Dearomative Michael addition involving enals and 2-

nitrobenzofurans realized under NHC-catalysis

Mateusz Dyguda,^{a,‡} Anna Skrzyńska,^{a,‡,*} Lesław Sieroń^b and Łukasz Albrecht^{a,*}

^a Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90- 924 Łódź, Poland

^b Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, 90-924, Poland

e-mail: lukasz.albrecht@p.lodz.pl

anna.skrzynska@p.lodz.pl

http://www.a-teamlab.p.lodz.pl

Contents

1.	General methods		
2.	Organocatalytic synthesis of 3 – general procedure		
3.	Enantioselective synthesis of (S)-methyl 3-((2R,3R)-2-nitro-2,3-	C1 /	
	nydrobenzofuran-3-yl)-3-phenylpropanoate 3a on a 1 mmol scale		
4.	Transformations of 3a		
4.1	Synthesis of (S)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-		
	phenylpropan-1-ol 5		
4.2	Synthesis of (4 <i>S</i> ,5 <i>R</i>)-5-(2-hydroxyphenyl)-4-phenylpiperidin-2-one 6		
5.	Crystal and X-ray data for (R)-methyl 3-(naphthalen-2-yl)-3-((2S,3S)-2-nitro-		
	2,3-dihydrobenzofuran-3-yl) propanoate 3j		
6.	NMR spectra		
7.	HPLC data		

1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using chemical ionization (APCI) and electrospray (ESI) referenced to the mass of the charged species. Optical rotations were measured on a Perkin-Elmer 241 polarimeter and $[\alpha]_D$ values are given in deg•cm•g⁻¹•dm⁻¹; concentration c is listed in $g \cdot (100 \text{ mL})^{-1}$. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or Hanessian's stain. The enantiomeric ratio (er) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IA, IB, IC and IF columns). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (60, 35-70 µm, Merck KGaA). 2-Nitrobenzofurans 1a-h and cinnamaldehydes 2e-h and 2j-k were obtained using literature procedures.^[1-3] The racemic samples of products **3** for chiral HPLC separation studies were prepared using 2-mesityl-2,5,6,7-tetrahydropyrrolo[2,1-c][1,2,4]triazol-4-ium chloride **4e** under the general reaction condition.

^[1] S.-C. Lu, P.-R. Zheng and G. Liu, J. Org. Chem. 2012, 77, 7711–7717.

^[2] L. Lei, H.-Y. Niu, D.-C. Wang, X.-H. Yang, G.-R. Qu and H.-M. Guo, *Chem. Commun.* 2019, **55**, 553-556.

^[3] N. Daubresse, C. Francesch and C. Rolando, Tetrahedron 1998, 54, 10761-10770.

2. Organocatalytic synthesis of 3 – general procedure

To a flame-dried 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap was charged triazolium salt **4d** (3.9 mg, 0.01 mmol), 2-nitrobenzofuran **1** (1 equiv., 0.1 mmol), cinnamaldehyde **2** (1.5 equiv., 0.15 mmol) and Et₃N (0.4 equiv., 0.04 mmol) in a dry Et₂O (0.4 mL) and stirred for 15 minutes in 5 °C. After this time the corresponding alcohol (3 equiv., 0.3 mmol) was added. The reaction mixture was stirred at 5 °C for 24 h and the residue was purified by column chromatography on silica gel (hexanes/diethyl ether as the eluent, typically 100:0 to 95:5) to furnish the corresponding products **3**.

(S)-Methyl 3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3a

Following the general procedure, product **3a** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 92% (28 mg) yield as a light-red oil. ¹H NMR (700MHz, CDCl₃) δ 7.37 –

7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.22-7.20 (m, 1H), 7.20 – 7.17 (m, 2H), 7.08 – 7.03 (m, 2H), 5.77 (d, J = 1.2 Hz, 1H), 4.10-4.07 (m, 1H), 3.56 (s, 3H), 3.45-3.40 (m, 1H), 2.92 (dd, J = 15.8, 5.8 Hz, 1H), 2.81 (dd, J = 15.8, 8.9 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.7, 158.4, 139.0, 130.1, 129.1 (2C), 128.2 (2C), 128.1, 125.7, 124.8, 123.3, 111.2, 108.9, 54.61, 52.0, 45.1, 37.2. The er was determined by HPLC using a chiral Chiralpack IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} =14.8 min; τ_{minor} =17.1 min (96.5:3.5 er). [α]_D²⁰ = -43.2 (c=1.0, CHCl₃). HRMS calculated for [C₁₈H₁₅NO₅]^{-•}: 325.0955; found: 325.0941.

(S)-Methyl 3-(2-methoxyphenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3yl)propanoate 3b

Following the general procedure, product **3b** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 98% (35.0 mg) yield as a light-yellow oil. ¹H NMR (700MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.14 – 7.11 (m, 2H), 7.10 – 7.07 (m, 1H), 7.03-6.99

(m, 1H), 6.96 – 6.94 (m, 2H), 5.81 (d, J = 1.2 Hz, 1H), 4.32 – 4.28 (m, 1H), 3.89 (s, 3H), 3.69 – 3.63 (m, 1H), 3.51 (s, 3H), 2.90 (dd, J = 15.8, 9.2 Hz, 1H), 2.80 (dd, J = 15.8, 5.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 172.1, 158.5, 157.5, 129.8, 129.8, 129.2, 127.3, 125.9, 125.2, 123.0, 120.9, 111.4, 111.0, 109.8, 55.5, 52.8, 51.7, 41.1, 35.3. The er was determined by HPLC using a chiral Chiralpack IB column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 9.2$ min; $\tau_{minor} = 16.6$ min (93:7 er). $[\alpha]_D^{20} = -30.8$ (c=1.0, CHCl₃). HRMS calculated for $[C_{19}H_{17}NO_6]^{\bullet\bullet}$: 355.1061 found: 355.1060.

(*S*)-Methyl 3-(3-methoxyphenyl)-3-((2*R*,3*R*)-2-nitro-2,3-dihydrobenzofuran-3yl)propanoate 3c

Following the general procedure, product **3c** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 74% (26.5 mg) yield as a light-yellow oil. ¹H NMR (700MHz, CDCl₃) δ 7.32 – 7.28 (m, 1H), 7.25 – 7.21 (m, 2H), 7.07 – 7.03 (m, 2H), 6.83 – 6.81 (m, 1H), 6.79 – 6.76 (m, 1H), 6.69 – 6.66 (m, 1H), 5.77 (d, *J* = 1.3

Hz, 1H), 4.10-4.06 (m, 1H), 3.73 (s, 3H) 3.56 (s, 3H), 3.41-3.36 (m, 1H), 2.90 (dd, J = 15.9, 5.8 Hz, 1H), 2.80 (dd, J = 15.9, 8.7 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.7, 160.0, 158.4, 140.5, 130.1 (2C), 125.7, 124.9, 123.3, 120.3, 114.0, 113.6, 111.2, 108.9, 55.3, 54.5, 52.0, 45.0, 37.2. The er was determined by HPLC using a chiral Chiralpack IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} = 18.9 min; τ_{minor} =23.4 min (94.5:5.5 er). [α]_D²⁰ = -37.5 (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₆]^{••}: 355.1061; found: 355.1067.

(S)-Methyl 3-(4-methoxyphenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3d

Following the general procedure, product **3d** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 79% (28.2 mg) yield as a light-yellow oil. ¹H NMR (700MHz, CDCl₃) δ 7.36 – 7.28 (m, 1H), 7.24 – 7.20 (m, 1H), 7.14 – 7.08 (m, 2H), 7.08 – 7.02 (m, 2H), 6.90 – 6.84 (m, 2H), 5.76 (d, *J* = 1.3 Hz, 1H), 4.04-4.02 (m,

1H), 3.80 (s, 3H), 3.56 (s, 3H), 3.38-3.35 (m, 1H), 2.90 (dd, J = 15.7, 5.6 Hz, 1H), 2.77 (dd, J = 15.7, 9.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.8, 159.3, 158.4, 130.9, 130.1, 129.2 (2C), 125.7, 125.0, 123.2, 114.5 (2C), 111.2, 108.9, 55.4, 54.8, 51.9, 44.4, 37.4. The er was determined by HPLC using a Chiralpak IB column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} =16.9 min; τ_{minor} =15.1 min (96.5:3.5 er). $[\alpha]_D^{20} = -35.3$ (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₆]^{••}: 355.1061; found: 355.1054.

(R)-Methyl 3-((2S,3S)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-(p-tolyl)propanoate 3e

Following the general procedure, product **3e** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 78% (26.6 mg) yield as a red oil. Catalyst *ent*-**4d** (5a*S*,10b*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ 7.33 – 7.28 (m, 1H), 7.23-7.21 (m, 1H), 7.16 – 7.12 (m, 2H), 7.09 – 7.02

(m, 4H), 5.76 (d, J = 1.2 Hz, 1H), 4.07 – 4.03 (m, 1H), 3.56 (s, 3H), 3.39-3.35 (m, 1H), 2.90 (dd, J = 15.8, 5.7 Hz, 1H), 2.79 (dd, J = 15.8, 8.9 Hz, 1H), 2.33 (m, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 171.8, 158.3, 137.7, 135.9, 130.1, 129.8 (2C), 128.0 (2C), 125.7, 125.0, 123.2, 111.2, 109.0, 54.6, 51.9, 44.7, 37.3, 21.2. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 12.2$ min; $\tau_{minor} = 13.8$ min (94.5:5.5 er). $[\alpha]_D^{20} = 45.6$ (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₅]^{••}: 339.1112; found: 339.1115.

(*R*)-Methyl 3-(2-chlorophenyl)-3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3f

Following the general procedure, product **3f** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 74% (26.56 mg) yield as a red oil. Catalyst *ent*-**4d** (5a*S*,10b*R* configuration) was used in the reaction. ¹H NMR (700MHz, CDCl₃) δ

7.47 (dd, J = 7.9, 1.3 Hz, 1H), 7.37 – 7.30 (m, 3H), 7.30-7.27 (m, 1H), 7.15 – 7.12 (m, 1H), 7.07 – 7.01 (m, 2H), 5.80 (d, J = 1.1 Hz, 1H), 4.22-4.20 (m, 1H), 4.04-3.98 (m, 1H), 3.54 (s, 3H), 2.79 (dd, J = 16.0, 5.5 Hz, 1H), 2.75 (dd, J = 16.0, 8.6 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.4, 158.6, 137.0, 134.6, 130.6, 130.3, 129.2, 128.9, 127.5, 126.1, 123.9, 123.2, 111.3, 109.4, 53.2, 51.9, 40.9, 35.4. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 14.9$ min; $\tau_{minor} = 13.9$ min (94.5:5.5 er). $[\alpha]_D^{20} = 47.0$ (c=1.0, CHCl₃). HRMS calculated for $[C_{18}H_{14}CINO_5]^{-*}$: 359.0566; found: 359.0570.

(S)-Methyl 3-(3-fluorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3g

Following the general procedure, product **3g** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 83% (28.6 mg) yield as a light-red oil. ¹H NMR (700MHz, CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.22 – 7.20 (m, 1H), 7.10 – 7.04 (m, 2H), 7.02 – 6.97 (m, 2H), 6.90-6.88 (m, 1H), 5.76 (d, *J* = 1.3 Hz, 1H), 4.08 – 4.04 (m, 1H), 3.58

(s, 3H), 3.47-3.42 (m, 1H), 2.91 (dd, J = 16.0, 5.7 Hz, 1H), 2.79 (dd, J = 16.0, 8.9 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.5, 163.1 (d, J = 247.5 Hz), 158.3, 141.5 (d, J = 7.6 Hz), 130.7 (d, J = 7.8 Hz), 130.3, 125.6, 124.4, 123.9 (d, J = 3.2 Hz), 123.40, 115.3 (d, J = 21.2 Hz), 115.1 (d, J = 21.2 Hz), 111.3, 108.6, 54.4, 52.1, 44.7, 36.9. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 16.9$ min; $\tau_{minor} = 15.5$ min; (95:5 er). $[\alpha]_D^{20} = -33.7$ (c=1.0, CHCl₃). HRMS calculated for $[C_{18}H_{14}FNO_5]^{-\bullet}$: 343.0861; found: 343.0865.

(S)-Methyl 3-(4-chlorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3h

Following the general procedure product **3h** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in
77% (27.8 mg) yield as a light-red oil. ¹H NMR (700MHz, CDCl₃) δ 7.34 – 7.28 (m, 3H), 7.22 – 7.17 (m, 1H), 7.16 – 7.10 (m, 2H), 7.09 – 7.04 (m, 2H), 5.73 (d, *J* = 1.2 Hz, 1H), 4.15 – 3.98 (m, 1H), 3.57 (s, 3H), 3.44-3.40

(m, 1H), 2.91 (dd, *J* = 16.0, 5.6 Hz, 1H), 2.78 (dd, *J* = 16.0, 9.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.5, 158.3, 137.5, 134.0, 130.3, 129.6 (2C), 129.3 (2C), 125.6, 124.5, 123.4, 111.3, 108.6, 54.4, 52.0, 44.5, 37.1. The er was determined by HPLC using a Chiralpak IB column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} = 16.8 min; τ_{minor} = 15.7 min; (95:5 er). $[\alpha]_D^{20} = -40.3$ (c=1.0, CHCl₃). HRMS calculated for [C₁₈H₁₄CINO₅]^{••}: 359.0566; found: 359.0569.

(S)-Methyl 3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-(4-nitrophenyl)propanoate 3i

Following the general procedure product **3i** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 74% (27.5mg) yield as a light-red oil. ¹H NMR (700MHz, CDCl₃) δ 8.20 – 8.18 (m, 2H), 7.38 – 7.36 (m, 2H), 7.35-7.31 (m, 1H), 7.22-7.19 (m, 1H), 7.10-7.07 (m, 1H), 7.06-7.03 (m, 1H), 5.72 (d, *J* = 1.3 Hz, 1H), 4.12-

4.10 (m, 1H), 3.62 – 3.60 (m, 1H), 3.59 (s, 3H), 2.98 (dd, *J* = 16.3, 5.6 Hz, 1H), 2.86 (dd, *J* = 16.3, 9.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.1, 158.2, 147.7, 146.4, 130.6, 129.3 (2C), 125.5, 124.2 (2C), 123.8, 123.6, 111.4, 108.1, 54.1, 52.2, 44.8, 36.7. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} = 3.3 min; τ_{minor} = 4.0 min (85:15 er). [α]²⁰_D = -28.1 (c=1.0, CHCl₃). HRMS calculated for [C₁₈H₁₄N₂O₇]^{••}: 370.0806; found: 370.0799.

(*R*)-Methyl 3-(naphthalen-2-yl)-3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3j

Following the general procedure product **3j** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 69% (26.0 mg) yield as a white solid (mp.=94-96 °C after recrystalization from hexane/diethyl ether mixture). Catalyst *ent*-**4d** (5a*S*,10b*R* configuration) was used in the reaction. ¹H NMR (700MHz,

CDCl₃) δ 7.93 – 7.82 (m, 2H), 7.82 – 7.77 (m, 1H), 7.67-7.66 (m, 1H), 7.53 – 7.48 (m, 2H), 7.35 – 7.30 (m, 2H), 7.24-7.22 (m, 1H), 7.09 – 7.04 (m, 2H), 5.81 (d, *J* = 1.2 Hz, 1H), 4.20-4.18 (m, 1H), 3.61-3.57 (m, 1H), 3.53 (s, 3H), 3.00 (dd, *J* = 15.9, 5.6 Hz, 1H), 2.92 (dd, *J* = 15.9, 9.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.7, 158.4, 136.5, 133.5, 133.0, 130.2, 129.1, 128.0, 127.9, 127.4, 126.6, 126.4, 125.8, 125.8, 124.8, 123.3, 111.3, 108.9, 54.5, 52.0, 45.2, 37.2. The er was determined by HPLC using a Chiralpak IF column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} =13.6 min; τ_{minor} = 16.7 min (80.5:19.5 er, after recrystallization 99.9:0.1 er). [α]²⁰_D = 34.1 (c= 1.0, CHCl₃). HRMS calculated for [C₂₂H₁₇NO₅]^{••}: 375.1112 found: 375.1108.

(S)-Methyl 3-(2,4-dichlorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3k

Following the general procedure product **3k** (19:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 71% (28.0 mg) yield as a light-red oil. ¹H NMR (700MHz, CDCl₃) δ 7.49 (d, *J* = 2.2 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.29 – 7.23 (m, 1H), 7.16 – 7.12 (m, 1H), 7.07 – 7.01 (m, 2H), 5.77 (d, *J* = 1.1 Hz, 1H), 4.19-4.17 (m, 1H), 3.98-3.93

(m, 1H), 3.55 (s, 3H), 2.77 (dd, J = 16.2, 5.2 Hz, 1H), 2.71 (dd, J = 16.2, 8.9 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.2, 158.5, 135.6, 135.4, 134.5, 130.4, 130.4, 129.8, 127.9, 126.0, 123.6, 123.3, 111.5, 109.1, 53.0, 52.1, 40.5, 35.2. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} =13.3 min; τ_{minor} =12.3 min (94:6 er). $[\alpha]_D^{20} = -47.1$ (c=1.0, CHCl₃). HRMS calculated for $[C_{18}H_{13}Cl_2NO_5]^{\bullet\bullet}$: 393.0176; found: 393.0174.

(S)-Methyl 3-(furan-2-yl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 31

Following the general procedure product **3I** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 87% (27.5 mg) yield as a light-red oil. ¹H NMR (700MHz, CDCl₃) δ 7.36-7.35 (m, 1H), 7.30-7.27 (m, 1H), 7.09-7.07 (m, 1H), 7.05 – 7.00 (m, 2H), 6.26 (dd, *J* =

3.3, 1.8 Hz, 1H), 6.06 (d, J = 1.8 Hz, 1H), 5.99-5.98 (m, 1H), 4.14-4.12 (m, 1H), 3.75-3.71 (m, 1H), 3.66 (s, 3H), 2.80 (d, J = 0.8 Hz, 1H), 2.79 (d, J = 1.6 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.6, 158.4, 152.2, 142.7, 130.1, 125.3, 124.2, 123.3, 110.9, 110.5, 108.6, 108.0, 53.2, 52.2, 38.8, 34.8. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 13.3$ min; $\tau_{minor} = 15.4$ min (94.5:5.5 er). $[\alpha]_D^{20} = -40.7$ (c=1.0, CHCl₃). HRMS calculated for $[C_{16}H_{13}NO_6]^{-\bullet}$: 315.0748; found: 315.0743.

(S)-Methyl 3-((2R,3R)-5-methoxy-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3m

Following the general procedure product **3m** (16:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 66% (23.6 mg) yield as a light-green oil. ¹H NMR (700MHz, CDCl₃)

δ 7.38 – 7.32 (m, 2H), 7.31 – 7.27 (m, 1H), 7.21 – 7.18 (m, 2H), 7.07 (d, *J* = 8.3 Hz, 1H), 6.63 (d, *J* = 2.3 Hz, 1H), 6.59 (dd, *J* = 8.3, 2.3 Hz, 1H), 5.76 (d, *J* = 1.2 Hz, 1H), 4.00-3.98 (m, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 3.41-3.36 (m, 1H),2.88 (dd, *J* = 15.8, 5.6 Hz, 1H), 2.78 (dd, *J* = 15.8, 9.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.8, 161.8, 159.7, 139.2, 129.1 (2C), 128.2 (2C), 128.0, 125.8, 116.5, 109.6, 109.3, 97.6, 55.8, 54.2, 51.9, 45.3, 37.1. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} = 23.0 min; τ_{minor} = 21.4 min (94.5:5.5 er). $[α]_D^{20} = -14.9$ (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₆]^{-•}: 355.1061; found: 355.1066.

(*S*)-Methyl 3-((2*R*,3*R*)-7-methoxy-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3n

Following the general procedure product **3n** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 76% (27.2 mg) yield as a red oil. ¹H NMR (700MHz, CDCl₃) δ 7.44 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 7.23 – 7.14 (m, 2H), 7.01 (dd, *J* = 8.2, 7.5

Hz, 1H), 6.91 (dd, J = 8.2, 1.1 Hz, 1H), 6.87 – 6.69 (m, 1H), 5.77 (d, J = 1.3 Hz, 1H), 4.10-4.07 (m, 1H), 3.93 (s, 3H), 3.55 (s, 3H), 3.43-3.37 (m, 1H), 2.92 (dd, J = 15.8, 5.5 Hz, 1H), 2.80 (dd, J = 15.8, 9.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.7, 146.6, 145.2, 139.1, 129.1 9 (2C), 128.2 (2C), 128.1, 126.3, 124.2, 117.6, 113.8, 109.0, 56.6, 55.1, 51.9, 45.1, 37.3. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 10.6$ min; $\tau_{minor} = 13.3$ min (97:3 er). $[\alpha]_D^{20} = -22.9$ (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₆]^{-•}: 355.1061; found: 355.1063.

(*S*)-Methyl 3-((2*R*,3*R*)-5-(*tert*-butyl)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3phenylpropanoate 30

Following the general procedure product **3o** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 66% (25.3 mg) yield as a colorless oil. ¹H NMR (700MHz, CDCl₃) δ

7.37 – 7.32 (m, 2H), 7.31 – 7.27 (m, 2H), 7.21 – 7.15 (m, 2H), 7.11-7.10 (m, 1H), 6.95 (d, J = 8.5 Hz, 1H), 5.79 (d, J = 1.2 Hz, 1H), 4.05-4.04 (m, 1H), 3.56 (s, 3H), 3.53 – 3.47 (m, 1H), 2.86 (dd, J = 15.9, 5.8 Hz, 1H), 2.78 (dd, J = 15.9, 9.0 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (176 MHz, CDCl₃) δ 171.9, 156.2, 146.4, 139.1, 129.0 (2C), 128.2 (2C), 128.0, 126.9, 124.1, 122.8, 110.2, 109.3, 54. 9, 51.9, 44.9, 36.7, 34.6, 31.7 (3C). The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 10.0$ min; $\tau_{minor} = 13.6$ min (94.5:5.5 er). $[\alpha]_D^{20} = -13.4$ (c=1.0, CHCl₃). HRMS calculated for $[C_{22}H_{23}NO_5]^{-\bullet}$: 381.1581; found: 381.1576.

(S)-Methyl 3-((2R,3R)-5-methyl-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3p

Following the general procedure product **3p** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 74% (25.2 mg) yield as an orange oil. ¹H NMR (700MHz, CDCl₃) δ 7.38

- 7.32 (m, 2H), 7.32 - 7.27 (m, 1H), 7.22 - 7.17 (m, 2H), 7.12 - 7.08 (m, 1H), 7.02 - 7.00 (m, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 5.72 (d, *J* = 1.2 Hz, 1H), 4.05 - 3.98 (m, 1H), 3.55 (s, 3H), 3.41-3.37 (m, 1H), 2.93 (dd, *J* = 15.8, 5.7 Hz, 1H), 2.81 (dd, *J* = 15.8, 9.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 171.8, 156.4, 139.2, 132.8, 130.6, 129.1 (2C), 128.2 (2C), 128.0, 126.1, 124.8, 110.7, 109.2, 54.7, 51.9, 45.1, 37.4, 21.1. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} =13.5 min; τ_{minor} =19.0 min (95:5 er). [α]²⁰_D = -22.9 (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₅]^{••}: 339.1112; found: 339.1115.

(*S*)-Methyl 3-((2*R*,3*R*)-7-methyl-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3q

Following the general procedure product **3q** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 64% (22.1 mg) yield as red oil. ¹H NMR (700MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.33 – 7.28 (m, 1H), 7.24 – 7.19 (m, 2H), 7.12-7.10 (m, 1H),

7.03-7.01 (m, 1H), 6.96-6.93 (m, 1H), 5.73 (d, J = 1.2 Hz, 1H), 4.07-4.03 (m, 1H), 3.54 (s, 3H), 3.40-3.35 (m, 1H), 2.91 (dd, J = 15.8, 5.5 Hz, 1H), 2.79 (dd, J = 15.8, 9.1 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 171.8, 156.9, 139.3, 131.4, 129.1 (2C), 128.3 (2C), 128.0, 124.1, 123.1, 123.0, 121.7, 108.9, 54.9, 51.9, 45.2, 37.4, 15.0. The er was determined by HPLC using a Chiralpak IA column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; τ_{major} =27.8 min; τ_{minor} =18.1 min (96:4 er). [α]_D²⁰ = -39.2 (c=1.0, CHCl₃). HRMS calculated for [C₁₉H₁₇NO₅]^{••}: 339.1112; found: 339.1117.

(S)-Methyl 3-((2R,3R)-5-chloro-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3r

Following the general procedure product **3r** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 66% (23.9 mg) yield as an orange oil. ¹H NMR (700 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.32 – 7.29 (m, 1H), 7.28-7.26 (m, 1H), 7.20-7.19 (m, 1H), 7.18 – 7.16 (m, 2H), 6.98-7.96 (m, 1H), 5.78 (d, *J* = 1.3 Hz, 1H), 4.08-4.06 (m, 1H), 3.59 (s, 3H), 3.46-3.41 (m, 1H), 2.90 (dd, J = 15.9, 6.2 Hz, 1H), 2.81 (dd, J = 15.9, 8.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.6, 157.0, 138.5, 130.1, 129.2 (2C), 128.4, 128.2, 128.1 (2C), 126.8, 125.8, 112.2, 108.9, 54.5, 52.1, 44.8, 37.1. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 11.4 \min$; $\tau_{minor} = 14.3 \min$ (93:7 er). $[\alpha]_D^{20} = -31.2$ (c=1.0, CHCl₃). HRMS calculated for [C₁₈H₁₄ClNO₅]^{••}: 359.0566; found: 359.0561.

(S)-Methyl 3-((2R,3R)-7-chloro-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3s

Following the general procedure product **3s** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 83% (30.2 mg) yield as red oil. ¹H NMR (700 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.33 – 7.29 (m, 2H), 7.21 – 7.15 (m, 2H), 7.12-7.10 (m, 1H),

7.02-6.99 (m, 1H), 5.83 (d, J = 1.3 Hz, 1H), 4.25 – 3.98 (m, 1H), 3.57 (s, 3H), 3.46-3.42 (m, 1H), 2.88 (dd, J = 15.8, 5.8 Hz, 1H), 2.80 (dd, J = 15.8, 8.6 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.6, 154.4, 138.6, 130.5, 129.3 (2C), 128.3, 128.1 (2C), 126.7, 124.3, 123.9, 116.9, 108.4, 55.2, 52.0, 45.0, 37.1.The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 8.6$ min; $\tau_{minor} = 9.9$ min (94:6 er). $[\alpha]_D^{20} = -41.1$ (c=1.0, CHCl₃). HRMS calculated for $[C_{18}H_{14}CINO_5]^{-\bullet}$: 359.0566; found: 359.0567.

(R)-Ethyl 3-((2S,3S)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3t

Following the general procedure product **3t** (>20:1 dr in a crude reaction mixture) was isolated after 24 h by flash chromatography in 89% (30.4 mg) yield as a light-yellow oil. Catalyst *ent*-**4d** (5a*S*,10b*R* configuration) was used in the reaction. ¹H NMR (700 MHz, CDCl₃) δ

7.36 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.22-7.20 (m, 1H), 7.20-7.18 (m, 2H), 7.07 – 7.03 (m, 2H), 5.78 (d, J = 1.3 Hz, 1H), 4.08-4.06 (m, 1H), 4.05 – 4.01 (m, 1H), 4.01 – 3.96 (m, 1H), 3.44-3.40 (m, 1H), 2.90 (dd, J = 15.7, 5.8 Hz, 1H), 2.79 (dd, J = 15.7, 9.0 Hz, 1H), 1.10 (t, J = 7.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 171.3, 158.4, 138.9, 130.1, 129.1 (2C), 128.3 (2C), 128.0, 125.7, 124.8, 123.3, 111.2, 108.9, 60.9, 54.7, 45.1, 37.4, 14.2. The er was determined by HPLC using a Chiralpak IC column [hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 14.4$ min; $\tau_{minor} = 12.2$ min (94.5:5.5 er). $[\alpha]_D^{20} = 43.2$ (c=1.0, CHCl₃). HRMS calculated for [C₁₈H₁₇NO₅]^{••}: 339.1112 found: 339.1117. 3. Enantioselective synthesis of (*S*)-methyl 3-((2*R*,3*R*)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3a on 1 mmol scale

To a flame-dried 10 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap was charged triazolium salt **4d** (19.3 mg, 0.05 mmol), 2-nitrobenzofurane **1a** (1equiv., 1 mmol), cinnamaldehyde **2a** (1.5 equiv., 1.5 mmol) and Et₃N (0.4 equiv., 0.4 mmol) in a dry Et₂O (4 mL) and stirred for 15 minutes in 5 °C. After this time, methanol (3 equiv., 3 mmol) was added. The reaction mixture was stirred at 5 °C for 48 h and the residue was purified by column chromatography on silica gel (hexanes/diethyl ether100:0 to 95:5) to furnish the corresponding product **3a** in 84% yield as a light-red oil. NMR and HPLC data were in accordance with previously obtained results.

4. Transformations of 3a

4.1 Synthesis of (S)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropan-1-ol 5

To a stirred solution of **3a** (1.0 equiv., 0.1 mmol, 32 mg) in freshly distilled THF (1 mL) disobutylaluminum hydride solution (1 M in toluene) (2.0 equiv., 0.2 mmol) under inert atmosphere at -78 °C was added. The reaction mixture was stirred for 3 h at -78 °C and subsequently purified by flash chromatography on silica gel (eluent hexanes/ethyl acetate 10:1) to obtain product **5** as single diastereoisomer (>20:1) in 68% yield (20.3 mg).

(*S*)-3-((*2R*,3*R*)-2-Nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropan-1-ol 5: ¹H NMR (700 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.33 – 7.28 (m, 3H), 7.24 – 7.21 (m, 2H), 7.08 – 7.04 (m, 2H), 5.71 (d, *J* = 1.2 Hz, 1H), 3.98 (dd, *J* = 9.2, 1.2 Hz, 1H), 3.60-3.55 (m, 1H), 3.43-3.38 (m, 1H), 3.00-2.97 (m, 1H), 2.27-2.21 (m, 1H), 2.04-1.94 (m, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 158.3, 139.71, 129.9, 129.2 (2C), 128.5 (2C), 127.9, 126.1, 125.5, 123.1, 111.1, 109.3, 60.4, 55.5, 45.9, 35.0. [α]_D²⁰ = +21.1 (c = 1.0, CHCl₃). HRMS calculated for [C₁₇H₁₅NO₄]^{••}: 297.1006 found: 297.1003.

4.2 Synthesis of (4S,5R)-5-(2-hydroxyphenyl)-4-phenylpiperidin-2-one 6

To a stirred solution of **3a** (1.0 equiv., 0.08 mmol, 25.0 mg) in methanol (1 mL), nickel chloride (1.0 equiv., 0.08 mmol) and NaBH₄ (1.0 equiv., 0.08 mmol) in 0 °C were added. The reaction mixture was stirred for 72 h at 0 °C, and H₂O (3 mL) was added. After stirring for 5 minutes saturated NaCl aq. solution (10 mL) was added and resulting mixture was extracted with dichloromethane (3 x 10 mL). Combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to obtain crude product, which was purified by flash chromatography on silica gel (eluent dichloromethane/methanol 100:0 to 95:5) to obtain product **6** as single diastereoisomer (>20:1) in 83% yield (17.0 mg).

(4*S*,5*R*)-5-(2-Hydroxyphenyl)-4-phenylpiperidin-2-one 6: ¹H NMR (700 MHz, CDCl₃) δ 7.21 – 7.15 (m, 3H), 7.1-7.08 (m, 1H), 6.81 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.77-6.74 (m, 2H), 6.69-6.66 (m, 1H), 6.40 (dd, *J* = 7.7, 1.6 Hz, 1H), 6.18 (bs, 1H), 5.76 (bs, 1H), 3.91-3.87 (m, 1H), 3.68-3.65 (m, 1H), 3.58 – 3.54 (m, 1H), 3.42-3.39 (m, 1H), 2.99 (dd, *J* = 18.0, 6.5 Hz, 1H), 2.80 (dd, *J* = 18.0, 3.8 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 172.6, 153.7, 139.9, 128.6 (2C), 128.1 (3C), 127.9, 127.1, 126.2, 120.5, 115.6, 43.0, 40.8, 36.3, 36.2. $[\alpha]_D^{19}$ = +12.1 (c = 1.0, CHCl₃). HRMS (ES+) calculated for $[C_{17}H_{17}NO_2+H]^+$: 268.1338; found: 268.1338.

5. Crystal and X-ray data for (*R*)-methyl 3-(naphthalen-2-yl)-3-((2*S*,3*S*)-2-nitro-2,3dihydrobenzofuran-3-yl) propanoate 3j

The crystal structure of the compound **3j** (99.9:0.1 er) $C_{22}H_{19}NO_5$, was established by singlecrystal X-ray diffraction at 100 K. The compound crystallizes in the non-centrosymmetric orthorhombic space group $P2_12_12_1$ (Z = 4) and the crystal structure consists of one crystallographically independent formula unit in the unit cell (Figure 1).

Figure 1. The molecular structure of the compound **3j** at 100 K, with the atom labeling scheme, showing 50% probability displacement ellipsoids. Hydrogen atoms are drawn with an arbitrary radius.

Single crystal X-ray diffraction data were collected at 100 K by the ω -scan technique using a RIGAKU XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer^[4] with PhotonJet micro-focus X-ray Source Cu-K α (λ = 1.54184 Å). Data collection, cell refinement, data reduction and absorption correction were performed using CrysAlis PRO software.^[4] The crystal structure was solved by using direct methods with the SHELXT 2018/2 program.^[5] Atomic scattering factors were taken from the International Tables for X-ray Crystallography. Positional parameters of non-H-atoms were refined by a full-matrix least-squares method on F² with anisotropic thermal parameters by using the SHELXL 2018/3 program.^[6] All hydrogen atoms were found from the difference Fourier maps and for further calculations they were positioned geometrically in calculated positions (C–H = 0.95–1.00 Å) and constrained to ride

on their parent atoms with isotropic displacement parameters set to 1.2-1.5 times the U_{eq} of the parent atom.

3j: Formula C₂₂H₁₉NO₅, orthorhombic, space group $P2_12_12_1$, Z = 4, unit cell constants a = 8.6297(1), b = 10.2148(1), c = 20.5342(3) Å, V = 1810.10(4) Å³. The integration of the data yielded a total of 49500 reflections with θ angles in the range of 4.31 to 66.54°, of which 3197 were independent (R_{int} = 3.92%), and 3164 were greater than $2\sigma(F^2)$. The final anisotropic full-matrix least-squares refinement on F² with 255 parameters converged at R₁ = 2.94% and wR₂ = 7.54% for all data. The largest peak in the final difference electron density synthesis was 0.264 e Å⁻³ and the largest hole was -0.205 e Å⁻³. The goodness-of-fit was 1.051. The absolute configuration was unambiguously established from anomalous scattering, by calculating the *x* Flack parameter^[7] of -0.06(5) using 1321 quotients.

CCDC 2105519 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures</u>

[4] Rigaku OD. CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2019.

- [5] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- [6] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- [7] S. Parsons, H. D. Flack, and T. Wagner, Acta Cryst. 2013, B69, 249-259.

6. NMR spectra

(S)-Methyl 3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3a ¹H NMR

Ph ,CO₂Me Н ''NO2 Ο İ 46.1 ₩00.1 ¥00.1 ¥00.1 D.98-I H00.8 00H 4.0 f1 (ppm) 0. 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ¹³C NMR 130.14 129.12 128.22 128.06 125.69 124.83 124.83 ---- 54.61 ---- 51.95 ---- 45.10 90 f1 (ppm) 40 10 170 160 150 140 130 120 110 100 80 70 60 50 30 20 (

(S)-Methyl 3-(2-methoxyphenyl)-3-((2*R*,3*R*)-2-nitro-2,3-dihydrobenzofuran-3yl)propanoate 3b

(S)-Methyl 3-(3-methoxyphenyl)-3-((2*R*,3*R*)-2-nitro-2,3-dihydrobenzofuran-3yl)propanoate 3c ¹H NMR

(S)-Methyl 3-(4-methoxyphenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3d

(*R*)-Methyl 3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-(p-tolyl)propanoate 3e ¹H NMR

(*R*)-Methyl 3-(2-chlorophenyl)-3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3f ¹H NMR

(S)-Methyl 3-(3-fluorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate

(S)-Methyl 3-(4-chlorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3h ¹H NMR

(S)-Methyl 3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-(4-nitrophenyl)propanoate 3i ¹H NMR

(*R*)-Methyl 3-(naphthalen-2-yl)-3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3j

(S)-Methyl 3-(furan-2-yl)-3-((2*R*,3*R*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3I ¹H NMR

(S)-Methyl 3-((2R,3R)-5-methoxy-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3m ¹H NMR ₽ĥ ,CO₂Me MeO Η ''NO₂ `O i 1 1.04<u>-</u> 1.92 1.05 1.03 0.03 4 0.87 0.92 Ŧ **I-66**.0 H01.1 1.06-1 1.07-1 4.0 f1 (ppm) 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.1 ¹³C NMR - 77.16 CDCI3 - 171.79 129.09 128.22 127.98 125.81 $< \frac{109.59}{109.29}$ --- 55.79 --- 54.20 --- 51.92 ---- 45.29 90 f1 (ppm) 170 70 50 20 10 (160 150 140 130 120 110 100 80 60 40 30

(S)-Methyl 3-((2R,3R)-7-methoxy-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3n ¹H NMR

(S)-Methyl 3-((2R,3R)-5-(*tert*-butyl)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3phenylpropanoate 3o

¹H NMR

7,735 7,745 7,

(S)-Methyl 3-((2R,3R)-5-chloro-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3r ¹H NMR

(S)-Methyl 3-((2R,3R)-7-chloro-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3s

S37

(*R*)-Ethyl 3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3t ¹H NMR

(*S*)-3-((2*R*,3*R*)-2-Nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropan-1-ol 5 ¹H NMR

7. HPLC data (S)-Methyl 3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3a Racemic sample

Enantiomerically enriched sample

(S)-Methyl 3-(2-methoxyphenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3yl)propanoate 3b

Racemic sample

(S)-Methyl 3-(3-methoxyphenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3yl)propanoate 3c

Racemic sample

(S)-Methyl 3-(4-methoxyphenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3d

Racemic sample

Enantiomerically enriched sample

(*R*)-Methyl 3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-(p-tolyl)propanoate 3e Racemic sample

Enantiomerically enriched sample

(*R*)-Methyl 3-(2-chlorophenyl)-3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3f

Racemic sample

Peak#	Ret. Time	Area%
1	13,624	5,477
2	14,401	94,523
Total		100,000

(S)-Methyl 3-(3-fluorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3g

Racemic sample

(S)-Methyl 3-(4-chlorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3h

Racemic sample

(S)-Methyl 3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-(4-nitrophenyl)propanoate 3i

Racemic sample

(*R*)-Methyl 3-(naphthalen-2-yl)-3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3j

Racemic sample

After recrystallization

(S)-Methyl 3-(2,4-dichlorophenyl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3k

Racemic sample

(S)-Methyl 3-(furan-2-yl)-3-((2R,3R)-2-nitro-2,3-dihydrobenzofuran-3-yl) propanoate 3I

Racemic sample

(S)-Methyl 3-((2R,3R)-5-methoxy-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3m

Racemic sample

(S)-Methyl 3-((2R,3R)-7-methoxy-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3n

(S)-Methyl 3-((2R,3R)-5-(*tert*-butyl)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3phenylpropanoate 3o

(S)-Methyl 3-((2R,3R)-5-methyl-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3p

15

13,599

19,508

Peak# Ret. Time

1

Total

20

Area% 95,087 4,913

100,000

25

10

5

Ó

Racemic sample

S57

30

min

(S)-Methyl 3-((2R,3R)-7-methyl-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3q

(S)-Methyl 3-((2R,3R)-5-chloro-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3r

(S)-Methyl 3-((2R,3R)-7-chloro-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3s

Enantiomerically enriched sample

(*R*)-Ethyl 3-((2*S*,3*S*)-2-nitro-2,3-dihydrobenzofuran-3-yl)-3-phenylpropanoate 3t Racemic sample

Enantiomerically enriched sample

