, Y. Zhou, T. Ge, J. Chen and Q. Xu, *Chem. Commun.*, 2019, 55, 13307-13310.
- (11) H. Wang, H. Yu, Z. Wang, Y. Li, Y. Xu, X. Li, H. Xue and L. Wang, *Small*, 2019, **15**, 1804769.
- (10) C. Chen, C. Liang, J. Xu, J. Wei, X. Li, Y. Zheng, J. Li, H. Tang and J. Li, *Electrochim. Acta*, 2020, **335**, 135708.
- (12) M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, Nano Energy, 2018, 49, 316-323.
- (13) D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang and X.
 B. Zhang, *Adv. Mater.*, 2017, **29**, 1604799.