Supporting Information

The back-deposition of dissolved Mn^{2+} to MnO_2 cathodes for stable cycling in aqueous zinc batteries

Xianpeng Yang, Zhongqiu Jia, Wanlong Wu, Hua-Yu Shi, Zirui Lin, Cuicui Li, Xiao-Xia Liu* and Xiaoqi Sun* Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China *Corresponding authors. E-mail: xxliu@mail.neu.edu.cn, sunxiaoqi@mail.neu.edu.cn

1. Experimental Section

1.1 Synthesis of MnO₂. The α -phase MnO₂ was obtained by mixing 0.3506 g KMnO₄, 1.65 mL HCl (36 ~ 38 %) and 35 mL water in a 50 mL autoclave, followed by heat treatment at 140 °C for 16 h.^[1] The β -phase MnO₂ was obtained by mixing 1:1 volume ratio of 0.1 M MnSO₄ solution and 0.1 M (NH₄)₂S₂O₈ solution in a 50 mL autoclave, followed by heat treatment at 140 °C for 12 h.^[2] After the hydrothermal reactions, the product was filtered, washed with water and ethanol repeatedly, and dried at 60 °C for 24 h.

1.2 Characterizations. The crystal structures were analyzed by X-ray diffraction (XRD) using a PANalytical Empyrean diffractometer with Cu-K α radiation. The morphologies were investigated by HITACHI SU 8010 scanning electron microscope. The high resolution transmission electron microscopy (HRTEM) images were recorded on a JEM-ARM200F transmission electron microscope. The Mn concentrations in electrolytes were measured on an Avio500 inductively coupled plasma optical emission spectrometer. The specific surface areas were obtained by the Brunauer-Emmett-Teller (BET) method, and the isotherms were recorded by the DFT method to calculate the pore size distributions.

1.3 Electrochemical characterization. MnO₂ were mixed with KB or SP carbon, PVDF at the weight ratio of 7:2:1 in 1-methyl-2-pyrrolidinone (NMP). The slurry was drop casted on graphite paper substrate and dried at 90 °C. The BET area of the graphite paper was 19.45 m² g⁻¹. The mass loading of MnO₂ active material was around 1.1 mg cm⁻². Two-electrode cells were assembled with MnO₂ cathode, zinc foil anode, 1 M ZnSO₄ electrolyte and glass fiber separators. The glass fiber separators also enhanced the cycling stability of MnO₂ when comparing to filter paper (Figure S5), which would result from the different Mn²⁺ ion mobilities. EIS was obtained in 3-electrode cells with saturated calomel electrode (SCE) as the reference on Biologic VMP3. Galvanostatic charge-discharge tests were carried out on Land CT-2001A battery cyclers.

2. Supporting Figures

Figure S1 a) N_2 adsorption-desorption isotherms and b) pore size distributions of KB and SP carbons.

Figure S2 I-V plots of KB and SP carbons.

Figure S3 a) XRD pattern of β -MnO₂. Cycling performance of β -MnO₂ cathode with KB conducive agent in aqueous zinc batteries with 1 M ZnSO₄ electrolyte at b) 1 A g⁻¹, c) 5 A g⁻¹, and d) Mn concentrations in the electrolyte at the fully charged and discharged states of the 200th cycle of 1 A g⁻¹ test from ICP.

Figure S4 XRD patterns of the MnO₂/KB cathode at the charged and discharge states.

Figure S5 Cycling performance of MnO_2/KB with different separators in aqueous zinc batteries with 1 M ZnSO₄ electrolyte at 1 A g⁻¹.

3. References

- 1. W. Chen, R. B. Rakhi, H. N. Alshareef, J. Mater. Chem. A, 2013, 1, 3315-3324.
- 2. W. Liu, X. Zhang, Y. Huang, B. Jiang, Z. Chang, C. Xu, F. Kang, J. Energy Chem., 2021, 56, 365-373.