Supplementary Information

Strategy toward fluorinated polyhedral oligomeric silsesquioxane

wrapping nanoparticles for superomniphobic surfaces

Boxu Chen,^{‡ab} Mingjin Yang,^{‡b} Xilin Lin,^b Wenfeng Liu,^{*a} Hai Yuan^b and Jingwen Liao^{*bc}

^{a.} School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China. E-mail: wyuchemlwf@126.com

^{b.} Frontier Science and Technology Research Center, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China. E-mail: jw.liao@giat.ac.cn

^{c.} School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

‡ These authors contributed equally to this work and should be considered co-first authors.

Experimental

Synthesis of poc-F13POSS-2OH

In a typical 100-mL round-bottom flask filling with 20 mL THF and 0.2 mL H₂O, 2.55 g FAS-13 and 200 mg NaOH was added in sequence, followed by magnetic stirring and refluxing at 70 °C for 5 h. Then, the round-bottom flask was kept at room temperature for 12 h. A sticky product was obtained after solvent removal in a rotary evaporator at 50~60 °C and washing with 20 mL THF for 3 times at room temperature. The washing with THF as a purification step was necessary for separating side-products. The high-purity sticky matter (the yield exceeded 85%), *i.e.*, poc-F₁₃POSS-2OH, was yellowish and stored in absolute ethanol (0.11g ml⁻¹).

Preparation of poc-F13POSS-wrapped materials

In a typical 100-mL round-bottom flask filling with 50 ml absolute ethanol, 1.6 g materials (*e.g.*, SiO₂ nanoparticles, TiO₂ nanoparticles, ATP (attapulgite) nanorods, GO (graphene oxide) nanosheets, PS microspheres) and 5 mL poc-F₁₃POSS-2OH (0.11g

ml⁻¹) was added and followed by magnetic stirring (1000 rpm) for 10 min and ultrasonication for 5 min. With a constant-pressure dropping funnel, 10 mL HCl (0.1 M) was added dropwise (a drop per 10 s) under magnetic stirring (500 rpm). The protonation was completed after 5 h incubation at room temperature. Through a 12 h drying, poc-F₁₃POSS-wrapped materials were yielded.

Construction of poc-F13POSS-wrapped material-based superomniphobic surfaces

In a 20 ml of ordinary engineering resin system (*e.g.*, polyacrylate resins, polyurethane resins, organic silicon resins) with a typical solid content of 5%, 1.5 g of poc-F₁₃POSS-wrapped material (*e.g.*, poc-F₁₃POSS-wrapped SiO₂ nanoparticles and poc-F₁₃POSS-wrapped SiO₂ microparticles) were added and dispersed by magnetic stirring at 1500 rpm for 10 min. After 30 min standing for spontaneous removal of bubbles, a stable suspension was born without any assistance of additives. The suspension was spray-coated on a majority of usual engineering substrates (*e.g.*, glass sheets, metal sheets, plastic sheets, ceramic sheets and even paper sheets). After air-drying at room temperature, a superomniphobic coating with 15 µm in thickness was fabricated.

Characterization and tests

Characterization-1: NMR spectroscopy (Magritek GmbH Spinsolve 60, Germany) was utilized to qualitatively characterize poc-F₁₃POSS-2OH (¹H-NMR: 500 MHz, C₆D₆/C₆F₆; ²⁹Si-NMR: 400 MHz, C₂D₆O; ¹⁹F-NMR: 471 MHz, CD₄O). The EDX spectroscopy (Oxford INCA, Britain), CHN analyzer (PerkinElmer 2400 Series II, USA) and Fourier-transform infrared (FTIR) spectroscopy (Bruker Vector 33, Germany) were applied to analyze the chemical composition of as-obtained products. Both FE-SEM (ZEISS Ultra 55, Germany) and TEM (JEOL JEM-2100F, Japan) were employed to probe the topography of specimens.

Characterization-2 (contact angle measurement): The contact angle measurements (including static contact angles, roll-off angles, advancing contact angles) of specimens were performed using a surface contact angle analyzer (KSV Helsinki CAM200, Finland) with a 2 μ L of liquid droplet at ambient temperature. The liquid droplets included liquids with various surface tension (Table S1) and kinematic viscosity (dimethyl silicon oil), and a series of non-Newtonian liquids. The non-Newtonian

liquids covered milk, tomato sauce, soy sauce, egg white, goat blood, silicone oil, crude oil, sodium alginate (2 wt%) in water, chitosan (2 wt%) in acetic acid solution (1 wt%), PMMA (polymethyl methacrylate, 10 mg mL⁻¹) in DMF (dimethyl formamide), PMMA (10 mg mL⁻¹) in NMP (methyl pyrrolidone), PS (polystyrene, 10 mg mL⁻¹) in DMF, PS (10 mg mL⁻¹) in NMP, PVDF (polyvinylidene fluoride, 10 mg mL⁻¹) in DMF, PVDF (10 mg mL⁻¹) in NMP, PVDF-HFP (poly(vinylidene fluoride-co-hexafluoropropylene, 10 mg mL⁻¹) in DMF, PVDF-HFP (10 mg mL⁻¹) in NMP, PVP (polyvinyl pyrrolidone, 10 mg mL⁻¹) in DMF, PVP (10 mg mL⁻¹) in NMP.

Characterization-3 (adhesive force assessment): The adhesive force of water droplet on superomniphobic surfaces was assessed on a high-sensitivity micro-electromechanical balance system (Dataphysics DCAT11, Germany) by the Du Noüy ring method. A water droplet (*ca.* 5 μ L) was suspended with a metal ring. The specimens placed on a balance table were approached at a speed of 0.01 mm s⁻¹ until the specimen surfaces contacted the water droplet. Then the specimens were retracted at the same speed until the water droplet left their surfaces. In this retraction process, the force was gradually increased and sharply decreased to 0 after it reached its maximum (the moment of droplets were pulled away from surfaces).

Drag reduction of liquid flowing test: The plastic pipes were parallelly cut open to expose their inner space. Then, the coatings (*i.e.*, organic silicon resin coatings, poc-F₁₃POSS-wrapped SiO₂ nanoparticle-based superomniphobic coatings, and poc-F₁₃POSS-wrapped SiO₂ microparticle-based superomniphobic coatings) were introduced onto the partially open pipes. An initial velocity V_0 of water droplet with known weight was acquire by making it slide down a superomniphobic surfacedecorated pipe with a specific tilting angle and length. The water droplet with V_0 was applied to slide on another horizontal pipe (decorated with one of aforementioned three coatings) until it stopped (final velocity $V_t = 0$), the acceleration *a* of water droplets and coefficients of friction μ of pipe surfaces could be calculated.

Fig. S1 (A) ¹H-NMR, (B) ²⁹Si-NMR and (C) ¹⁹F-NMR spectra of poc-F₁₃POSS-2OH. In the ¹H-NMR spectrum, the δ 4.73 (2H), 3.53 (16H) and 1.66 (16H) was attributed to the protons of -OH at site-3, -CH₂ at site-1 and -CH₂ at site-2, respectively (δ 7.15: C₆D₆-solvent; δ 2.21: ethyl acetate-contaminant; δ 0.07: tetramethylsilane-internal reference). The protons of -CH₂ at both site-1 and at site-2 expressed multiple resonance signals, on account of the visible cracking affected by both adjacent -CH₂ and -CF₂. In the ²⁹Si-NMR spectrum, δ -59.27 (2Si), -65.83 (2Si) and -68.25 (4Si) could be assigned to the Si at site-4, site-6 and site-5, respectively. In the ¹⁹F-NMR spectrum, δ -82.79 (3F), -117.62 (2F), -123.15 (2F), -124.18 (4F), -127.72 (2F) corresponded to the F at site-11, site-10, site-9, site-8 and site-7.

Fig. S2 Plot of element change rate of poc-F₁₃POSS-2OH₂⁺ relative to poc-F₁₃POSS-2OH.

Fig. S3 FTIR spectra of poc- F_{13} POSS-2OH and poc- F_{13} POSS-2OH₂⁺. In poc- F_{13} POSS-2OH profile, a band at *ca*. 3420 cm⁻¹ was attributed to stretching vibration of Si-OH. In poc- F_{13} POSS-2OH₂⁺ profile, the band at 3420 cm⁻¹ disappeared, which was closely related with -OH protonation.

Fig. S4 TEM image of poc-F13POSS-wrapped ZrO2 nanoparticle.

Fig. S5 FE-SEM images of (A) ZrO₂ nanoparticles, (B) ATP nanorods and (C) GO nanosheets.

Fig. S6 FE-SEM image of cross-sectional $poc-F_{13}POSS$ -wrapped SiO₂ nanoparticlebased coatings on a polyethylene terephthalate (PET) substrate.

Liquid	Surface tension (mN m ⁻¹)	Liquid	Surface tension (mN m ⁻¹)
Hydrogen peroxide	79.7	n-hexadecane	27.5
Water	72.3	Diesel	26.8
Glycerol	63.4	n-dodecane	25.4
Diiodomethane	50.8	Cyclohexane	24.3
Ethylene glycol	48.2	n-decane	23.8
Dimethyl sulfoxide	42.7	Polydimethylsiloxane	19.8
N,N-dimethyl formamide	35.6		

Table S1 List of liquids with various surface tension.

Table S2 List of liquids (with various surface tension) *versus* their roll-off angles, advancing contact angles and contact angle hysteresis on poc-F₁₃POSS-wrapped SiO₂ nanoparticle-based surfaces.

Liquid	Roll-off	Advancing	Contact angle
Liquia	angle (°)	contact angle (°)	hysteresis (°)
Hydrogen peroxide	0.5±0.3	157.0±0.2	$1.4{\pm}0.5$
Water	$0.4{\pm}0.2$	155.9±0.5	3.4±0.6
Glycerol	5.2±1.5	154.9±1.0	6.5±2.1
Diiodomethane	1.6±0.9	153.5±1.1	7.0±1.7
Ethylene glycol	2.3±1.0	155.5±1.0	4.4±1.2
Dimethyl sulfoxide	2.5±0.5	153.6±0.8	5.5±2.4
N,N-dimethyl formamide	7.1±2.4	$154.0{\pm}1.4$	7.2±2.7
n-hexadecane	$2.8{\pm}0.7$	153.0±0.5	3.5±0.7
Diesel	4.2±1.0	153.1±0.3	8.3±1.4
n-dodecane	$2.7{\pm}0.8$	153.6±0.9	5.6±1.9
Cyclohexane	3.6±0.9	151.6±0.3	4.6±1.0
n-decane	$1.2{\pm}0.6$	152.4±0.7	5.2±1.8
Polydimethylsiloxane	22.8±3.9	143.6±1.3	10.3 ± 1.7

Table S3 List of kinematic viscosity of dimethyl silicone oil versus their roll-off angles

Kinematic viscosity of dimethyl silicone oil (mm ² s ⁻¹)	Roll-off angle (°)	
1000	19.1±2.4	
10000	22.6±7.4	
50000	26.2±5.9	
100000	24.5±3.1	
500000	29.7±3.5	
1000000	28.2±2.1	

on poc-F13POSS-wrapped SiO2 nanoparticle-based surfaces.

Table S4 List of non-Newtonian liquid *versus* their roll-off angles on poc-F₁₃POSSwrapped SiO₂ nanoparticle-based surfaces.

Non-Newtonian liquid	Roll-off angle (°)	Non-Newtonian liquid	Roll-off angle (°)
Milk	1.1 ± 0.6	PMMA in DMF	2.6 ± 0.9
Tomato sauce	1.8 ± 1.0	PMMA in NMP	2.6 ± 0.7
Soy sauce	0.5 ± 0.1	PS in DMF	2.0 ± 1.6
Egg white	1.8 ± 0.7	PS in NMP	2.0 ± 0.5
Goat blood	0.8 ± 0.4	PVDF in DMF	3.4 ± 1.0
Silicone oil	22.6±7.4	PVDF in NMP	1.3 ± 0.6
Crude oil	30.8 ± 3.1	PVDF-HFP in DMF	3.3 ± 1.2
Sodium alginate in water	1.0 ± 0.4	PVDF-HFP in NMP	4.0 ± 0.9
Chitosan in HAc solution	1.9 ± 1.3	PVP in DMF	2.7 ± 0.5
		PVP in NMP	1.5 ± 0.8

Fig. S7 Plot of adhesive force of contacted glycerol, ethylene glycol, dimethyl sulfoxide and N,N-dimethyl formamide droplets. The values of adhesive forces were acquired

from force-distance curves recording the liquid droplets contacting and leaving the three surfaces.