Organocatalytic inverse-electron-demand Diels-Alder

reaction between 5-alkenyl thiazolones and β,γ-unsaturated

carbonyl compounds

Kai-Xuan Yang, Dong-Sheng Ji, Yucheng Gu* and Peng-Fei Xu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

Supporting Information

1 General Information	2
2 Procedure of Experiments	2
2.1 General Procedure for the Synthesis of Substrares.	2
2.2 General Procedure of the oxa-Diels-Alder Reaction	4
2.3 Procedure for the Derivatization.	5
2.4 The Procedure of the Gram-scale Asymmetric Synthesis of 3aa	5
3 Reaction conditions optimization of β , γ -Unsaturated amides	7
4. Characterization Data of Compounds	11
5 X-ray Crystallographic Data	34
5. 1. Preparation of crystal.	35
5. 2 X-ray Crystallographic Data	36
6 The Discussion and Determination of Absolute Configuration of Compound 3a2	39
7 HPLC and NMR Spectrogram	39

1 General Information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a 400 spectrometer (400 MHz ¹H, 100 MHz ¹³C) or a 600 spectrometer (600 MHz ¹H, 150 MHz ¹³C). The spectra were recorded in CDCl₃ as the solvent at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.00 ppm) or TMS (¹H) (δ = 0 ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet , br = broad), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. HRMS were performed on mass instrument (ESI). Enantiomeric excess values were determined by HPLC with Chirapak column on Agilent 1260 series with *i*-PrOH, *n*-hexane, NEt₃ and DCM. Optical rotation was measured on the Perkin Elmer 341 polarimeter with [α]_D values reported in degrees. Concentration (c) is in 10 g/mL.

2 Procedure of Experiments

2.1 General Procedure for the Synthesis of Substrares.

2.1.1 General procedure for the synthesis of β , γ -Unsaturated Carbonyl Compounds

Method A

Method A:¹ A mixture of the corresponding methyl ketone (5.0 mmol, 1 equiv.), alkyne (5.0 mmol, 1 equiv.) and KOtBu (561 mg, 5.0 mmol, 1 equiv.) in DMSO (12 mL) was heated to 100 °C and stirred for 30 min. The reaction mixture was cooled to room temperature and was diluted with H₂O (12 mL), neutralized with a saturated aqueous solution of NH₄Cl, and extracted with Et₂O (12 mL \times 4). The organic extract was washed with H₂O (6 mL \times 3) and dried with MgSO₄. After filtration

the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 97/3).

Method B: ²A mixture of the corresponding aldehyde (5.0 mmol, 1 equiv.), In powder (1.15 g, 10 mmol, 2 equiv.), $InCl_3$ (553 mg, 2.5 mmol, 0.5 equiv.) and the corresponding vinyl ketone (15 mmol, 3 equiv.) in a mixture of THF and H₂O (1: 1, 30 mL) was stirred at room temperature for 8 h. After the addition of 1 M HCl (15 mL), the reaction mixture was stirred for 30 min and extracted with ethyl acetate (50 mL × 4). The combined organic phases were washed with brine (100 mL) and dried with MgSO₄. After filtration, the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 97/3).

2.1.2 General procedure for the synthesis of 5-alkenyl thiazolone 1

³The solution of NaHCO₃ (20 mmol in 20 mL water) was added to a CH₂Cl₂ (40 mL) solution of thiobenzamide S1 (10 mmol). After cooling to 0 °C with ice-water bath, chloroacetyl chloride (S2 10 mmol) was added drop-wise to the stirred solution. Then reaction mixture was then stirred overnight at room temperature. The organic phase of the reaction mixture was separated, aqueous phase was extracted with CH₂Cl₂ (50 mL x 2). The combined organic phase was washed with H₂O (40 mL x 2), dried with anhydrous Na₂SO₄, and evaporated to dryness. The solid residue was washed with EtOH and filtered to give S3 (yiled 70%). Compound S3 (1 mmol), benzaldehyde (1.1 mmol), and Et₃N (2 mmol) were dissolved in 20 mL of MeOH, and heated to reflux at 65°C for 3h, during which some precipitate appear gradually. After cooling to room temperature, the precipitate was filtered, and washed with another 20 mL of cold MeOH. The 5-alkenyl thiazolone 1 was obtained as a solid.

References

¹B. A. Trofimov, E. Y. Schmidt, N. V. Zorina, E. V. Ivanova, I. A. Ushakov, *J. Org. Chem.* 2012, 77, 6880–6886.
 ² Chen. Y, Wang. Y, Huang. H. *Org. Lett.* 2020, *22*, 7135–7140. S. Kang, T. S. Jang, G. Keum, S. B. Kang, S. Y. Han, Y. Kim, *Org. Lett.* 2000, *2*, 3615–3617.

³ Lin. Li, Yang. Yuhong, Wang. Mei, Lai. Luhao, Guoa. Yarong, Wang. Rui. Chem. Commun., 2015, 51, 8134--8137

2.2 General Procedure of the oxa-Diels-Alder Reaction.

To a test tube (flame dried) with a stirrer were successively added 5-alkenyl thiazolone **1** (0.1 mmol, 26.5 mg), β , γ -unsaturated carbonyl compounds **2** (0.15 mmol, 33.3 mg), **catalyst a.**(0.01 mmol, 6.3 mg) and dried toluene (precooled to 0 °C) (0.5 mL) at 0 °C. When TLC analysis showed that **1** was completely consumed, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography (Petroleumether/EtOAc/DCM=10:1:2) to give the corresponding compound **3a**. Chiral **3b-4l** were synthesized using the same method.

To a test tube (flame dried) with a stirrer were successively added 5-alkenyl thiazolone **1** (0.1 mmol, 26.5 mg), β , γ -unsaturated carbonyl compounds (0.15 mmol, 36.0 mg), **catalyst a.** (0.0025 mmol, 1.5 mg) and dried mesitylene (0.5 mL) at room temperature. When TLC analysis showed that **1** was completely consumed, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography (Petroleumether/EtOAc=10:1 to 5:1) to give a pair of corresponding enantiomers, **5a** was separated by cyclic preparative HPLC. Chiral **5b-5j** were synthesized using the same method.

2.3 Procedure for the Derivatization.

2.3.1 Synthesis of ester 6c

Compound **5c** (52.0 mg, 0.1 mmol) and DBU (3.5 mg, 0.024 mmol) in 1 mL MeOH were stirred for 3 hours at room temperature. After removal of the solvent under reduced press ure, the reaction mixture was purified by silica gel column chromatography (hexane/EtOAc = 8/1) to give product **6c** (96% yield, 43.7 mg, 98% ee).

2.3.2 Synthesis of alcohol 7a

Compound **3a** (195.0 mg, 0.4 mmol, 1.0 equiv.) in THF (3.08 mL) were cooled to 0 °C, then NaBH₄ (22.6 mg, 0.6 mmol, 1.5 equiv.) was added. The reaction mixture was warstirred for additional 0.5 hours. After that, the reaction was quenched by 1 N HCl (0.5 mL and extracted with CH₂Cl₂ (15 mL×3). The combined organic layers were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude was purified by silica gel column chromatography (hexane/EtOAc = 1/1) to give product **7a** (67% yield, 131.2 mg, 99% ee).

2.4 The Procedure of the Gram-scale Asymmetric Synthesis of 3a

In a 25 mL round-bottomed flame dried flask, **1a** (5 mmol, 1.325g), β , γ -unsaturated ketones **2a** (7.5 mmol, 1.665g) and **cat. A** (0.1 mmol, 0.12g) were successively added, 25 mL toluene (precooled to 0 °C) was added by syringe, and the mixture was stirred for 10 hours at

0 °C. Then the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography (Petroleum ether/EtOAc/DCM=10:1:2) to give the corresponding compound **3a** (2.41g, 99% yield, 6:1 dr, 99% ee).

3 Reaction conditions optimization of β , γ -unsaturated amides

3.1 Screening data of β , γ -unsaturated ketone

Table S1. Catalyst screening of β , γ -unsaturated ketone

Entry ^a	Catalyst	Dr (%) ^b	Yield (%) ^c	ee (%) ^d	Time (h)		
1	а	6:1	95	89	6		
2	b	4:1	80	96	6		
3	с	6:1	77	94	8		
4	d	5:1	62	89	12		
5	e	5:1	62	-89	12		
6	f	5:1	58	90	8		
7	g	4:1	53	78	8		
8	h	2:1	62	78	12		
9	i	3:1	32	64	12		
10	i	3:1	93	-90	8		
11	k	3:1	73	64	8		
Conditions: "Reactions performed with 0.1 mmol 1a , 0.1 mmol 2a , catalyst (10% mmol) in solvent (1 mL) at rt. ^b Determined by crude ¹ H NMR analysis. 'Isolated yield given. "Determined by chiral-phase HPLC analysis.							

Table S2. Solvent screening of β , γ -unsaturated ketone

Entry ^a	Solvent	Dr (%) ^b	Yield (%) ^c	ee (%) ^d	Time (h)		
12	DCE	4:1	93	90	5		
13	ACN	5:1	96	89	8		
14	CHCl ₃	3:1	87	91	12		
15	THF	4:1	93	90	8		
16	1,4-dioxane	3:1	85	94	6		
17	Xylene	4:1	98	90	8		
18	Mesitylene	3:1	83	89	8		
Conditions	Conditions: "Reactions performed with 0.1 mmol 1a, 0.1 mmol 2a, catalyst (10% mmol) in solvent (1						
mL) at. ^b D	etermined by crude	¹ H NMR analysis.	c Isolated yield give	en. dDetermined	by chiral-phase		
HPLC anal	ysis.						

Entry ^a	1a (mmol)	2a (mmol)	Solvent	Cat (mol%)	Dr(%) ^b	Yield (%) ^c	ee (%) ^d	Time (h)
19	0.1	0.1	1	5	4:1	89	87	10
20	0.1	0.1	1	15	5:1	94	80	4
21	0.1	0.125	1	10	6:1	93	90	6
22	0.1	0.15	1	10	6:1	98	90	6
23	0.125	0.1	1	10	5:1	96	90	6
24	0.15	0.1	1	10	4:1	98	92	6
25	0.1	0.15	0.5	10	6:1	97	92	5
26	0.1	0.15	2	10	5:1	94	87	7
27 ^e	0.1	0.15	2	10	5:1	95	83	8
28 ^f	0.1	0.15	0.5	10	6:1	98	99	24
29 ^h	0.1	0.15	0.5	10	6:1	94	99	36
Conditions Determine	: "Reactions perfo ed by chiral-phase	ormed with catalyst HPLC analysis. ^{e4}	t (2.5% mmol) in A MS molecula	n solvent at rt. ^b Deter r sieve was added. ^f R	mined by crude eactions perform	¹ H NMR and med at 0 °C.	alysis. ^c Isolated ^h Reaction perf	d yield given. ormed at -10 °

Table S3. Optimization of other reaction conditions for β , γ -unsaturated ketone

Table S4. Catalyst screening of β , γ -unsaturated amides

Conditions: "Reactions performed with 0.1 mmol **1a**, 0.1 mmol **2a**, catalyst (10% mmol) in solvent (1 mL) at rt. ^bDetermined by crude ¹H NMR analysis. ^c Isolated yield given. ^dDetermined by chiral-phase HPLC analysis.

Table S5. Solvent screening of β , γ -unsaturated amides

18

19

20

21

22

23

	Ph S Ph +	Ph, N ⁻¹	rt , solvent		
Entry ^a	Solvent	Dr (%) ^b	Yield (%) ^c	Ee (%) ^d	Time (h)
8	DCM	4:1	94	>99	12
9	DCE	4:1	93	>99	13
10	ACN	4:1	95	>99	8
11	CHCl ₃	3:1	87	>99	12
12	THF	5:1	85	>99	12
13	1,4-dioxane	7:1	94	>99	4
14	Diethyl ether	2:1	45	>99	24
15	CH ₃ OH	1:1	35	-	24
16	EA	2:1	89	-	12
17	1,3-Dioxolane	5:1	95	>99	3

95

93

96

87

83

92

>99

>99

>99

>99

>99

>99

3 10

3 3

5

5

5

Conditions: "Reactions performed with 0.1 mmol 1a, 0.1 mmol 2a, catalyst (10% mmol) in solvent (1 mL) at rt. ^bDetermined by crude ¹H NMR analysis. ^cIsolated yield given. ^dDetermined by chiral-phase HPLC analysis

4:1

6:1

7:1

6:1

7:1

5:1

2-CH₃-THF

Xylene

Mesitylene

PhCl

PhBr

PhCF₃

Table S6. Catalyst dosage screening of β , γ -unsaturated amides

Entry ^a	Cat	Dr (%) ^b	Yield (%) ^c	Ee (%) ^d	Time (h)
24	20 mol%	7:1	99	>99	3
25	15 mol%	8:1	96	>99	3
26	10 mol%	7:1	97	>99	3
27	5 mol%	8:1	98	>99	9
28	2.5 mol%	8:1	92	>99	24
29	1mol%	7:1	76	>99	72

Conditions: *a*Reactions performed with 0.1 mmol **1a**, 0.1 mmol **2a**, catalyst (10% mmol) in solvent (1 mL) at rt. ^{*b*}Determined by crude ¹H NMR analysis. ^cIsolated yield given. ^{*d*}Determined by chiral-phase HPLC analysis.

Table S7. Screening of substrate ratio and solvent amount of β , γ -unsaturated amides

Entry ^a	1a	2a	$\mathbf{D}_{\mathbf{n}}(0/\mathbf{b})$	Solvent		Ee	T:	
	(mmol)	(mmol)	Dr (%) ⁶	(ml)	r leia (%) ^c	(%) ^d	Time (n)	
30	0.1	0.125	8:1	1	99	>99	18	
31	0.1	0.15	8:1	1	96	>99	14	
32	0.1	0.2	8:1	1	97	>99	9	
33	0.125	0.1	7:1	1	98	>99	16	
34	0.15	0.1	7:1	1	92	>99	14	
35	0.1	0.15	7:1	0.25	91	>99	14	
36	0.1	0.15	8:1	0.5	96	>99	14	
37	0.1	0.15	7:1	2	95	>99	14	
38 ^e	0.1	0.15	7:1	0.5	94	>99	14	
39 ^f	0.1	0.15	7:1	0.5	96	>99	10	
Conditions: "Reactions performed with catalyst (2.5% mmol) in solvent at rt. ^b Determined by crude ¹ H NMR analysis. ^c Isolated yield given. ^d Determined by chiral-phase HPLC analysis. ^e A MS molecular sieve was added. ^f Reactions performed at 0 °C.								

4. Characterization Data of Compounds

1-phenyl-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl) ethan-1-one~(3a)

m. p.: 148-151 °C; [*α*]²²**p** = -14.0 (*c*=1.0, CH₂Cl₂, 99% ee);

 $Ph \quad ^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.92 - 7.78 (m, 4H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 (ddd, J = 11.2, 8.0, 6.0 Hz, 5H), 7.22 - 7.12 (m, 6H), 7.08 - 6.84 (m, 4H), 5.37 (ddd, J = 10.8, 8.0, 2.8 Hz, 1H), 4.36 (d, J = 10.8 Hz, 1H), 3.45 (dd, J = 16.8, 8.0 Hz, 1H), 3.20 (t, J = 10.8 Hz, 1H), 2.87 (dd, J = 16.8, 2.8 Hz, 1H);$

White solid (PE/EtOAc/DCM = 10:1:1, 98% isolated yield, 6:1 dr, 47.8 mg);

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.9, 159.8, 142.1, 138.7, 137.0, 133.4, 133.0, 129.9, 128.8, 128.7, 128.4, 128.2, 128.1, 128.0, 127.4, 127.2, 125.6, 109.4, 77.5, 53.7, 47.7, 41.7.

HPLC (IH, *i*-PrOH/ *n*-hexane = 93/7), flow rate = 1.0 mL/min), $t_R = 26.50$ min (major);

 $\label{eq:HRMS} \textbf{(ESI): } [M+H]^+ \ calcdfor \ [C_{32}H_{26}NO_2S]^+ : \ 488.1679, \ found: \ 488.1679.$

2-((5R,6R,7R)-7-(4-chlorophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1one (3b)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yield, 7:1 dr, 48.6 mg);

 $[\alpha]^{22}$ D = -8.0 (*c*=1.0, CH₂Cl₂, 99% ee);

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (m, J = 11.6, 6.8, 1.2 Hz, 4H), 7.55 – 7.47 (m, 1H), 7.38 (m, J = 6.4, 5.2 Hz, 5H), 7.28 – 7.08 (m, 5H), 7.00 (d, J = 6.8 Hz, 2H), 6.91 – 6.81 (m, 2H), 5.36 (ddd, J = 10.8, 8.8, 2.4 Hz, 1H), 4.35 (d, J = 10.8 Hz, 1H), 3.44 (dd, J = 17.2, 8.8 Hz, 1H), 3.15 (t, J = 10.8 Hz, 1H), 2.87 (dd, J = 17.2, 2.4 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.2, 157.0, 140.7, 138.4, 137.0, 133.4, 133.1, 133.0, 130.0, 129.3, 129.0, 128.8, 128.5, 128.4, 128.1, 127.6, 125.7, 108.7, 77.5, 53.8, 47.2, 41.7;

HPLC (IF, *i*-PrOH/ *n*-hexane = 85/15), flow rate = 1.0 mL/min), t_R = 46.509 min (major);

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅ClNO₂S]⁺: 522.1289, found: 522.1288.

2-((5R,6R,7R)-7-(4-bromophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3c)

·Bu

√НН

Ē

0

Brown solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yield, 7:1 dr, 52.6 mg);

m. p.: 68-70 °C;

 $[\alpha]^{22}$ D = -16.0 (c =1.0, CH₂Cl₂, 99% ee);

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.79 (m, 4H), 7.51 (t, J = 7.2 Hz, 1H), 7.46 – 7.33 (m, 5H), 7.28 (d, J = 8.0 Hz, 2H), 7.25 – 7.13 (m, 3H), 7.00 (d, J = 6.8 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 5.36 (ddd, J = 10.5, 8.4, 2.4 Hz, 1H), 4.34 (d, J = 10.5 Hz, 1H), 3.44 (dd, J = 17.2,

8.4 Hz, 1H), 3.14 (t, *J* = 10.5 Hz, 1H), 2.87 (dd, *J* = 17.2, 2.4 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 196.2, 164.2, 159.9, 144.4, 138.1, 136.8, 133.3, 133.0, 130. 8, 130.4, 130.0, 129.8, 128.9, 128.7, 128.4, 128.0, 127.6, 126.7, 125.6, 122.3, 108.3, 77.4, 53.5, 47.3, 41.5;

HPLC (IH, *i*-PrOH/ *n*-hexane = 93/7), flow rate = 1.0 mL/min), t_R = 22.8 min (major);

 $\label{eq:HRMS} \textbf{(ESI): } [M+H]^+ calcdfor \ [C_{32}H_{25}BrNO_2S]^+: 566.0784, 568.0763, found: 566.0786, 568.0766.$

2-((5R,6R,7R)-7-(4-(tert-butyl)phenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3d)

White solid (PE/EtOAc/DCM = 10:1:1, 89% isolated yield, 11:1 dr, 48.5 mg); m. p.: 74-78 °C;

 $[\alpha]^{22}$ _D = -28.0 (*c* =1.0, CH₂Cl₂, 99% ee);

¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.78 (m, 4H), 7.55 – 7.45 (m, 1H), 7.46 – 7.31 (m, 5H), 7.24 – 7.10 (m, 5H), 7.02 (d, J = 6.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 5.35 (ddd, J = 10.4, 8.0, 2.8 Hz, 1H), 4.35 (d, J = 10.4 Hz, 1H), 3.44 (dd, J = 17.2, 8.0 Hz, 1H), 3.19 (t, J = 10.4 Hz, 1H), 2.85 (dd, J = 17.2, 2.8 Hz, 1H), 1.25 (s, 9H);

¹³C NMR (101 MHz, CDCl₃) δ 196.5, 163.8, 159.7, 139.0, 139.0, 137.0, 133. 6, 133.0, 129.8, 128.8, 128.7, 128.5, 128.4, 128.1, 127.5, 127.4, 125.7, 125.1, 109.8, 77.6, 53.6, 47.1, 41.8, 34.4, 31.3;

HPLC (IH, *i*-PrOH/ *n*-hexane/ NEt₃/ DCM = 80/10/5/5), flow rate = 1.0 mL/min), t_R = 7.965 min (major); HRMS (ESI): [M+H]⁺ calcdfor [C₃₆H₃₄NO₂S]⁺: 544.2305, found: 544.2305.

2-((5R,6R,7R)-7-(4-nitrophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d] thiazol-5-yl)-1-phenylethan-1-one (3e)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 97% isolated yield, 6:1 dr, 48.6 mg);

m. p.: 195-198 °C.

 $[\alpha]^{22}$ D = -13.0 (*c* =1.0, CH₂Cl₂, 92% ee);

¹H NMR (400 MHz, CDCl₃) δ 8.02 (m, 2H), 7.89 – 7.75 (m, 4H), 7.52 (t, J = 7.4 Hz, 1H), 7.46 – 7.30 (m, 5H), 7.26 – 7.14 (m, 3H), 7.04 (m, 4H), 5.39 (ddd, J = 10.8, 8.0, 2.8 Hz, 1H), 4.50 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2, 8.4 Hz, 1H), 3.20 (t, J = 10.4 Hz, 1H),

2.90 (dd, J = 17.2, 2.8 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 196.1, 164.6, 160.2, 149.7, 147.1, 137.7, 136.8, 133.2, 133.1, 130.3, 129.2, 128.9, 128.8, 128.4, 128.2, 128.0, 127.9, 125.7, 123.6, 107.2, 77.4, 53.6, 47.6, 41.4.

HPLC (IC, *i*-PrOH/*n*-hexane = 83/17), flow rate = 1.0 mL/min), $t_R = 8.444 \text{ min (major)} t_R = 12.404 \text{ min (major)}$; HRMS (ESI): $[M+H]^+$ calcdfor $[C_{33}H_{25}N_2O_4S]^+$: 502.1835, found: 502.1833.

4-((5R,6R,7R)-5-(2-oxo-2-phenylethyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-7-yl)benzonitrile (3f)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 98% isolated yield, 9:1 dr, 50.3 mg); **m. p.:** 204-206 °C.

 $[\alpha]^{22}$ _D = -20.0 (*c* =1.0, CH₂Cl₂, 98% ee);

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.79 (m, 4H), 7.52 (m, 1H), 7.48 – 7.33 (m, 7H), 7.25 – 7.13 (m, 3H), 7.01 (m, 4H), 5.37 (ddd, J = 10.8, 8.0, 2.7 Hz, 1H), 4.48 – 4.41 (m, 1H), 3.43 (dd, J = 17.2, 8.0 Hz, 1H), 3.17 (t, J = 10.8 Hz, 1H), 2.88 (dd, J = 17.2, 2.8 Hz,

1H);

Ő

¹³C NMR (101 MHz, CDCl₃) δ 196.1, 164.7, 160.3, 149.7, 147.2, 137.7, 136.8, 133.2, 133.2, 130.3, 129.2, 129.0, 128.9, 128.5, 128.1, 128.0, 125.8, 123.6, 107.2, 77.4, 53.8, 47.7, 41.4, 29.7.

HPLC ((IC, *i*-PrOH/*n*-hexane = 83/17), flow rate = 1.0 mL/min), $t_R = 35,414 \text{ min (major)} t_R = 100.343 \text{ min (major)}$ HRMS (ESI): $[M+H]^+$ calcdfor $[C_{33}H_{25}N_2O_2S]^+$: 513.1631, found: 513.1632.

$2-((5R,6R,7R)-2,6-diphenyl-7-(p-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one\ (3g)$

Yellow solid (PE/EtOAc/DCM = 10:1:1, 94% isolated yield, 11:1 dr, 45.6 mg); m. p.: 148-170 °C.

 $[\alpha]^{22}$ _D = -12.0 (*c* =1.0, CH₂Cl₂, 99% ee);

¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.71 (m, 4H), 7.63 - 7.28 (m, 7H), 7.18 (m, J = 14.4, 6.8 Hz, 3H), 6.99 (dd, J = 22.0, 7.6 Hz, 4H), 6.82 (d, J = 8.0 Hz, 2H), 5.36 (ddd, J = 10.8, 8.0, 2.8 Hz, 1H), 4.34 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2, 8.8 Hz, 1H), 3.18 (t, J = 10.4 Hz, 1H)

1H), 2.85 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.26 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 196.5, 163.9, 159.7, 139.1, 138.9, 137.0, 136.8, 133.5, 133.0, 129.9, 129.0, 128.8, 128.7, 128.4, 128.1, 127.9, 127.4, 125.7, 109.8, 77.6, 53.7, 47.2, 41.8, 21.1;

HPLC (OD, *i*-PrOH/*n*-hexane = 80/20), flow rate = 1.0 mL/min), t_R = 12.786 min (major);

HRMS (ESI): [M+H]⁺ calcdfor [C₃₃H₂₈NO₂S]⁺: 502.1835, found: 502.1833.

2-((5R,6R,7R)-2,6-diphenyl-7-(m-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3h)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 91% isolated yield, 6:1 dr, 45.8 mg);

 $[\alpha]^{22}$ _D = -15.0 (*c* =1.0, CH₂Cl₂, 99% ee);

m. p.: 104-106 °C;

¹**H NMR (400 MHz, CDCl**₃) 1H NMR (400 MHz, CDCl3) δ 7.90 – 7.79 (m, 4H), 7.49 (m, 1H), 7.41 – 7.30 (m, 5H), 7.23 – 7.11 (m, 3H), 7.08 – 6.93 (m, 4H), 6.77 – 6.67 (m, 2H), 5.36 (ddd, J = 10.8, 8.0, 2.8 Hz, 1H), 4.32 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2,

8.4 Hz, 1H), 3.21 (t, J = 10.4 Hz, 1H), 2.87 (dd, J = 16.8, 2.8 Hz 1H), 2.19 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.5, 163.9, 159.7, 142.1, 138.9, 137.9, 137.0, 133.5, 133.1, 129. 9, 128.8, 128.7, 128.7, 128.4, 128.1, 128.1, 128.0, 127.4, 125. 7, 125.2, 109.7, 77.6, 53.6, 47.6, 41.8, 21.4;

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), t_R = 65.157 min (major);

HRMS (ESI): [M+H]⁺ calcdfor [C₃₃H₂₈NO₂S]⁺: 502.1835, found: 502.1833.

2 - ((5R, 6R, 7R) - 7 - (3 - chlorophenyl) - 2, 6 - diphenyl - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - phenylethan - phenylethan - phenylethan - phenylethan - phenylethan

one (3i)

White solid (PE/EtOAc/DCM = 10:1:1, 94% isolated yeild, 8:1 dr, 47.8 mg); **m. p.:** 84-88 °C.

 $[\alpha]^{22}$ _D = -14.0 (*c* =1.0, CH₂Cl₂, 99% ee);

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.75 (m, 4H), 7.55 – 7.46 (m, 1H), 7.46 – 7.31 (m, 5H), 7.26 – 6.88 (m, 8H), 6.78 (d, *J* = 7.6 Hz, 1H), 5.36 (ddd, *J* = 10.8, 8.0, 2.8 Hz, 1H), 4.34 (d, *J* = 10.0 Hz, 1H), 3.45 (dd, *J* = 17.2, 8.4 Hz, 1H), 3.18 (t, *J* = 10.4 Hz,

1H), 2.87 (dd, *J* = 17.2, 2.8 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.3, 159.9, 144.2, 138. 2, 136.9, 134.1, 133.3, 133.1, 130.1, 129.5, 129.0, 128.8, 128.5, 128.1, 128.0, 127.1, 127.5, 126.3, 125.7, 108.4, 77.5, 53.6, 47.4, 41.6;

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), $t_R = 21.7$ min (major), $t_R = 35.566$ min (major);

HRMS (ESI): [M+H]⁺ calcdfor [C₃₂H₂₅ClNO₂S]⁺: 522.1289, found: 522.1288.

2-((5R,6R,7R)-7-(3-bromophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3j)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 7:1 dr, 54.4 mg); **m. p.:** 94-96 °C.

 $[\alpha]^{22}$ _D = -7.0 (*c* =1.0, CH₂Cl₂, 99% ee);

¹**H NMR (400 MHz, CDCl**₃) δ 7.84 (m, 4H), 7.50 (t, J = 7.4 Hz, 1H), 7.38 (m, 4H), 7.33 – 7.14 (m, 4H), 7.12 – 6.94 (m, 4H), 6.82 (d, J = 7.7 Hz, 1H), 5.36 (ddd, J = 10.8,

8.0, 2.8 Hz, 1H), 4.33 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2, 8.0 Hz, 1H), 3.17 (t, J =

10.4 Hz, 1H), 2.87 (dd, J = 17.2, 2.8 Hz, 1H).

ЧΗ

O¹

...Ph

В

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.3, 159.9, 144.2, 138.2, 136.9, 134.1, 133.3, 133.1, 130.1, 129.5, 129.0, 128.8, 128.4, 128.1, 128.0, 127.7, 127.5, 126.3, 125.7, 108.4, 77.5, 53.6, 47.4, 41.6;

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), t_R = 45.797 min (major);

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅BrNO₂S] +: 566.0784, 568.0763, found: 566.0782, 568.0764.

2-((5R,6R,7R)-7-(2-fluorophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3k)

White solid (PE/EtOAc/DCM = 10:1:1, 89% isolated yeild, 4:1 dr, 45.1 mg); **m. p.:** 163-166 °C.

 $[\alpha]^{22}$ _D = -8.0 (*c* =1.0, CH₂Cl₂, 99% ee);

¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, J = 6.5, 3.5, 2.1 Hz, 4H), 7.55 – 7.48 (m, 1H), 7.45 – 7.31 (m, 5H), 7.24 – 6.97 (m, 8H), 6.86 (dd, J = 14.0, 4.8 Hz, 1H), 5.40 (ddd, J = 10.8, 8.4, 2.8 Hz, 1H), 4.78 (d, J = 10.4 Hz, 1H), 3.46 (dd, J = 17.2, 8.4 Hz, 1H), 3.33 (t,

J = 10.4 Hz, 1H), 2.88 (dd, *J* = 17.2, 2.8 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.8, 161.8, 159.7, 159.3, 138.3, 137.0, 133.05, 133.1, 129.5, 129.0, 128.90, 128.8 (*J* = 230.0 Hz), 128.80, 128.8, 128.4, 128. 3, 128.1, 127.6, 125.7, 124.3(*J* = 4 Hz), 115.5 (*J* = 22 Hz), 108.5, 77.7, 52.1, 41.7;

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), $t_R = 10.956$ min (major), $t_R = 13.332$ min (major);

 100
 304.2610
 506.1584
 NL
 1.9427

 140.0122
 264.0277
 318.3003
 303.2661
 437.1594
 409.1627
 565.2319
 620.1677
 662.5693
 711.5757
 779.4253
 809.4100
 858.4099
 942.3453
 NL

 000
 140.0122
 264.0277
 141.5.2371
 443.1670
 565.2319
 620.1677
 662.5693
 711.5757
 779.4253
 809.4100
 858.4099
 942.3453
 NL

 000
 100
 1.50
 2.02.177
 4.53.371
 443.1670
 506
 1585
 NL
 655.2319
 620.1677
 662.5693
 711.5757
 779.4253
 809.4100
 858.4099
 942.3453
 NL

 000
 1505
 506
 1585
 506
 506
 500
 500
 100
 100.0
 150.0
 941.00
 858.4099
 942.3453
 NL

 000
 150.0
 2.00
 2.50
 300
 350
 400
 450
 500
 560
 700
 750
 600
 950
 1000</t

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅FNO₂S] +: 506.1585, found: 506.1584.

2-((5R,6R,7R)-7-(2-bromophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3l)

White solid (PE/EtOAc/DCM = 10:1:1, 95% isolated yeild, 6:1 dr, 53.9 mg). **m. p.:** 86-87 °C.

 $[\alpha]^{22}$ _D = -22.0 (*c* = 1.0, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.79 (m, 5H), 7.50 (t, J = 7.4 Hz, 1H), 7.36 (M, 7H), 7.29 – 7.23 (m, 2H), 7.17 (t, J = 7.6 Hz, 3H), 7.08 (d, J = 6.8 Hz, 2H), 7.04 – 6.98 (m, 1H), 5.44 (ddd, J = 10.4, 8.0, 2.8 Hz, 1H), 5.14 (d, J = 10.4 Hz, 1H), 3.49 – 3.30 (m,

2H), 2.92 (dd, J = 17.2, 2.8 Hz, 1H).

ЧΗ

റ്

Pł

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.1, 159.4, 141.4, 137.6, 137.0, 133.4, 133.1, 132.7, 129.9, 129.2, 128.7, 128.7, 128.4, 128.1, 127.9, 127.6, 125.6, 124.7, 109.1, 77.7, 52.7, 45.0, 41.6.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), t_R = 27.693 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅BrNO₂S] +: 566.0784, 568.0763, found: 566.0782, 568.0763.

2-((5R,6R,7R)-2,6-diphenyl-7-(o-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3m)

Ph-N-O-E-H-O-PH White solid (PE/EtOAc/DCM = 10:1:1, 92% isolated yeild, 5:1 dr, 46.1 mg). **m. p.:** 146-149 °C.

 $[\alpha]^{22}$ _D = -36.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.79 (m, 4H), 7.50 (dd, J = 10.4, 4.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.35 – 7.30 (m, 3H), 7.22 – 7.10 (m, 5H), 7.09 – 6.96 (m, 3H), 6.92 (d, J = 7.6 Hz, 1H), 5.56 – 5.41 (m, 1H), 4.67 (d, J = 10.4 Hz, 1H), 3.49 (dd, J =

17.2, 8.0 Hz, 1H), 3.27 (t, *J* = 10.4 Hz, 1H), 2.89 (dd, *J* = 17.2, 2.4 Hz, 1H), 1.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.5, 163.7, 159.6, 140.7, 138.8, 136.9, 136.0, 133.4, 133.0, 129.9, 129.8, 128.7, 128.7, 128.4, 128.1, 127.6, 127.4, 126.8, 126.4, 125.5, 110.3, 77.3, 53.4, 42.2, 41.7, 19.1.

HPLC (IH, *i*-PrOH/ *n*-hexane = 95/5), flow rate = 1.0 mL/min), t_R = 32.404 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₃H₂₈NO₂S] +: 502.1835, found: 502.1835.

2-((5R,6R,7R)-7-(2-methoxyphenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3n)

White solid (PE/EtOAc/DCM = 10:1:1, 97% isolated yeild, 8:1 dr, 50.2 mg). **m. p.:** 68-70 °C.

 $[\alpha]^{22}$ _D = -18.0 (*c* =1.0, CH₂Cl₂, 99% ee).

1H NMR (400 MHz, CDCI3) δ 7.55 – 7.48 (m, 1H), 7.44 – 7.31 (m, 5H), 7.20 – 7.11 (m, 4H), 7.06 (m, 2H), 6.85 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 5.39 (ddd, J = 10.8,

8.4, 2.7 Hz, 1H), 3.52 - 3.38 (m, 4H), 3.32 (s, 1H), 2.87 (dd, J = 17.2, 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.6, 157.1, 139.1, 137.1, 133.7, 130.0, 129.7, 128.7, 128.6, 128.4, 128.3, 128.1, 127.2, 125.6, 120.7, 110.8, 109.9, 77.7, 55.2, 42.0.

HPLC (AD, *i*-PrOH/ *n*-hexane = 80/20), flow rate = 1.0 mL/min), t_R = 38.57 min (major).

HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₃S] ⁺: 518.1784, found: 518.1785.

2-((5R,6R,7R)-7-(furan-2-yl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (30)

White solid (PE/EtOAc/DCM = 10:1:1, 90% isolated yeild, 15:1 dr, 43.2 mg). **m. p.:** 97-101 °C.

 $[\alpha]^{22}D = -3.0 \ (c = 1.0, CH_2Cl_2, 98\% ee).$

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.78 (m, 4H), 7.52 (m, 1H), 7.44 – 7.33 (m, 5H), 7.28 – 7.09 (m, 6H), 6.19 (dd, J = 3.2, 1.9 Hz, 1H), 5.97 (d, J = 3.2 Hz, 1H),

5.34 (ddd, J = 10.8, 8.0, 2.8 Hz, 1H), 4.56 (d, J = 10.4 Hz, 1H), 3.53 - 3.43 (m, 2H), 2.87 (dd, J = 16.8, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.0, 159.1, 153.7, 141.9, 138.9, 136.9, 133.5, 133.1, 129.9, 129.0, 128.7, 128.4, 128.2, 128.1, 127.6, 125.7, 110.1, 107.2, 106.5, 77.4, 49.6, 41.7, 41.0.

HPLC (IH, *i*-PrOH/*n*-hexane = 93/7), flow rate = 1.0 mL/min), $t_R = 27.002 \text{ min}$ (major), $t_R = 32.938 \text{ min}$ (major); HRMS (ESI): [M+H] ⁺ calcdfor [C₃₀H₂₄NO₃S] ⁺: 478.1471, found: 478.1471.

2-((5R,6R,7R)-2-(4-chlorophenyl)-6,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1one (3p)

White solid (PE/EtOAc/DCM = 10:1:1, 89% isolated yeild, 6:1 dr, 46.6 mg). **m. p.:** 106-108 °C.

 $[\alpha]^{22}$ _D = -10.0 (*c* =0.1, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 4H), 7.52 (m, J = 10.4, 4.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.37 – 7.29 (m, 2H), 7.23 – 7.13 (m, 6H), 7.08 – 6.88

(m, 4H), 5.37 (ddd, J = 10.8, 8.0, 2.4 Hz, 1H), 4.37 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2, 8.4 Hz, 1H), 3.20 (t, J = 10.4 Hz, 1H), 2.86 (dd, *J* = 17.2, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 162.6, 159.9, 142.0, 138.6, 137.0, 135.8, 133.1, 132.0, 129.0, 128.9, 128.6, 128.4, 128.3, 128.1, 128.0, 127.5, 127.4, 126.9, 110.0, 77.7, 53.7, 47.7, 41.8.

HPLC (IF *i*-PrOH/*n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 50.743 \text{ min} \text{ (major)}$).

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅ClNO₂S] +: 522.1289, found: 522.1291

2-((5R,6R,7R)-2-(4-methoxyphenyl)-6,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-onex (3q)

White solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yeild, 5:1 dr, 48 mg).

m. p.: 98-101 °C.

 $[\alpha]^{22}$ **D** = -14.0 (*c* =1.0, CH₂Cl₂, 97% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.87 – 7.77 (m, 4H), 7.50 (m, 1H), 7.38 (m, 2H), 7.24 – 7.11 (m, 6H), 6.97 (m, 6H), 5.37 (ddd, J = 10.8, 8.4, 2.4 Hz, 1H),

4.35 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2, 8.4 Hz, 1H), 3.20 (t, J = 10.8 Hz, 1H), 2.87 (dd, J = 17.2, 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 165.0, 162.7, 162.5, 159.7, 142.0, 138.6, 136.9, 133.0, 129.8, 129.8, 128.8, 128.4, 128.3, 128.0, 127.9, 127.6, 127.5, 127.4, 127.3, 115.9, 115.7, 109.4, 77.5, 53.6, 47.6, 41.7. HPL C (lb *i* BrOH/ n because = 90/10), flow rate = 1.0 mJ (min), t_z = 40.042 min (minor), t_z = 47.171 min (maior))

HPLC (Ih *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 40.042 \text{ min (minor)}, t_R = 47.171 \text{ min (major)})$. HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₃S] ⁺: 518.1784, found: 518.1786

2-((5R,6R,7R)-2-(4-fluorophenyl)-6,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3r)

White solid (PE/EtOAc/DCM = 10:1:1,96 % isolated yeild, 6:1 dr, 48.6 mg). **m. p.:** 96-98 °C.

 $[\alpha]^{22}$ _D = -14.0 (*c* =1.0, CH₂Cl₂, 97% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.87 – 7.77 (m, 4H), 7.50 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.24 – 7.11 (m, 6H), 6.97 (m, 6H), 5.37 (ddd, J = 10.8, 8.0, 2.8

Hz, 1H), 4.35 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 16.8, 8.0 Hz, 1H), 3.20 (t, J = 10.4 Hz, 1H), 2.87 (dd, J = 17.2, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 165.0, 162.6 (J = 10.3 Hz), 159.7, 142.0, 138.6, 136.9, 133.0, 129.8 (J = 1.2 Hz), 128.8, 128.4, 128.3, 128.1, 127.9, 127.6, 127.5, 127.4, 127.3, 115.8 (J = 22 Hz), 109.4, 77.5, 53.6, 47.6, 41.7.

HPLC (Ih *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 28.185 \text{ min (minor)}, t_R = 45.243 \text{ min (major)}$). HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅FNO₂S] +: 506.1585, found: 506.1583

2-((5R,6R,7R)-2-(3-chlorophenyl)-6,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3s)

White solid (PE/EtOAc/DCM = 10:1:1, 94% isolated yeild, 6:1 dr, 48.6 mg).

m. p.: 96-98 °C.

 $[\alpha]^{22}$ _D = -10.0 (*c* =1.0, CH₂Cl₂, 89% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 3H), 7.70 (m, 1H), 7.52 (m, 1H),

7.40 (m, 2H), 7.35 – 7.24 (m, 3H), 7.22 – 7.11 (m, 6H), 7.01 (d, J = 6.8 Hz, 2H), 6.94 (m, 2H), 5.38 (ddd, J = 10.8, 8.4, 2.8 Hz, 1H), 4.38 (d, J = 8.0 Hz, 1H), 3.50 – 3.41 (dd, J = 17.2 Hz, 8.4 Hz 1H), 3.21 (t, J = 10.4 Hz, 1H), 2.86 (dd, J = 17.2, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 162.2, 159.9, 141.9, 138.6, 136.9, 135.1, 134.9, 133.1, 130.0, 129.8, 128.9, 128.4, 128.4, 128.1, 128.0, 127.5, 127.4, 125.7, 123.7, 110.4, 77.6, 77.3, 53.6, 47.7, 41.7.

HPLC (IF *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 20.39 \text{ min (minor)}, t_R = 30.23 \text{ min (major)}$). HRMS (ESI): [M+H] ⁺ calcdfor [C₃₂H₂₅ClNO₂S] ⁺: 522.1289, found: 522.1291

2-((5R,6R,7R)-7-(3,4-difluorophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (3t)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 8:1 dr, 50.2 mg). **m. p.:** 72-74 °C.

 $[\alpha]^{22}$ **D** = -16.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.50 (m, 1H), 7.43 – 7.30 (m, 5H), 7.25 – 7.14 (m, 3H), 7.06 (m, 3H), 6.75 (m, 1H), 6.64 – 6.54 (m, 1H), 5.39 (ddd, J = 10.4, 8.4, 2.4 Hz, 1H), 4.72 (d, J = 10.4 Hz, 1H), 3.45 (dd, J = 17.2, 8.4 Hz, 1H), 3.28 (t, J = 10.4 Hz, 1H), 2.88 (dd, J = 16.8, 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.2, 164.7, 163.9, 163.1 (J = 48 Hz), 161.7 (J = 48 Hz), 160.6 (J = 48 Hz), 159.8, 159.2 (J = 48 Hz), 153.4, 138.0, 136.9, 133.0, 130.3, 130.0, 128.9, 128.8, 128.4, 128.3, 128.1, 127.7, 125.6, 124.9 (J = 12 Hz), 124.7 (J = 12 Hz), 111.7 (J = 16 Hz), 111.5 (J = 16 Hz), 108.0, 103.7 (J = 104 Hz), 77.6, 52.1, 41.6.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), t_R = 45.533 min (major). HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₄F₂NO₂S] +: 524.1490, found: 524.1492

2 - ((5R, 6R, 7R) - 2, 7 - diphenyl - 6 - (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 6, 7 - dihydro - 5H - pyrano [2, 3 - d] thiazol - 5 - yl) - 1 - phenylethan - 1 - one (p - tolyl) - 1 - pyrano [2, 5 - d] thiazol - 5 - yl) - 1 - pyrano [2, 5 - d] thiazol - 5 - yl) - 1 - pyrano [2, 5 - d] thiazol - 5 - yl) - 1 - pyrano [2, 5 - d] thiazol - 5 - yl) - 1 - pyrano [2, 5 - d

(4a)

Brown solid (PE/EtOAc/DCM = 10:1:1, 98% isolated yeild, 7:1 dr, 49.3 mg). **m. p.:** 96-98 °C.

 $[\alpha]^{22}$ _D = -27.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.83 (m, J = 6.8, 2.8 Hz, 4H), 7.54 – 7.46 (m, 1H),

7.43 – 7.28 (m, 5H), 7.17 (dd, *J* = 6.8, 3.6 Hz, 3H), 7.05 – 6.81 (m, 6H), 5.34 (m, *J* = 10.4, 8.0, 2.4 Hz, 1H), 4.35 (d, *J* = 10.0 Hz, 1H), 3.43 (dd, *J* = 16.8, 8.0 Hz, 1H), 3.16 (t, *J* = 10.4 Hz, 1H), 2.88 (dd, *J* = 16.8, 2.4 Hz, 1H), 2.23 (s, 3H)..

¹³C NMR (101 MHz, CDCl₃) δ 196.6, 164.0, 159.9, 142.3, 137.1, 137.1, 135.6, 133.6, 133.0, 129.9, 129.6, 128.8, 128.4, 128.3, 128.2, 128.1, 127.3, 125.7, 109.6, 77.8, 53.4, 47.7, 41.9, 21.1.

HPLC (If, *i*-PrOH/ *n*-hexane= 83/17), flow rate = 1.0 mL/min), t_R = 33.799 min (major).

HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₂S] ⁺: 502.1835, found: 502.1832

2-((5R,6R,7R)-6-(4-chlorophenyl)-2,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1one (4b)

Yellow liquid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 10:1 dr, 50.0 mg). $[\alpha]^{22}_{D} = -16.0 \ (c = 1.0, CH_2Cl_2, 99\% \text{ ee}).$

¹**H NMR (400 MHz, CDCl**₃) δ 7.83 (td, *J* = 6.9, 2.6 Hz, 4H), 7.54 – 7.46 (m, 1H), 7.43 – 7.28 (m, 5H), 7.17 (dd, *J* = 6.6, 3.6 Hz, 3H), 7.05 – 6.81 (m, 6H), 5.34 (ddd, *J* = 10.7, 8.2, 2.7 Hz, 1H), 4.35 (d, *J* = 10.3 Hz, 1H), 3.43 (dd, *J* = 17.0, 8.2 Hz,

1H), 3.16 (t, *J* = 10.5 Hz, 1H), 2.88 (dd, *J* = 16.9, 2.5 Hz, 1H), 2.23 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.1, 159.9, 140.7, 138.3, 136.9, 133.3, 133.0, 133.0, 130.0, 129.3, 129.0, 128.8, 128.5, 128.4, 128.1, 127.6, 125.7, 108.7, 77.5, 53.7, 47.1, 41.6.

HPLC (IH, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), t_R = 17.337 min (major).

HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₂S] ⁺: 522.1289, found: 522.1290

2-((5R,6R,7R)-2,7-diphenyl-6-(m-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (4c)

White solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yeild, 7:1 dr, 46.8 mg).

 $[\alpha]^{22}$ _D = -26.0 (*c* =1.0, CH₂Cl₂, 94% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.85 (d, *J* = 7.1 Hz, 4H), 7.59 – 7.47 (m, 1H), 7.47 – 7.29 (m, 6H), 7.26 – 7.12 (m, 4H), 7.04 – 6.71 (m, 4H), 5.41 – 5.29 (m, 1H), 4.30

(d, J = 10.2 Hz, 1H), 3.57 – 3.32 (m, 2H), 2.99 (dd, J = 17.0, 1.9 Hz, 1H).

m. p.: 77-80 °C.

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.9, 159.8, 142.2, 138.6, 138.4, 137.0, 133.5, 133.0, 129.8, 128.9, 128.7, 128.6, 128.3, 128.2, 128.2, 128.1, 128.0, 127.2, 125.6, 109.5, 77.6, 53.6, 47.5, 41.8, 21.3.

HPLC (If, *i*-PrOH/ *n*-hexane = 83/17), flow rate = 1.0 mL/min), $t_R = 31.33 \text{ min (major)}$, $t_R = 38.60 \text{ min (major)}$. HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₂S] ⁺: 502.1835, found: 502.1833

2-((5R,6R,7R)-6-(2-methoxyphenyl)-2,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (4d)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 92% isolated yeild, 7:1 dr, 47.8 mg).

m. p.: 90-92 °C.

 $[\alpha]^{22}$ _D = -34.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 – 7.79 (m, 2H), 7.36 (m, J = 6.7, 3.6 Hz, 3H), 7.20 – 7.10 (m, 3H), 7.03 (d, J = 7.8 Hz, 2H), 6.98 – 6.79 (m, 4H), 5.00 (ddd, J =

11.4, 8.3, 3.3 Hz, 1H), 4.35 – 4.25 (m, 1H), 3.62 (s, 3H), 3.07 (t, *J* = 10.5 Hz, 1H), 2.61 (dd, *J* = 16.2, 8.3 Hz, 1H), 2.46 (dd, *J* = 16.2, 3.3 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.9, 159.8, 159.7, 142.1, 140.2, 137.0, 133.5, 133.0, 129.9, 129.9, 128.7, 128.4, 128.3, 128.1, 128.0, 127.3, 125.6, 120.6, 114.3, 112.6, 109.4, 77.5, 55.1, 53.7, 47.6, 41.7.

HPLC (AD, *i*-PrOH/ *n*-hexane = 80/20), flow rate = 1.0 mL/min), t_R = 36.81 min (major).

HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₃S] ⁺: 518.1784, found: 518.1784

1-(2-methoxyphenyl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (4e)

White solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 7:1 dr, 49.7 mg).
m. p.: 73-74 °C.
[α]²²p = -5.0 (c =1.0, CH₂Cl₂, 99% ee).
¹H NMR (400 MHz, CDCl₃) δ 7.92 - 7.78 (m, 4H), 7.50 (m, J = 7.2 Hz, 1H), 7.43 - 7.30 (m, 5H), 7.23 - 7.00 (m, 7H), 6.84 (m, J = 7.2 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H),

5.39 (ddd, *J* = 10.8, 8.4, 2.8 Hz, 1H), 4.94 (s, 1H), 3.52 – 3.21 (m, 5H), 2.87 (dd, *J* = 16.8, 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 163.7, 157.5, 137.1, 133.6, 132.9, 129.8, 128.7, 128.5, 128.3, 128.2, 128.1,

128.0, 127.0, 125.7, 121.0, 111.2, 109.6, 55.4, 42.0, 29.7.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), $t_R = 28.757 \text{ min}$ (major) HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₃S] ⁺: 518.1784, found: 518.1784

2-((5R,6R,7R)-2,7-diphenyl-6-(thiophen-3-yl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-phenylethan-1-one (4f)

<u>`</u>

White solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yeild, 4:1 dr, 46.0 mg).

m. p.: 143-146 °C.

 $[\alpha]^{22}$ _D = -1.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.85 (m, *J* = 7.2 Hz, 4H), 7.59 – 7.47 (m, 1H), 7.47 – 7.29 (m, 6H), 7.26 – 7.12 (m, 4H), 7.04 – 6.71 (m, 4H), 5.41 – 5.29 (m, 1H), 4.30 (d, *J* = 10.0

Hz, 1H), 3.57 – 3.32 (m, 2H), 2.99 (dd, *J* = 16.8, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 164.0, 159.9, 142.2, 138.9, 137.0, 133.4, 133.1, 129.9, 128.7, 128.4, 128.3, 128.1, 127.9, 127.3, 126.7, 126.2, 125.6, 122.9, 109.0, 77.4, 49.3, 47.6, 41.8.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 91/4/5), flow rate = 1.0 mL/min), t_R = 46.791 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₀H₂₄NO₂S₂] +: 494.1243, found: 494.1242

1-(4-methoxyphenyl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (4g)

റമ

White solid (PE/EtOAc/DCM = 10:1:1, 89% isolated yeild, 6:1 dr, 46.0 mg). **m. p.:** 80-82 °C.

 $[\alpha]^{22}$ D = -22.0 (*c* =1.0, CH₂Cl₂, 99% ee).

1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 7.2 Hz, 1H), 7.33 (s, 1H), 7.14 (dd, J = 7.7, 4.0 Hz, 1H), 6.99 (s, 1H), 6.92 (d, J = 3.6 Hz, 1H), 6.86 (d, J = 6.8 Hz, 4H),

5.43 – 5.28 (m, 1H), 4.35 (d, J = 10.4, 1H), 3.81 (s, 3H), 3.37 (dd, 16.8 Hz, 8.0 Hz, 1H), 3.16 (t, 10.8 Hz, 1H), 2.80 (dd, J = 16.8 Hz, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 194.9, 163.9, 163.4, 159.8, 142.2, 138.8, 133.5, 130.4, 130.2, 129.8, 128.8, 128.7, 128.4, 128.2, 128.0, 127.4, 127.2, 125.6, 113.5, 109.4, 77.7, 55.4, 53.7, 47.7, 41.3.

HPLC (AD, *i*-PrOH/ *n*-hexane = 80/20), flow rate = 1.0 mL/min), $t_R = 47.72 \text{ min (major)}$, $t_R = 60.828 \text{ min (major)}$. HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₃S] ⁺: 518.1784, found: 518.1784

1-(4-pentylphenyl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (4h)

White solid (PE/EtOAc/DCM = 10:1:1, 90% isolated yeild, 6:1 dr, 50.0 mg).

 $[\alpha]^{22}$ _D = -15.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 4.0, 2.8 Hz, 3H), 7.24 – 7.10 (m, 8H), 7.07 – 6.89 (m, 4H), 5.37 (ddd, J =

10.8, 8.4, 2.8 Hz, 1H), 4.36 (d, *J* = 10.4 Hz, 1H), 3.43 (dd, *J* = 16.8, 8.4 Hz, 1H), 3.20 (t, *J* = 10.4 Hz, 1H), 2.83 (dd, *J* = 16.8, 2.8 Hz, 1H), 2.68 – 2.54 (m, 2H), 1.59 (dd, *J* = 15.2, 7.4 Hz, 2H), 1.38 – 1.22 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.1, 163.9, 159.9, 148.8, 142.2, 138.8, 134.7, 133.5, 129.9, 128.8, 128.7, 128.5, 128.3, 128.0, 127.4, 127.3, 125.7, 109.4, 77.6, 53.8, 47.8, 417, 35.9, 31.4, 30.7, 22.5, 14.0.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 94/1/5), flow rate = 1.0 mL/min), $t_R = 12.904$ min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₇H₃₆NO₂S] +: 558.2461, found: 558.2460

m. p.: 83-84 °C.

1-(m-tolyl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (4i)

Ph-S-CH₃

White solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yeild, 6:1 dr, 46.6 mg). **m. p.:** 83-86 °C.

 $[\alpha]^{22}$ _D = -5.0 (*c* =1.0, CH₂Cl₂, 97% ee).

¹**H NMR (400 MHz, CDCl₃)** δ 7.85 (m, 2H), 7.63 (m, 2H), 7.39 – 7.26 (m, 5H), 7.24 – 7.10 (m, 6H), 7.07 – 6.89 (m, 4H), 5.37 (ddd, J = 10.8, 8.4, 2.8 Hz, 1H),

4.36 (d, *J* = 10.0 Hz, 1H), 3.44 (dd, *J* = 17.2, 8.4 Hz, 1H), 3.20 (t, *J* = 10.4 Hz, 1H), 2.85 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.7, 163.9, 159.8, 142.1, 138.8, 138.2, 137.1, 133.8, 133.5, 129.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.0, 127.4, 127.3, 125.7, 125.3, 109.4, 77.6, 53.8, 47.8, 41.9, 21.3.

HPLC (IC, *i*-PrOH/*n*-hexane = 80/20), flow rate = 1.0 mL/min), $t_R = 34.604 \text{ min (major)}$, $t_R = 39.219 \text{ min (minor)}$; HRMS (ESI): [M+H] ⁺ calcdfor [C₃₃H₂₈NO₂S] ⁺: 502.1835, found: 502.1833

1-(3-chlorophenyl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl) ethan-1-one (4j)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl) ethan-1-one (4j)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-triphenyl

White solid (PE/EtOAc/DCM = 10:1:1, 97% isolated yeild, 7:1 dr, 50.6 mg).

 $[\alpha]^{22}$ _D = -5.0 (*c* =1.0, CH₂Cl₂, 94% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.85 (m, 2H), 7.63 (m, 2H), 7.39 – 7.26 (m, 5H), 7.24 – 7.10 (m, 6H), 7.07 – 6.89 (m, 4H), 5.37 (ddd, *J* = 10.8, 8.0, 2.8 Hz, 1H), 4.36

(d, *J* = 10.0 Hz, 1H), 3.44 (dd, *J* = 16.8, 8.0 Hz, 1H), 3.20 (t, *J* = 10.4 Hz, 1H), 2.85 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.2, 164.0, 159.6, 142.0, 138.5, 138.4, 134.7, 133.4, 132.9, 129.9, 129.7, 128.9, 128.7, 128.4, 128.3, 128.2, 128.0, 127.5, 127.3, 126.2, 125.6, 109.5, 77.5, 53.6, 47.6, 41.8.

HPLC (IH, *i*-PrOH/*n*-hexane/DCM = 94/1/5), flow rate = 1.0 mL/min), $t_R = 14.048$ min (minor), $t_R = 24.264$ min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₅ClNO₂S] +: 522.1289, found: 522.1290

m. p.: 92-95 °C.

1-(o-tolyl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one~(4k)

White solid (PE/EtOAc/DCM = 10:1:1, 88% isolated yeild, 5:1 dr, 44.0 mg).

m. p.: 69-70 °C.

Ηн

Ph

ÇH₃

 $[\alpha]^{22}$ _D = -10.0 (*c* =1.0, CH₂Cl₂, 94% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.79 (m, 2H), 7.53 – 7.27 (m, 7H), 7.25 – 7.09 (m, 9H), 7.00 (d, *J* = 6.6 Hz, 2H), 6.92 (m, 2H), 5.29 (ddd, *J* = 10.8, 8.0, 2.8 Hz, 1H), 4.36

(d=, *J* = 10.4, 1H), 3.33 (dd, *J* = 16.8, 8.0 Hz, 1H), 3.17 (t, *J* = 10.4 Hz, 1H), 2.84 (dd, *J* = 16.8, 2.8 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3 164.0, 159.8, 138.0, 137.0, 133.4, 133.1, 130.1, 128.9, 128.8, 128.5, 128.3, 128.1, 127.7, 125.7, 124.9, 111.8, 111.5, 108.0, 104.0, 103.8, 77.7, 52.2, 41.6, 29.7.

HPLC (IH, *i*-PrOH/*n*-hexane/DCM = 94/1/5), flow rate = 1.0 mL/min), $t_R = 11.274$ min (minor), $t_R = 12.349$ min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₃H₂₈NO₂S] +: 502.1835, found: 502.1834

$1 \cdot ((5R, 6R, 7R) \cdot 2, 6, 7 \cdot triphenyl \cdot 6, 7 \cdot dihydro \cdot 5H \cdot pyrano [2, 3 \cdot d] thiazol \cdot 5 \cdot yl) propan \cdot 2 \cdot one \ (4l)$

White solid (PE/EtOAc/DCM = 10:1:1, 91% isolated yeild, 9:1 dr, 39.0 mg).

m. p.: 86-88 °C.

 $[\alpha]^{22}$ _D = -7.0 (*c* =1.0, CH₂Cl₂, 98% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (m, J = 5.6, 3.0, 1.5 Hz, 2H), 7.69 – 7.59 (m, 2H), 7.44 – 7.25 (m, 6H), 7.24 – 7.10 (m, 6H), 7.09 – 6.86 (m, 4H), 5.37 (ddd, J = 10.8, 8.2,

2.7 Hz, 1H), 4.36 (d, *J* = 10.3 Hz, 1H), 3.44 (dd, *J* = 17.0, 8.2 Hz, 1H), 3.20 (t, *J* = 10.5 Hz, 1H), 2.85 (dd, *J* = 16.9, 2.7 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.7, 163.9, 159.8, 142.1, 138.8, 138.2, 137.0, 133.8, 133.5, 129.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.0, 127.4, 127.3, 125.7, 125.3, 109.4, 77.6, 53.7, 47.7, 41.8, 21.3.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 94/1/5), flow rate = 1.0 mL/min), $t_R = 34.604$ min (minor), $t_R = 39.219$ min (major).

HRMS (ESI): [M+H]⁺ calcdfor [C27H23NO2S]: 426.1522, found: 426.1521

1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (5a)

White solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 8:1 dr, 48.5 mg). **m. p.:** 85-88 °C.

 $[\alpha]^{22}$ D = -14.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹H NMR (600 MHz, cdcl₃) δ 7.96 – 7.75 (m, 2H), 7.36 (d, *J* = 3.0 Hz, 3H), 7.24 – 7.08 (m, 6H), 7.08 – 6.82 (m, 4H), 5.90 (s, 1H), 5.32 (m, 1H), 4.35 (d, *J* = 10.2 Hz,

1H), 3.71 (dd, *J* = 17.0, 9.0 Hz, 1H), 3.20 (t, *J* = 10.8 Hz, 1H), 3.02 (dd, *J* = 16.8, 2.4 Hz, 1H), 2.50 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 159.9, 151.8, 144.2, 142.1, 138.6, 133.5, 129.9, 128.8, 128.7, 128.5, 128.3, 128.1, 127.4, 127.3, 125.7, 111.2, 109.5, 77.8, 53.4, 47.8, 39.0, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 93/7), flow rate = 1.0 mL/min), t_R = 49.205 min (minor);

HRMS (ESI): [M+H] + calcdfor [C₃₁H₂₈N₃O₂S] +: 506.1897, found: 506.1899

2-((5R,6R,7R)-6-(4-bromophenyl)-2,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (5b)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yeild, 13:1 dr, 54.2 mg). **m. p.:** 94-96 °C.

 $[\alpha]^{22}$ _D = -37.0 (*c* =1.0, CH₂Cl₂, 98% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.99 – 7.77 (m, 2H), 7.48 – 7.13 (m, 8H), 7.01 (d, *J* = 6.8 Hz, 2H), 6.80 (d, *J* = 8.4 Hz, 2H), 5.90 (s, 1H), 5.41 – 5.18 (ddd, 10.8 Hz, 8.0 Hz,

2.8 Hz,1H), 4.32 (d, *J* = 10.0 Hz, 1H), 3.70 (dd, *J* = 17.2, 9.2 Hz, 1H), 3.14 (t, *J* = 10.4 Hz, 1H), 3.02 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.50 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 164.2, 159.9, 151.9, 144.2, 141.2, 138.2, 133.4, 131.5, 130.1, 129.7, 128.9, 128.8, 128.4, 127.6, 125.7, 121.2, 111.2, 108.6, 77.8, 53.4, 47.3, 38.9, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 33.13 \text{ min (major)}, t_R = 49.953 \text{ min (minor)}.$ HRMS (ESI): [M+H] ⁺ calcdfor [C₃₁H₂₇BrN₃O₂S] ⁺: 584.1002, 586.0981, found: 584.1005, 586.0984

1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-((5R,6R,7R)-2,7-diphenyl-6-(p-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (5c)

m. p.: 168-169 °C.

 $[\alpha]^{22}$ _D = -7.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (400 MHz, Chloroform-***d*) δ 7.85 (m, *J* = 6.8, 2.8 Hz, 2H), 7.36 (m, *J* = 3.2, 2.8 Hz, 3H), 7.23 – 7.06 (m, 3H), 7.06 – 6.77 (m, 6H), 5.89 (s, 1H), 5.28 (ddd,

J = 11.2, 8.9, 2.8 Hz, 1H), 4.33 (d, *J* = 10.4 Hz, 1H), 3.68 (dd, *J* = 16.8, 9.2 Hz, 1H), 3.16 (t, *J* = 10.4 Hz, 1H), 3.04 (dd, *J* = 16.8, 2.8 Hz, 1H), 2.49 (s, 3H), 2.24 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 163.9, 159.7, 151.8, 144.1, 142.2, 136. 2, 135.4, 133.5, 129.9, 129.4, 128.7, 128.3, 128.3, 128.1, 127.2, 125.7, 111.1, 109.6, 78.0, 53.0, 47.6, 39.1, 2=1.0, 14.5, 13.7.

HPLC (IC, *i*-PrOH/*n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 40.181 \text{ min (major)}, t_R = 56.688 \text{ min (minor)}.$ HRMS (ESI): [M+H] + calcdfor [C₃₂H₃₀N₃O₂S] +: 520.2053, found: 520.2056

2-((5R,6R,7R)-6-(4-chlorophenyl)-2,7-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (5d)

White solid (PE/EtOAc/DCM = 10:1:1, 93% isolated yeild, 11:1 dr, 50.3 mg). **m. p.:** 176-178 °C.

 $[\alpha]^{22}$ _D = -27.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (400 MHz, CDCl3)** δ 7.85 (dt, J = 7.6, 3.2 Hz, 2H), 7.42 – 7.28 (m, 3H), 7.17 (m, 5H), 7.03 – 6.85 (m, 4H), 5.91 (s, 1H), 5.33 – 5.19 (m, 1H), 4.29 (d, J = 10.4 Hz, 1H),

3.64 (dd, J = 16.8, 8.4 Hz, 1H), 3.20 (t, J = 10.4 Hz, 1H), 3.09 (dd, J = 16.8, 3.2 Hz, 1H), 2.49 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCI3) δ 170.1, 164.1, 159.6, 151.9, 144.2, 141.7, 137.0, 133.4, 133.3, 130.0, 129.8, 128.9, 128.76, 128.4, 128.0, 127.5, 125.7, 111.3, 109.2, 77.6, 52.9, 47.7, 39.0, 14.4, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), t_R = 30.673 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₁H₂₆ClN₃O₂S] +: 540.1507, found: 540.1509

1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-((5R,6R,7R)-2,7-diphenyl-6-(m-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (5e)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 95% isolated yeild, 8:1 dr, 51.3 mg). **m. p.**: 99-102 °C.

 $[\alpha]^{22}$ _D = -5.0 (*c* =1.0, CH₂Cl₂, 97% ee).

¹H NMR (400 MHz, CDCl3) δ 7.93 – 7.81 (m, 2H), 7.44 – 7.32 (m, 3H), 7.22 – 7.13 (m, 3H), 7.08 (t, J = 7.6 Hz, 1H), 7.01 – 6.88 (m, 3H), 6.80 (d, J = 9.5 Hz, 2H), 5.91 (s,

1H), 5.36 – 5.24 (m, 1H), 4.35 (d, J = 10.0 Hz, 1H), 3.70 (dd, J = 16.8, 9.2 Hz, 1H), 3.15 (t, J = 10.8 Hz, 1H), 3.03 (dd, J = 17.2, 2.8 Hz, 1H), 2.50 (s, 3H), 2.23 (s, 3H), 2.19 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 144.2, 142.2, 138.4, 138.3, 133.5, 129.9, 128.8, 128.5, 128.3, 128.2, 128.1, 127.2, 125.7, 111.2, 109.6, 77.9, 53.3, 47.6, 39.0, 21.4, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 29.178 \text{ min (major)}$. $t_R = 49.0 \text{ min (minor)}$ HRMS (ESI): [M+H] ⁺ calcdfor [C₃₁H₂₇ClN₃O₂S] ⁺: 540.1509, found: 540.1507

1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-((5R,68,7R)-2,7-diphenyl-6-(thiophen-2-yl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (5f)

White solid (PE/EtOAc/DCM = 10:1:1, 98% isolated yeild, 6:1 dr, 50.0 mg). **m. p.:** 146-147 °C. [*α*]²²p = -15.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.84 (m, 2H), 7.39 – 7.32 (m, 3H), 7.25 – 7.18 (m, 3H), 7.16 (m, 1H), 7.07 – 7.00 (m, 2H), 6.82 (dd, *J* = 4.8, 3.0 Hz, 1H), 6.68 (dd, *J* =

3.6, 1.2 Hz, 1H), 5.92 (d, *J* = 1.2 Hz, 1H), 5.22 (ddd, *J* = 10.8, 9.0, 3.0 Hz, 1H), 4.36 (d, *J* = 10.2 Hz, 1H), 3.75 (dd, *J* = 17.4, 9.0 Hz, 1H), 3.63 (t, *J* = 10.2 Hz, 1H), 3.19 (dd, *J* = 17.4, 3.0 Hz, 1H), 2.53 (d, *J* = 1.1 Hz, 3H), 2.19 (s, 3H).

¹³C NMR (151 MHz, cdcl₃) δ 170.2, 165.0, 159.9, 152.0, 144.0, 143.8, 140.6, 133.5, 130.1, 128.8, 128.0, 127.4, 126.6, 126.3, 125.9, 125.0, 111.2, 72.4, 46.5, 45.5, 38.1, 14.4, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 35.996$ min (major). HRMS (ESI): $[M+H]^+$ calcdfor $[C_{29}H_{26}N_3O_2S_2]^+$: 512.1461, found: 512.1462

2-((5R,6R,7R)-7-(4-bromophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (5g)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 87% isolated yeild, 11:1 dr, 50.8 mg). m. p.: 78-80 °C.

 $[\alpha]^{22}$ _D = -11.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.77 (m, 2H), 7.47 – 7.13 (m, 8H), 7.12 – 6.93 (m, 2H), 6.91 – 6.70 (m, 2H), 5.90 (d, *J* = 1.2 Hz, 1H), 5.30 (ddd, *J* = 10.8, 8.8, 2.8 Hz, 1H), 4.32 (d, *J* = 10.4 Hz, 1H), 3.70 (dd, *J* = 17.2, 9.2 Hz, 1H), 3.14 (t, *J* = 10.4 Hz, 1H), 3.02 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.50 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 164.2, 159.9, 151.9, 144.2, 141.2, 138.2, 133.4, 131.5, 130.1, 129.7, 128.9, 128.8, 128.4, 127.6, 125.7, 121.2, 111.2, 108.6, 77.8, 53.4, 47.3, 38.9, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), t_R = 42.521 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₁H₂₇BrN₃O₂S] +: 584.1002, 586.0981, found: 584.1002, 586.0986

2-((5R,6R,7R)-7-(4-chlorophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (5h)

White solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 9:1 dr, 51.8 mg).

m. p.: 124-126 °C.

 $[\alpha]^{22}$ _D = -22.0 (*c* =1.0, CH₂Cl₂, 99% ee).

^{Ph} $(J_{H}, N_{H}, N$

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 164.2, 159.8, 151.9, 144.1, 140.6, 138.2, 133.3, 133.0, 130.0, 129.3, 128.8, 128.8, 128.5, 127.6, 125.7, 111.2, 108.6, 77.7, 53.4, 47.2, 38.9, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), t_R = 32.774 min (major).

HRMS (ESI): $[M+H]^+$ calcdfor $[C_{31}H_{27}ClN_3O_2S]^+$: 540.1507, found: 540.1508

2-((5R,6R,7R)-7-(2-bromo-4-fluorophenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (5i)

Yellow solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yeild, 12:1 dr, 57.5 mg).

m. p.: 74-76 °C.

 $[\alpha]^{22}$ _D = -11.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹H NMR (400 MHz, Chloroform-d) δ 7.85 (m, 2H), 7.51 – 7.32 (m, 3H), 7.28 – 7.13 (m, 4H), 7.13 – 6.89 (m, 4H), 5.90 (d, J = 1.1 Hz, 1H), 5.32 (ddd, J = 10.8, 8.0, 2.8 Hz, 1H), 4.72 (d, J = 10.8 Hz, 1H), 3.70 (dd, J = 17.2, 9.2 Hz, 1H), 3.27 (t, J = 10.4 Hz, 1H), 3.04

(dd, J = 17.2, 2.8 Hz, 1H), 2.50 (3, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) & 170.2, 164.1, 160.3 (*J* = 250.0 Hz), 159.8, 159.0, 151.9, 144.2, 137.7, 133.3, 130.7, 130.1, 128.9, 128.8, 128.3(*J* = 4.3 Hz), 128.1, 127.8, 127.7, 125.7, 121.3(*J* = 4.3 Hz), 119.1, (*J* = 25.7 Hz) 111.2, 107.6, 77.9, 51.8, 38.9, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), t_R = 72.481 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₁H₂₆BrFN₃O₂S] +: 602.0908, 604.0887 found: 602.0906, 604.0889

1-(3,5-dimethyl-4,5-dihydro-1H-pyrazol-1-yl)-2-((5R,6R,7R)-7-(2-methoxyphenyl)-2,6-diphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (5j)

White solid (PE/EtOAc/DCM = 10:1:1, 90% isolated yeild, 8:1 dr, 48.2 mg).

m. p.: 118-121 °C.

ЭМє

.HH ✔uPh

 $[\alpha]^{22}$ _D = -17.0 (*c* =1.0, CH₂Cl₂, 91% ee).

¹**H NMR (400 MHz, Chloroform-***d*) δ 8.01 – 7.75 (m, 2H), 7.35 (m, 3H), 7.23 – 6.95 (m, 7H), 6.94 – 6.56 (m, 2H), 5.90 (d, *J* = 1.1 Hz, 1H), 5.34 (ddd, *J* = 10.4, 9.2, 2.8 Hz, 1H),

4.92 (s, 1H), 3.72 (dd, *J* = 16.8, 9.2 Hz, 1H), 3.41 (s, 4H), 3.01 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.50 (d, *J* = 1.0 Hz, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 163.1, 159.5, 157.1, 151.7, 144.1, 138.9, 133.7, 129.7, 128.7, 128.6, 128.3, 127.1, 125.6, 120.7, 111.1, 110.8, 110.0, 77.9, 55.2, 39.1, 14.5, 13.7.

HPLC (IC, *i*-PrOH/ *n*-hexane = 97/3), flow rate = 1.0 mL/min), $t_R = 48.431 \text{ min (major)}, t_R = 56.497 \text{ min (minor)}.$ HRMS (ESI): [M+H] ⁺ calcdfor [C₃₂H₃₀N₃O₃S] ⁺: 536.2002, found: 536.2004

methyl 2-((5R,6R,7R)-2,7-diphenyl-6-(p-tolyl)-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)acetate (6c)

White solid (PE/EtOAc/DCM = 10:1:1, 96% isolated yield, 44 mg).

 $[\alpha]^{22}$ _D = -14.0 (*c* =1.0, CH₂Cl₂, 98% ee).

m. p.: 96-99 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.81 (d, *J* = 7.3 Hz, 2H), 7.53 (s, 1H), 7.43 – 7.37 (m, 5H), 7.07 (q, *J* = 6.0 Hz, 4H), 6.90

(d, *J* = 6.5 Hz, 2H), 5.52 – 5.40 (m, 1H), 4.96 (d, *J* = 6.4 Hz, 1H), 3.59 (m, 2H), 3.16 (dd, *J* = 17.9, 8.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.6, 164.5, 160.2, 144.8, 139.7, 136.6, 133.4, 133.3, 130.2, 128.9, 128.8, 128.6, 128.5, 128.0, 127.7, 127.4, 127.3, 125.7, 105.5, 72.7, 50.5, 44.4, 40.7.

HPLC (Ic, *i*-PrOH/ *n*-hexane = 90/10), flow rate = 1.0 mL/min), $t_R = 38.015$ min (major), $t_R = 48.184$ min (minor) HRMS (ESI): $[M+H]^+$ calcdfor $[C_{28}H_{26}NO_3S]^+$: 456.1628, found: 456.1626

1-phenyl-2-((5S,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-one (3a-minor)

White solid (PE/EtOAc/DCM = 10:1:1, 95% isolated yield, 46.3 mg, 99% ee).

¹**H NMR (400 MHz, CDCl₃)** δ 7.91 – 7.79 (m, 2H), 7.36 (dd, *J* = 6.4, 3.6 Hz, 3H), 7.20 – 7.10 (m, 3H), 7.03 (d, *J* = 7.8 Hz, 2H), 6.98 – 6.79 (m, 4H), 5.00 (ddd, *J* = 11.2, 8.4, 3.6 Hz, 1H), 4.35 – 4.25 (m, 1H), 3.62 (s, 3H), 3.07 (t, *J* = 10.4 Hz, 1H), 2.61 (dd, *J* = 16.0,

8.0 Hz, 1H), 2.46 (dd, J = 16.0, 3.6 Hz, 1H), 2.27 (s, 3H).

m. p.: 68-69 °C.

¹³C NMR (101 MHz, CDCl₃) δ 170.7, 164.0, 160.0, 142.0, 137.0, 135.2, 133.5, 129.9, 129.5, 128.7, 128.3, 128.0, 127.2, 125.6, 109.7, 78.2, 52.9, 51.8, 47.3, 38.4, 21.0.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 92/3/5), flow rate = 1.0 mL/min), $t_R = 12.779min$ (major), $t_R = 14.048min$ (minor).

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₆NO₂S] +: 488.1679, found: 488.1680

1-phenyl-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-ol-xia (7a-major)

White solid (PE/EtOAc/DCM = 5:1:1, 38% isolated yield, 74.5 mg).

m. p.: 151-152 °C. [*α*]²²_D = 15.0 (*c* =1.0, CH₂Cl₂, 98% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, *J* = 6.8, 2.8 Hz, 2H), 7.44 – 7.21 (m, 8H), 7.21 – 6.98 (m, 6H), 6.85 (m, *J* = 6.4, 2.8 Hz, 2H), 6.75 (m, *J* = 6.4, 2.8 Hz, 2H), 5.15 (t, *J* =

7.2 Hz, 1H), 4.37 (td, *J* = 10.0, 2.4 Hz, 1H), 4.13 (d, *J* = 10.4 Hz, 1H), 3.17 (s, 1H), 3.01 (t, *J* = 10.3 Hz, 1H), 2.20 (m, 1H), 1.80 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.0, 159.6, 144.0, 142.0, 138.9, 133.4, 129.9, 128.8, 128.6, 128.4, 128.2, 127.9, 127.6, 127.2, 127.2, 126.5, 125.7, 109.7, 79.9, 71.9, 54.3, 47.6, 42.0.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 92/3/5), flow rate = 1.0 mL/min), t_R = 25.399 min (major).

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₈NO₂S] +: 490.1835, found: 490.1836

1-phenyl-2-((5R,6R,7R)-2,6,7-triphenyl-6,7-dihydro-5H-pyrano[2,3-d]thiazol-5-yl)ethan-1-ol -7a-minor

White solid (PE/EtOAc/DCM = 5:1:1, 29% isolated yield, 56.8mg).

m. p.: 144-146 °C.

 $[\alpha]^{22}$ _D = 15.0 (*c* =1.0, CH₂Cl₂, 99% ee).

¹**H NMR (400 MHz, CDCl**₃) δ 7.97 – 7.81 (m, 2H), 7.45 – 7.34 (m, 3H), 7.26 (m, *J* = 6.4 Hz, 5H), 7.22 – 7.06 (m, 7H), 6.94 – 6.76 (m, 4H), 5.35 (d, *J* = 10.4 Hz, 1H), 5.02 –

4.86 (m, 1H), 4.17 (dd, *J* = 10.4, 4.4 Hz, 1H), 3.03 (dt, *J* = 20.8, 10.4 Hz, 2H), 1.87 (m, 1H), 1.81 – 1.68 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.7, 164.0, 160.0, 142.1, 137.0, 135.2, 133.5, 129.9, 129.5, 128.7, 128.3, 128.0, 127.2, 125.6, 109.7, 78.2, 52.9, 51.8, 47.3, 38.4, 21.0.

HPLC (IH, *i*-PrOH/ *n*-hexane/DCM = 92/3/5), flow rate = 1.0 mL/min), $t_R = 12.779$ min (major), $t_R = 16.048$ min (minor).

HRMS (ESI): [M+H] + calcdfor [C₃₂H₂₈NO₂S] +: 490.1835, found: 490.1835

5 X-ray Crystallographic Data

5. 1. Preparation of crystal.

3a-major: The pure compouds (50 mg) of **3a-major** was dissolved in CDCl3 and removed in NMR tube. After the NMR experiments were finished, the tube was placed in the lab for about one week, during which the crystal was formed. The X-ray was detected after the crystal was formed. The X-ray data was detected by Smart APEX II which was purchased from Bruker.

3a-minor: The pure compouds (50 mg) of **3a-minor** was dissolved in DCM in the small bottle, and then the CH₃OH was added slowly until a small amount of precipitation occurs. Continue to add a small amount of DCM to dissolve the precipitate. Place the small bottle in a dry and ventilated place for about one week, during which the crystal was formed. The X-ray data was detected by Smart APEX II which was purchased from Bruker.

3e: The pure compouds (50 mg) of **3e** was dissolved in DCM in the small bottle, and then the CH_3OH was added slowly until a small amount of precipitation occurs. Continue to add a small amount of DCM to dissolve the precipitate. Place the small bottle in a dry and ventilated place for about one week, during which the crystal was formed. The X-ray data was detected by Smart APEX II which was purchased from Bruker.

5. 2 X-ray Crystallographic Data

	Ş-Ç				Ph- S HH Ph- CCDC 2115385	
Bond precis	ion:	C-C = 0).0046 A	Wa	avelength=1.54184	
Cell:	a=11.983	0(2)	b=13.0537(3)	c=16.2653()	3)	
	alpha=90		beta=90	gamma=90	,	
Temperatur	e: 298 K			0		
- F		Calculate	d	R	eported	
Volume		2544.260	9)	2	544.27(8)	
Space group)	P 21 21 2	21	P 21 21 21		
Hall group		P 2ac 2at)	P 2ac 2ab		
Moiety form	nula	C32 H25	N O2 S	C	32 H25 N O2 S	
Sum formul	а	C32 H25	N O2 S	C32 H25 N O2 S		
Mr		487.59		4	87.59	
Dx,g cm-3		1.273		1	.273	
Z		4		4		
Mu (mm-1)		1.359		1	.359	
F000		1024.0		1	024.0	
F000'		1028.04				
h,k,lmax		15,16,20		1	4,16,20	
Nref		5428[30	57]	5	047	
Tmin,Tmax		0.907,0.9	34	0	.436,1.000	
Tmin'		0.897				
Correction AbsCorr = N	method= # MULTI-SC.	e Reporte AN	d T Limits: Tmi	n=0.436 Tm	ax=1.000	
Data comple	eteness= 1.6	55/0.93	Theta(max)	= 77.584		
R(reflection	s)= 0.0374((4304)		wR2(ref) 0.1010(:	lections)= 5047)	
S = 1.042		Npar	= 325			
Displacemen	t ellipsoids a	re drawn a	at 30% probability le	evel		
		Ph + HH + HH				
---	------------------	--	------------------------------------	--	--	--
Bond precision	on: $C-C = 0.00$	046 A Wavelength=1.54	184			
Cell:	a=11.9830(2) b=1	13.0537(3) c=16.2653(3)				
	alpha=90 bet	a=90 gamma=90				
Temperature	298 K	e				
r	Calculated	Reported				
Volume	2544.26(9)	2544.27(8)				
Space group	P 21 21 21	P 21 21 21				
Hall group	P 2ac 2ab	P 2ac 2ab				
Moiety form	ula C32 H25 N (C32 H25 N O2	S			
Sum formula	C32 H25 N (C32 H25 N O2	S			
Mr	487.59	487.59				
Dx,g cm-3	1.273	1.273				
Ζ	4	4				
Mu (mm-1)	1.359	1.359				
F000	1024.0	1024.0				
F000'	1028.04					
h,k,lmax	15,16,20	14,16,20				
Nref	5428[3057]	5047				
Tmin,Tmax	0.907,0.934	0.436,1.000				
Tmin'	0.897					
Correction method= # Reported T Limits: Tmin=0.436 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completeness= 1.65/0.93 Theta(max)= 77.584						
R(reflections)= 0.0374(4304)	wR2(reflections)= 0.1010(5047)	wR2(reflections)= 0.1010(5047)			
S = 1.042	Npar= 32	25				
Displacement ellipsoids are drawn at 30% probability level						

Bond precision:		C-C = 0.0041 A		Wavelength=1.54184			
Cell:	a=12.0118(2) b=12.7	7811(2)	c=16.9520(3)		
	alpha=90	beta=9	90	gamma=90			
Temperature: 303 K							
		Calculated			Reported		
Volume		2602.54(8)			2602.54(8)		
Space group		P 21 21 21			P 21 21 21		
Hall group		P 2ac 2ab			P 2ac 2ab		
Moiety form	ula	C33 H27 N O2	S		C33 H27 N O2 S		
Sum formula		C33 H27 N O2	S		C33 H27 N O2 S		
Mr		501.62			501.61		
Dx,g cm-3		1.280			1.280		
Ζ		4			4		
Mu (mm-1)		1.343			1.343		
F000		1056.0			1056.0		
F000'		1060.11					
h,k,lmax		15,16,21			14,15,21		
Nref		5435[3062]			4657		
Tmin,Tmax		0.886,0.935			0.099,1.000		
Tmin'		0.886					
Correction method= # Reported T Limits: Tmin=0.099 Tmax=1.000 AbsCorr = MULTI-SCAN							
Data complet	teness= 1.52	/0.86	Theta(max)=	75.994			
R(reflections)= 0.0344(4158)				wR2(reflections)= 0.0895(4657)			
S = 1.007		Npar= 336					
Displacement ellipsoids are drawn at 30% probability level							

6 The Discussion and Determination of Absolute Configuration of Compound 3a₂ and Some Mechanism Vrification Eperiment

6.1 The Discussion and Determination of Absolute Configuration of Compound **3**a₂

 $3a^1$ and $3a^2$ was a pair of enantiomers, The decision configuration of $3a^1$ is determined by Xray crystal, while the relative configuration of $3a^2$ is determined by X-ray crystal. Both compounds are attacked by the same *re* face, and the same three-dimensional configuration is obtained by one attack. Therefore, the absolute configuration of $3a^2$ can be determined. At the same time, it can also be determined that such substrate diastereomers produce in catalysts controling unsaturated carbonyl compounds to produce dienlote.

6.2 some mechanism verification experiment

We isolated the 0.5 mmol Z-alkene (in 20 mmol scale reaction) from the mixture of the corresponding acetophenone, phenylacetylene and KOtBu in DMSO. The by-products in the system were identified as Z-alkenes by NMR.

We placed Z- θ , γ -unsaturated ketone (Z)-2a (1.25eq) and 5-alkenylthiazolone 1a under optimal reaction conditions (0.1mmol, 10 mol% cat A, 0 °C), the minor product of 3a in the template reaction was obtained with good results (95% yield, >20:1 dr, 99% ee). Therefore, this results are consistent with the postulate mechanism in Figure 1 of manuscript.

7 HPLC and NMR Spectrogram

¹HNMR of **3a** (400M, CDCl₃)

Crude ¹HNMR of **3a** (400M, CDCl₃)

¹³CNMR of **3a** (101M, CDCl₃)

2.976 2.917 2.917 2.839 2.839 2.839 ----0.000

Crude ¹HNMR of **3b** (400M, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Fl (ppm)

Crude ¹HNMR of **3c** (400M, CDCl₃)

¹³CNMR of **3c** (101M, CDCl₃)

¹HNMR of **3d** (400M, CDCl₃)

Crude ¹HNMR of 3d (400M, CDCl₃)

¹³CNMR of **3d** (101M, CDCl₃)

Partial Control Contro

---0.000

Crude ¹HNMR of **3e** (400M, CDCl₃)

¹³CNMR of **3e** (101M, CDCl₃)

¹HNMR of **3f** (400M, CDCl₃)

--0.000

Crude ¹HNMR of **3f** (400M, CDCl₃)

¹³CNMR of **3f** (101M, CDCl₃)

¹³CNMR of **3g** (101M, CDCl₃)

Crude ¹HNMR of **3h** (400M, CDCl₃)

¹³CNMR of **3h** (101M, CDCl3)

¹HNMR of **3i** (400M, CDCl₃)

Crude ¹HNMR of **3i** (400M, CDCl₃)

¹³CNMR of **3i** (101M, CDCl₃)

¹HNMR of **3j** (400M, CDCl₃)

Crude ¹HNMR of **3j** (400M, CDCl₃)

¹³CNMR of **3j** (101M, CDCl₃)

¹HNMR of **3k** (400M, CDCl₃)

Crude ¹HNMR of **3k** (400M, CDCl₃)

¹⁹FNMR of **3k** (400M, CDCl₃)

60

¹HNMR of **3l** (400M, CDCl₃)

7, 5, 19 7, 7, 5, 19 7, 7, 3, 8, 17 7, 3, 3, 8, 17 7, 3, 3, 8, 17 7, 3, 3, 17 7, 3, 3, 17 7, 3, 3, 17 7, 2, 3, 17 7, 2, 3, 17 7, 2, 3, 17 7, 2, 3, 17 7, 2, 17 7, 1 $\begin{array}{c} 3.478\\ 3.458\\ 3.456\\ 3.456\\ 3.3415\\ 3.3381\\ 3.3381\\ 3.3381\\ 3.3381\\ 2.930\\ 2.930\\ 2.933\\ 2.891\\ 2.891\end{array}$

¹³CNMR of **31** (101M, CDCl₃)

¹HNMR of **3m** (400M, CDCl₃)

Crude ¹HNMR of **3m** (400M, CDCl₃)

¹³CNMR of **3m** (101M, CDCl₃)

¹HNMR of **3n** (400M, CDCl)

---0.000

¹³CNMR of **3n** (101M, CDCl₃)

---0.000

Crude ¹HNMR of **30** (400M, CDCl₃)

¹³CNMR of **30** (101M, CDCl₃)

1777 843 1777 843 1775 843 1775 844 1775 844 1775 845 175

---0.000

Crude ¹HNMR of **3p** (400M, CDCl₃)

¹³CNMR of **3p** (101M, CDCl₃)

---0.000

Crude ¹HNMR of **3q** (400M, CDCl₃)

¹³CNMR of **3q** (101M, CDCl₃)

¹HNMR of **3r** (400M, CDCl₃)

Crude ¹HNMR of **3r** (400M, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³CNMR of **3r** (101M, CDCl₃)

Crude ¹HNMR of **3s** (400M, CDCl₃)

¹³CNMR of **3s** (101M, CDCl₃)

¹HNMR of **3t** (400M, CDCl₃)

Crude ¹H NMR of **3t** (400M, CDCl₃)

¹⁹F NMR of **3t** (400M, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR of **3t** (101M, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹HNMR of **4a** (400M, CDCl₃)

Crude ¹H NMR of 4a (400M, CDCl₃)

¹³CNMR of **4a** (101M, CDCl₃)

¹HNMR of **4b** (400M, CDCl₃)

Crude ¹H NMR of **4b** (400M, CDCl₃)

¹³CNMR of **4b** (101M, CDCl₃)

¹HNMR of **4c** (400M, CDCl₃)

Crude ¹H NMR of 4c (400M, CDCl₃)

¹³CNMR of **4c** (101M, CDCl₃)

¹HNMR of **4d** (400M, CDCl₃)

Crude ¹H NMR of 4d (400M, CDCl₃)

¹³CNMR of **4d** (101M, CDCl₃)

¹HNMR of **4e** (400M, CDCl₃)

Crude ¹H NMR of **4e** (400M, CDCl₃)

¹³CNMR of **4e** (101M, CDCl₃)

Crude ¹H NMR of **4e** (400M, CDCl₃)

¹³CNMR of **4f** (101M, CDCl₃)

Crude ¹H NMR of **4e** (400M, CDCl₃)

¹³CNMR of **4g** (101M, CDCl₃)

¹HNMR of **4h** (400M, CDCl₃)

Crude ¹H NMR of **4h** (400M, CDCl₃)

¹³CNMR of **4h** (101M, CDCl₃)

¹HNMR of 4i (400M, CDCl₃)

Crude ¹H NMR of **4h** (400M, CDCl₃)

¹³CNMR of **4i** (101M, CDCl₃)

¹HNMR of **4j** (400M, CDCl₃)

Crude ¹H NMR of **4j** (400M, CDCl₃)

2.920 2.876 2.856 2.813 2.813 2.813 2.813 ----0.000

¹³CNMR of **4j** (101M, CDCl₃)

¹HNMR of **4k** (400M, CDCl₃)

Crude ¹HNMR of 4k (400M, CDCl₃)

¹³CNMR of **4k** (101M, CDCl₃)

7, 880 7, 7, 880 7, 7, 880 885 1, 885 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 889 1, 158 1, 4.374 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.873 -2.823 -2.823 -2.823 -2.364

Curde ¹HNMR of 4l (400M, CDCl₃)

----0.000

¹³CNMR of **4k** (101M, CDCl₃)

¹HNMR of **5a** (600M, CDCl₃)

-2.100

----0.000

Crude ¹HNMR of **5a** (600M, CDCl₃)

¹³CNMR of **5a** (101M, CDCl₃)

¹HNMR of **5b** (400M, CDCl₃)

Crude ¹HNMR of **5b** (400M, CDCl₃) Crude

¹³CNMR of **5b** (101M, CDCl₃)

¹HNMR of **5c** (400M, CDCl₃)

Crude ¹HNMR of **5c** (400M, CDCl₃)

¹³CNMR of **5c** (101M, CDCl₃)

Crude ¹HNMR of **5d** (400M, CDCl₃)

111

¹³CNMR of **5e** (101M, CDCl₃)

¹HNMR of **5f** (400M, CDCl₃)

¹³CNMR of **5f** (101M, CDCl₃)

Crude ¹HNMR of **5g** (400M, CDCl₃)

¹³CNMR of **5**g (101M, CDCl₃)

¹HNMR of **5h** (400M, CDCl₃)

Crude ¹HNMR of **5h** (400M, CDCl₃)

¹³CNMR of **5h** (101M, CDCl₃)

¹HNMR of **5i** (400M, CDCl₃)

Crude ¹HNMR of 5i (400M, CDCl₃)

¹⁹F NMR of **5i** (101M, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹HNMR of **6c** (400M, CDCl₃)

¹HNMR of **7a-minor** (400M, CDCl₃)

¹³CNMR of 7a-minor (101M, CDCl₃)

¹HNMR of **7a-major** (400M, CDCl₃)

¹³CNMR of 7a-major (101M, CDCl₃)

D₂0 exchange experiment of 7a-minor

127

¹³CNMR of **3a-minor** (101M, CDCl₃)

HPLC chromatogram of compound 3a [Chiralpak IH column, hexane: *i*-PrOH= 93:7, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound **3b** [Chiralpak IF column, hexane: *i*-PrOH = 85:15, 1.0 mL/min] **Racemic HPLC chromatogram** Chiral HPLC chromatogram

HPLC chromatogram of compound 3c [Chiralpak IH column, hexane: *i*-PrOH= 93:7, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound 3d [Chiralpak IC column, hexane: i-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound **3e** [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min] **Racemic HPLC chromatogram** Chiral HPLC chromatogram

HPLC chromatogram of compound 3f [Chiralpak IH column, hexane: i-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound **3g** [Chiralpak OD column, hexane: *i*-PrOH = 80:20, 1.0 mL/min]

Racemic HPLC chromatogram

Chiral HPLC chromatogram

HPLC chromatogram of compound **3h** [Chiralpak IF column, hexane: *i*-PrOH: DCM = 91:4:5, 1.0 mL/min]

Racemic HPLC chromatogram

HPLC chromatogram of compound **3i** [Chiralpak IH column, hexane: *i*-PrOH:DCM = 91:4:5, 1.0 mL/min]

HPLC chromatogram of compound **3j** [Chiralpak IH column, hexane: *i*-PrOH:DCM = 91:4:5, 1.0 mL/min]

Racemic HPLC chromatogram

Chiral HPLC chromatogram

#	Time	Area(%)
1	28.582	48.653
2	45.18	51.347
Total		100.000

HPLC chromatogram of compound **3k** [Chiralpak IH column, hexane: *i*-PrOH:DCM = 91:4:5, 1.0 mL/min]

HPLC chromatogram of compound 3l [Chiralpak IH column, hexane: *i*-PrOH = 93:7, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

				F F			···· } · ·
#	Time	Area(%)					
1	24.296	50.974		#	Time	Area(%)	
2	29.3	49.026		1	27.693	100.000	
Total		100.000		Total		100.000	

HPLC chromatogram of compound **3m** [Chiralpak IH column, hexane: *i*-PrOH = 93:7, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound **3n** [Chiralpak AD column, hexane: *i*-PrOH = 80:20, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound **3o** [Chiralpak IH column, hexane: *i*-PrOH = 93:7, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

200 B 3925	11878-180100 (1992) 000 (1992) 000 (1992)		2200	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3350,784(78001354480088	9403140)		
-100	_			10 25	~			
· · · · ·		··· į · · · · · į · · · · · į ·		Ľ.,	<u>-</u>			· · · · · · · · · · · · · · · · · · ·
#	Time	Area(%)	۱۱ دف به به	2	#	Time	Area(%)	
1	29.021	47.080			1	27.002	0.947	
1	28.021	47.989			2	32 038	00.053	
2	33.7	52.011			-	52.958	77.033	
Total		100.000			Total		100.000	

HPLC chromatogram of compound **3p** [Chiralpak IF column, hexane: *i*-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound 3q [Chiralpak IH column, hexane: i-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

#	Time	Area(%)
1	40.076	48.433
2	50.016	51.567
Total		100.000

#	Time	Area(%)
1	40.476	1.434
2	47.141	98.566
Total		100.000

HPLC chromatogram of compound **3r** [Chiralpak Ih column, hexane: *i*-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

				8 8			
#	Time	Area(%)	_	#	Time	A reg(%)	
1	27.941	50.861		1	28 185	1 588	1
2	46.127	49.139		2	45 323	98 412	
Total		100.000		Total	13.323	100.000	

HPLC chromatogram of compound **3s** [Chiralpak IF column, hexane: *i*-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

HPLC chromatogram of compound **3t** [Chiralpak IH column, hexane: *i*-PrOH: DCM = 91:4:5, 1.0 mL/min]

Racemic HPLC chromatogram

HPLC chromatogram of compound 4a [Chiralpak IF column, hexane: *i*-PrOH = 83:17, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram

D4D1 B, Sig 254	(16 Rul-360, 100 (YANGKODWIZACHBANE-R	uF83D)		DAD1 D, Sig-230, 16 Ral-360, 1	00 (WANGKODWIZACHENE CIF83	9		
mAU .		8				8		
		r A		1 1		fl.		
		1		1 1				
40-		11		360-		11		
		11	g			11		
			Ŧ	300				
		1 1	A I	1 -1				
30-				1 1				
				250-				
							1	
				211				
20-							1	
-				1 1			1	
				150			1	
				1 1			1	
							1	
10-							1	
							\ \	
				50				
	~~~~~							
-				0-				
225 25	2/5 30	325 35 375	40 425 46 mi	20	25	30	35 40	45 mi
	<b>T</b> [•]	$\mathbf{A} = (0/1)$						
Ħ	Ime	Area(%)			#	Timo	Aroa(%)	
	-				π	THIL	AICa(70)	
1	25 222	50 660			4	<b>22 5</b> 00	100.000	
1	55.255	50.000				33 /99	100.000	
-	44.0=0	10.010			*	55.177	100.000	
2	41 878	49340			T-4-1		100.000	
-	11.070	17.540			Total		100.000	

HPLC chromatogram of compound 4b [Chiralpak IH column, hexane: *i*-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram



100.000

HPLC chromatogram of compound 4c [Chiralpak IF column, hexane: *i*-PrOH = 83:17, 1.0 mL/minRacemic HPLC chromatogramChiral HPLC chromatogram



#	Time	Area(%)
1	31.444	49.607
2	36.68	50.393
Total		100.000

Total

#	Time	Area(%)
1	31.33	96.799
2	38.608	3.201
Total		100.000

Area(%)

100.000

100.000

HPLC chromatogram of compound **4d** [Chiralpak AD column, hexane: *i*-PrOH = 80:20, 1.0 mL/min ] Racemic HPLC chromatogram Chiral HPLC chromatogram



HPLC chromatogram of compound **4e** [Chiralpak IH column, hexane: *i*-PrOH: DCM = 91:4:5, 1.0 mL/min ]

#### **Racemic HPLC chromatogram**

Chiral HPLC chromatogram



HPLC chromatogram of compound **4f** [Chiralpak IH column, hexane: *i*-PrOH: DCM = 91:4:5, 1.0 mL/min ]



HPLC chromatogram of compound 4g [Chiralpak IF column, hexane: *i*-PrOH = 80:20, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound **4h** [Chiralpak IH column, hexane: *i*-PrOH :DCM = 94:1:5, 1.0 mL/min ]





HPLC chromatogram of compound **4i** [Chiralpak IC column, hexane: *i*-PrOH = 80:20, 1.0 mL/min ] **Racemic HPLC chromatogram** Chiral HPLC chromatogram



HPLC chromatogram of compound 4j [Chiralpak IH column, hexane: *i*-PrOH = 95:5, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound **4k** [Chiralpak IH column, hexane: *i*-PrOH :DCM = 94:1:5, 1.0 mL/min ]

**Racemic HPLC chromatogram** 



HPLC chromatogram of compound 4l [Chiralpak IC column, hexane: *i*-PrOH = 80:20, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



#	Time	Area(%)
1	35.079	48.684
2	38.99	51.316
Total		100.000

#	Time	Area(%)
1	34.604	99.136
2	39.219	0.864
Total		100.000

HPLC chromatogram of compound 5a [Chiralpak IC column, hexane: *i*-PrOH = 97:3, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound **5b** [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound 5c [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



#	Time	Area(%)
1	41.724	50.805
2	55.73	49.195
Total		100.000

#	Time	Area(%)
1	40.181	99.549
2	56.688	0.451
Total		100.000

HPLC chromatogram of compound 5d [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound 5e [Chiralpak IC column, hexane: *i*-PrOH = 93:7, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound **5f** [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound 5g [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram

		·····		· • · · · • • • • • • • • • • • • • • •		···· <u>.</u> · · · · . <u>.</u> · · · · ·	<u></u>
#	Time	Area(%)		#	Time	Area(%)	
1	43.627	50.665	]	1	42.521	100.000	
2	63.558	49.335	1	Total		100.000	

HPLC chromatogram of compound **5h** [Chiralpak IC column, hexane: *i*-PrOH = 90:10, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound **5i** [Chiralpak IC column, hexane: *i*-PrOH = 90:10,1.0 mL/min ] Racemic HPLC chromatogram

```
Racemic HPLC chromatogram
```

100.000

Total

Chiral HPLC chromatogram



HPLC chromatogram of compound 5j [Chiralpak IC column, hexane: *i*-PrOH = 97:3, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram

	····· f · · · · · f		······································	<u>₹</u> 	555)		
#	Time	Area(%)		#	Time	Area(%)	
1	47.368	48.848		1	48.431	4.353	
2	57.056	51.152		2	56.497	95.649	
Total		100.000		Total		100.000	

HPLC chromatogram of compound 6c [Chiralpak IC colun, hexane: *i*-PrOH = 90:10, 1.0 mL/min ]Racemic HPLC chromatogramChiral HPLC chromatogram



HPLC chromatogram of compound **7a-minor** [Chiralpak IH column, hexane: *i*-PrOH: DCM = 92:3:5, 1.0 mL/min ]



HPLC chromatogram of compound **7a-major** [Chiralpak IH column, hexane: *i*-PrOH: DCM = 92:3:5, 1.0 mL/min ]

Racemic HPLC chromatogram

**Chiral HPLC chromatogram** 





```
Racemic HPLC chromatogram
```

