Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

for

Native carboxyl group assisted C-H acetoxylation of

hydrocinnamic and phenylacetic acids

Xinchao Wang,^{ab} Hang Wang,^b Chunlin Zhou,^b Lei Yang,^b Lei Fu,^b and Gang Li*^{bc}

^aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
^bKey Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China
^cFrontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

*Email: gangli@fjirsm.ac.cn;

Table of Contents

1. General Information	S2
2. Experimental Section	S2
2.1 Optimization of reaction conditions substrate 1a ^a	S2
2.2 Optimization of reaction conditions substrate 3a ^a	S4
2.3 General procedures for synthesis of substrates	S5
2.4 General procedures for synthesis of substrate 5	S5
2.5 General procedures for synthesis of products	S6
General procedure A	S6
General procedure B	S6
General procedure C	S7
General procedure D	S7
2.6 Mechanistic studies	S29
3. References	S30
4. NMR Spectrc of Compounds	S31

1. General Information

Unless otherwise noted, commercially available reagents were purchased from commercial suppliers (such as Strem, Alfa Aesar, J&K Chemical Co, Energy Chemical, Sinocompound and Adamas) and used as received. Solvents were generally dried over 4 Å molecular sieves. Hexafluoroisopropanol (HFIP) was dried over 4 Å molecular sieves and distilled before use. The reaction vessels used for C-H functionalization were 15 mL sealed tube or 50 mL Schlenk tube (Synthware). Purification of products was performed by flash chromatography (FC) using silica gel or preparative thin layer chromatography. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz and 101 MHz, respectively). Chemical shifts are reported parts per million (ppm) referenced to CDCl3 (& 7.26 ppm) or MeOD (& 3.10 ppm) or (CD3)2CO (& 2.05 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H NMR; CDCl₃ (δ 77.16 ppm) or MeOD (δ 49.00 ppm) or (CD₃)₂CO (δ 29.84 ppm, 206.26 ppm) for ¹³C NMR. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptaplet, m = multiplet, and br = broad. To distinguish, some ${}^{13}C$ NMR chemical shifts retain two decimal places. High-resolution mass spectra (HRMS) were obtained on an Impact II UHR-TOF mass spectrometry equipped with an ESI source from Bruker at Fujian Institute of Research on the Structure of Matter.

2. Experimental Section

ОН	Phl(OAc) ₂ (4.0 equiv) Pd(OAc) ₂ (10 mol%), Ac-Gly-OH (20 mol%)	
H	Ac ₂ O (9.0 equiv), KOAc (2.0 equiv)	OAC
1a	HFIP, 90 °C, 12n	2a _{mono} 2a _{di}
Entry	Deviation from standard conditions	Yield(%)(mono/di)
1	None	72 [50, 22]
2	Ac ₂ O (0 equiv)	47 [19, 28]
3	Ac ₂ O (3.0 equiv)	60 [33, 27]
4	Ac ₂ O (6.0 equiv)	64 [43, 21]
5	Ac ₂ O (12.0 equiv)	62 [48, 14]
6	PhI(OAc) ₂ (1.0 equiv)	45 [38, 7]
7	PhI(OAc) ₂ (2.0 equiv)	57 [43, 14]
8	PhI(OAc) ₂ (3.0 equiv)	63 [42, 21]

2.1 Optimization of reaction conditions substrate 1a^a

9	PhI(OAc) ₂ (5.0 equiv)	66 [52, 14]
10	KOPiv instead of KOAc	60 [46, 14]
11	LiOAc instead of KOAc	22 [22, 0]
12	NaOAc instead of KOAc	55 [48, 7]
13	CsOAc instead of KOAc	55 [41, 14]
14	K ₂ CO ₃ instead of KOAc	60 [44, 16]
15	Without KOAc	12 [12, 0]
16	2-Hydroxy-5-bromopyridine instead of Ac-Gly-OH	16 [16, 0]
17	3-nitropyridin-2-ol instead of Ac-Gly-OH	46 [39, 7]
18	2-bromo-3-methylpyridine instead of Ac-Gly-OH	35 [35, 0]
19	Fmoc-Gly-OH instead of Ac-Gly-OH	61 [51, 10]
20	Ac-DL-Phe-OH instead of Ac-Gly-OH	62 [53, 9]
21	Fmoc-L-Phe-OH instead of Ac-Gly-OH	56[49, 7]
22	Fmoc-L-Ile-OH instead of Ac-Gly-OH	62[51, 11]
23	Without Ac-Gly-OH	57 [44, 13]
24	Pd(OAc) ₂ (5 mol%)	43 [34, 9]
	Ac-Gly-OH (10 mol%)	
25	$Pd(OAc)_2$ (5 mol%)	48 [36, 12]
26	HFIP 4 mL	69 [33, 36]
27	TFE as solvent	23 [23, 0]
28	<i>t</i> -BuOH as solvent	N.D.
29	1,4-dioxane as solvent	N.D.
30	MeCN as solvent	N.D.
31	AcOH as solvent	5 [5, 0]
32	70 °C	30 [30, 0]
33	80 °C	33 [28, 5]
34	100 °C	59 [46, 13]
35	18 h	64 [44, 20]
36	24 h	60 [42, 18]

^{*a*} Reaction conditions: **1a** (0.2 mmol), Pd(OAc)₂ (10 mol %), Ac-Gly-OH (20 mol%), PhI(OAc)₂ (4.0 equiv), Ac₂O (9.0 equiv), HFIP (2 mL), 12 h, 90 °C. Yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

Строн	Phl(OAc) ₂ (4.0 equiv) Pd(OAc) ₂ (10 mol%) Ac-Gly-OH (20 mol%) KOAc (2.0 equiv) Ac ₂ O (20.0 equiv)	OAc OH	+ OAc OAc OAc	
3a	HFIP, 50 °C, 16 h	4a _{mono}	4a _{di}	
Entry	Deviation from standard cond	itions	Yield(%)(mono/di)	
1	1 None		76 [55, 21]	
2	2 Ac ₂ O (0 equiv)			
3	Ac ₂ O (5.0 equiv)	42 [0, 42]		
4	Ac ₂ O (10.0 equiv)	60 [15, 45]		
5	Ac ₂ O (15.0 equiv)	68 [36, 32]		
6	Ac ₂ O (25.0 equiv)	71 [55, 16]		
7	PhI(OAc) ₂ (2.0 equiv)	66 [38, 28]		
8	PhI(OAc) ₂ (3.0 equiv)	68 [42, 26]		
9	PhI(OAc) ₂ (5.0 equiv)	74 [52, 22]		
10	PhI(OAc) ₂ (2.0 equiv); Ac ₂ O (10.0 equiv)		46 [3, 43]	
11	PhI(OAc) ₂ (2.0 equiv); Ac ₂ O (15.0 equiv)	48 [15, 33]		
12 PhI(OAc) ₂ (3.0 equiv); Ac ₂ O (10.0 equiv)		50 [9, 41]		
13 PhI(OAc) ₂ (3.0 equiv); Ac ₂ O (15.0 equiv)		62 [27, 35]		
14	LiOAc instead of KOAc	2	34 [34, 0]	
15	NaOAc instead of KOA	c	52 [41, 11]	
16	CsOAc instead of KOA	С	60 [44, 16]	

2.2 Optimization of reaction conditions substrate 3a^a

^{*a*} Reaction conditions: **3a** (0.2 mmol), $Pd(OAc)_2$ (10 mol %), Ac-Gly-OH (20 mol%), $PhI(OAc)_2$ (4.0 equiv), Ac₂O (20.0 equiv), HFIP (2 mL), 16 h, 50 °C. Yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

2.3 General procedures for synthesis of substrates

To a stirred solution of silver acetate (5 mmol) and palladium acetate (0.06 mmol) in acetic acid (10 mL) was added iodobenzene (5 mmol) and ethyl acrylate (6 mmol). The resulting mixture was stirred at 110 °C for 6~12 h^[S1]. After being cooled to room temperature, the reaction mixture was diluted with 15 mL ethyl acetate. The reaction mixture was filtered over a pad of celite, and concentrated under reduced pressure to give the product S1. S1 was then dissolved in a solution of THF (15 mL), EtOH (10 mL) and H₂O (5 mL). The solution was cooled to 0 °C and LiOH H₂O (4.0 equiv) was added. The mixture was stirred at room temperature for 2 h and then H₂O (10 mL) was added. The solution was extracted with Et₂O (20 mL \times 2) and the aqueous phase was acidized with 2N HCl (20 mL). The aqueous phase was extracted with DCM (10 mL \times 4). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give compound S2. A mixture of S2 and 60.0 mg of Pd/C (10%) was placed in flask under nitrogen before methanol (30 ml) was carefully added. The resulting suspension was evacuated and then refilled with hydrogen and equipped with a hydrogen balloon, and the reaction mixture was vigorously stirred at room temperature for 4h. The solvent was removed under reduced pressure and the residue was purified by flash silica gel column chromatography with petroleum ether (PE)/EtOAc (EA) (3/1) to give compound hydrocinnamic acids.

2.4 General procedures for synthesis of substrate 5

 $Pd(OAc)_2$ (13.5 mg, 0.06 mmol), tri(o-tol)phosphine (36.5 mg, 0.12 mmol) and Et_3N (1.4 mL, 10 mmol) were added to a solution of **S3** (0.21 ml, 2.0 mmol) and benzyl acrylate (0.33 mL, 2.2 mmol) in anhydrous MeCN (10.0 mL). The mixture was stirred at 80 °C for 12 h and then cooled to room

temperature. H_2O (10 mL) was added and the aqueous phase was extracted with EA (5 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by flash silica gel chromatography with PE/EA (3/1) to afford **S4**. A mixture of **S4** and 10% palladium over activated charcoal (24.0 mg) was placed under nitrogen before methanol (10 ml) was carefully added. The resulting suspension was placed under vacuum, then under hydrogen (1 atm), and the reaction mixture was vigorously stirred at room temperature for 4h. The solvent was removed under reduced pressure and the residue was purified by flash silica gel column chromatography with petroleum ether (PE)/EtOAc (EA) (3/1) to give compound **5**.

2.5 General procedures for synthesis of products

General procedure A

An oven-dried 15 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with compound **1a** (30.0 mg, 0.2 mmol, 1.0 equiv), PhI(OAc)₂ (193 mg, 0.6 mmol, 3.0 equiv), Pd(OAc)₂ (4.6 mg, 0.02 mmol, 10 mol %), ligand (Ac-Gly-OH, 4.7 mg 0.04 mmol, 20 mol %), KOAc (39.2 mg 0.4 mmol, 2.0 equiv) sequentially. HFIP (2.0 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated oil bath (90 °C) or hotplate (90 °C). [Note: good stirring was important for reproducibility, splashes on the wall of the tube showed adverse effects for the reaction]. The reaction vessel was then cooled to room temperature. Then a 3 N HCl solution (2 mL) was added, and the mixture was extracted with DCM (3 × 5 mL). The organic layers were combined and removed under reduced pressure. The resulting residue was purified by preparative TLC using PE/EA (4/1, with 1% HOAc) as the eluent.

General procedure B

An oven-dried 15 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with compound **1a** (30.0 mg, 0.2 mmol, 1.0 equiv), PhI(OAc)₂ (257 mg, 0.8 mmol, 4.0 equiv), Pd(OAc)₂ (4.6 mg, 0.02 mmol, 10 mol %), ligand (Ac-Gly-OH, 4.7 mg 0.04 mmol, 20 mol %), KOAc (39.2 mg 0.4 mmol, 2.0 equiv) and Ac₂O (0.172 mL 9 equiv) sequentially. HFIP (2.0 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated oil bath (90 °C) or hotplate (90 °C). [Note: good stirring was important for reproducibility, splashes on the wall of the tube showed adverse effects for the reaction]. The reaction vessel was then cooled to room temperature. Then a 3 N HCl solution (2 mL) was added, and the mixture was extracted with DCM (3 ×5 mL). The organic layers were combined and removed under reduced pressure. The resulting residue was purified by preparative TLC using PE/EA (4/1, with 1% HOAc) as the eluent.

General procedure C

An oven-dried 15 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with compound **3a** (27.6 mg, 0.2 mmol, 1.0 equiv), PhI(OAc)₂ (257 mg, 0.8 mmol, 4.0 equiv), Pd(OAc)₂ (4.6 mg, 0.02 mmol, 10 mol %), ligand (Ac-Gly-OH, 4.7 mg 0.04 mmol, 20 mol %), KOAc (39.2 mg 0.4 mmol, 2.0 equiv) and Ac₂O (0.382 mL 20 equiv) sequentially. HFIP (2.0 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated oil bath (40- 90 °C) or hotplate (40- 90 °C). [Note: good stirring was important for reproducibility, splashes on the wall of the tube showed adverse effects for the reaction]. The reaction vessel was then cooled to room temperature. Then a 3 N HCl solution (2 mL) was added, and the mixture was extracted with DCM (3 × 5 mL). The organic layers were combined and removed under reduced pressure. The resulting residue was purified by preparative TLC using PE/EA (3/1, with 1% HOAc) as the eluent.

General procedure D

An oven-dried 15 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with compound **3d** (43.0 mg, 0.2 mmol, 1.0 equiv), PhI(OAc)₂ diacetate (257 mg, 0.8 mmol, 4.0 equiv), Pd(OAc)₂ (4.6 mg, 0.02 mmol, 10 mol %), ligand (Ac-Gly-OH, 4.7 mg 0.04 mmol, 20 mol %), KOAc (39.2 mg 0.4 mmol, 2.0 equiv) and Ac₂O (0.382 mL 20 equiv) sequentially. HFIP (2.0 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated hotplate (70 °C). [Note: good stirring was important for reproducibility, splashes on the wall of the tube showed adverse effects for the reaction]. Volatile matter was removed under reduced pressure and the residue was re-dissolved in methanol (2 mL). To the solution was added K₂CO₃ (219 mg, 1.6 mmol). The reaction was stirred at room temperature for 1 h. A 3.0 N HCl solution (1 mL) was then added, and the mixture was extracted with DCM (3 × 5 mL). The organic layers were combined and removed under reduced pressure. The resulting residue was purified by preparative TLC using PE/EA (2/1, with 1% HOAc) as the eluent.

2a_{mono}

2a_{mono}: 3-(2-acetoxyphenyl)propanoic acid

The general procedure **A** was followed (2.5h). Pale yellow oil, 8.3 mg, 20% yield. The general procedure **B** was followed. Pale yellow oil, 20.0 mg, 48% yield.

¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.20 (m, 2H), 7.18 (td, J = 7.5, 1.3 Hz, 1H), 7.03 (dd, J = 7.9, 1.4 Hz, 1H). 2.86 (t, J = 7.9 Hz, 2H), 2.63 (t, J = 7.9 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.1, 169.7, 149.1, 132.1, 130.2, 127.9, 126.5, 122.6, 34.3, 25.3, 21.0. HRMS (ESI) m/z calcd for C₁₁H₁₂O₄Na⁺ (M+Na⁺) 231.0628, found 231.0628.

2adi: 3-(2,6-diacetoxyphenyl)propanoic acid

The general procedure **A** was followed (2.5h). Pale yellow oil, 18.4 mg, 36% yield. The general procedure **B** was followed. Pale yellow oil, 9.9 mg, 19% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 8.1 Hz, 1H), 6.98 (d, *J* = 8.2 Hz, 2H), 2.80 (t, *J* = 8.0 Hz, 2H), 2.55 (t, *J* = 8.0 Hz, 2H), 2.32 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 169.4, 149.9, 127.6, 125.4, 120.4, 33.3, 21.0, 20.2. HRMS (ESI) m/z calcd for C₁₃H₁₄O₆Na⁺ (M+Na⁺) 289.0683, found 289.0684.

2b

2b: 3-(2-acetoxy-6-methylphenyl)propanoic acid

The general procedure **B** was followed. White solid, 25.3 mg, 57% yield, M. p.: 98.3-100.2 °C. ¹H NMR (400 MHz, MeOD) δ 7.17 – 7.08 (m, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 7.9 Hz, 1H), 2.86 (t, *J* = 8.7 Hz, 2H), 2.41 (t, *J* = 8.7 Hz, 2H), 2.36 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, MeOD) δ 176.7, 171.6, 150.7, 139.3, 132.5, 129.0, 127.9, 121.3, 34.5, 23.5, 20.8, 19.4. HRMS (ESI) m/z calcd for C₁₂H₁₄O₄Na⁺ (M+Na⁺) 245.0784, found 245.0784.

2c: 3-(2-acetoxy-6-methoxyphenyl)propanoic acid The general procedure **B** was followed . Pale yellow oil, 21.9 mg, 46% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.20 (t, *J* = 8.2 Hz, 1H), 6.76 (d, *J* = 8.3 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 3.83 (s, 3H), 2.87 (t, *J* = 8.0 Hz, 2H), 2.56 (t, *J* = 8.0 Hz, 2H), 2.33 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 179.5, 169.9, 158.6, 149.7, 127.6, 121.2, 114.8, 108.1, 55.8, 33.1, 21.0, 19.6. HRMS (ESI) m/z calcd for C₁₂H₁₃O₅⁻ (M-H⁺) 237.0768, found 237.0767.

2d: 3-(2-acetoxy-6-fluorophenyl)propanoic acid

The general procedure **A** was followed (4h, HFIP 4 mL). Pale yellow oil, 25.2 mg, 56% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.22 (td, *J* = 8.3, 6.3 Hz, 1H), 6.95 (ddd, *J* = 9.4, 8.3, 1.1 Hz, 1H), 6.87 (d, *J* = 8.2 Hz, 1H), 2.90 (t, *J* = 7.8 Hz, 2H), 2.61 (t, *J* = 7.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 169.5, 161.8 (d, *J*_{C-F} = 246.5 Hz), 149.9 (d, *J*_{C-F} = 7.4 Hz), 128.0 (d, *J*_{C-F} = 10.0 Hz), 120.6 (d, *J*_{C-F} = 18.5 Hz), 118.5 (d, *J*_{C-F} = 3.4 Hz), 113.2 (d, *J*_{C-F} = 22.3 Hz), 33.4, 20.9, 19.0 (d, *J*_{C-F} = 3.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.7. HRMS (ESI) m/z calcd for C₁₁H₁₁FO₄Na⁺ (M+Na⁺) 249.0534, found 249.0533.

2e

2e: 3-(2-acetoxy-6-chlorophenyl)propanoic acid

The general procedure **A** was followed (3h). Pale yellow solid, 29.1 mg, 60% yield, M. p.: 98.2-100.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, *J* = 8.1, 1.3 Hz, 1H)., 7.19 (t, *J* = 8.1 Hz, 1H), 6.98 (dd, *J* = 8.1, 1.3 Hz, 1H), 3.02 (t, *J* = 8.0 Hz, 2H), 2.61 (t, *J* = 8.0 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 169.6, 149.9, 135.3, 130.9, 128.1, 127.5, 121.5, 32.7, 23.1, 21.0. HRMS (ESI) m/z calcd for C₁₁H₁₁ClO₄Na⁺ (M+Na⁺) 265.0238, found 265.0239.

2f

2f: 3-(2-acetoxy-6-bromophenyl)propanoic acid

The general procedure A was followed (4h). Pale yellow solid, 37.2 mg, 65% yield, M. p.: 110.2-111.8 \mathbb{C} .

¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 7.9, 1.2 Hz, 1H), 7.13 (t, J = 8.1 Hz, 1H), 7.02 (dd, J = 8.2, 1.2 Hz, 1H), 3.05 (t, J = 8.0 Hz, 2H), 2.61 (t, J = 8.0 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 169.6, 149.7, 132.5, 130.8, 128.6, 125.3, 122.1, 32.8, 25.7, 21.0. HRMS (ESI) m/z calcd for C₁₁H₁₁BrO₄Na⁺ (M+Na⁺) 308.9733, found 308.9737.

2g: 3-(2-acetoxy-6-(trifluoromethyl)phenyl)propanoic acid

The general procedure A was followed (8h ,HFIP 4 mL). Pale yellow solid, 34.8 mg, 63% yield, M. p.: 65.7-67.3 \mathbb{C} .

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.9 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), δ 7.28 (d, J = 8.2 Hz, 1H), 3.06 (t, J = 8.0 Hz, 2H), 2.58 (t, J = 8.0 Hz, 2H), 2.37 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 178.7, 169.4, 150.3, 131.4, 130.52 (q, J_{C-F} = 30.3 Hz), 127.8, 126.7, 124.1 (q, J_{C-F} = 274.7 Hz), 124.02 (q, J_{C-F} = 5.7 Hz), 34.3, 22.4, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -59.5. HRMS (ESI) m/z calcd for C₁₂H₁₁F₃O₄Na⁺ (M+Na⁺) 299.0502, found 299.0505.

2h: 3-(2-acetoxy-6-(trifluoromethoxy)phenyl)propanoic acid

The general procedure **A** was followed (4.5h ,HFIP 4 mL). Pale yellow oil, 36.2 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 8.3 Hz, 1H), 7.16 (dt, *J* = 8.4, 1.5 Hz, 1H), 7.03 (dd, *J* = 8.2, 1.1 Hz, 1H), 2.94 (t, *J* = 8.0 Hz, 2H), 2.58 (t, *J* = 8.0 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 169.4, 150.1, 148.5 (d, *J*_{C-F} = 1.5 Hz), 128.0, 125.8, 121.2, 120.6 (q, *J*_{C-F} = 259.7 Hz), 117.9 (d, *J*_{C-F} = 1.7 Hz), 33.2, 21.0, 19.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1. HRMS (ESI) m/z calcd for C₁₂H₁₁F₃O₅Na⁺ (M+Na⁺) 315.0451, found 315.0449.

2i: 3-(2-acetoxy-5-methylphenyl)propanoic acid

The general procedure **B** was followed. Pale yellow oil, 24.0 mg, 54% yield.

¹H NMR (400 MHz, MeOD) δ 7.11 (s, 1H), 7.03 (dd, J = 8.2, 2.1 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 2.77 (t, J = 7.8 Hz, 2H), 2.52 (t, J = 7.8 Hz, 2H), 2.30 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, MeOD) δ 176.5, 171.5, 148.2, 137.0, 133.6, 131.6, 129.0, 123.2, 35.4, 26.5, 20.9, 20.8. HRMS (ESI) m/z calcd for C₁₂H₁₄O₄Na⁺ (M+Na⁺) 245.0784, found 245.0783.

2j: 3-(2-acetoxy-5-bromophenyl)propanoic acid

The general procedure A was followed (4h). Pale yellow solid, 23.1 mg, 40% yield, M. p.: 86.5-88.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 2H), 6.94 (d, *J* = 8.5 Hz, 1H), 2.83 (t, *J* = 7.8 Hz, 2H), 2.63 (t, *J* = 7.8 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 169.4, 148.1, 134.4, 133.1, 130.9, 124.4, 119.4, 34.0, 25.1, 21.0. HRMS (ESI) m/z calcd for C₁₁H₁₁BrO₄Na⁺ (M+Na⁺) 308.9733, found 308.9737.

2k: 3-(2-acetoxy-5-(trifluoromethyl)phenyl)propanoic acid

The general procedure A was followed (4h, HFIP 4 mL). Pale yellow solid, 29.1 mg, 53% yield, M. p.: 68.8-70.6 \mathbb{C} .

¹H NMR (400 MHz, CDCl₃) δ7.47 – 7.57 (m, 2H), 7.19 (d, J = 8.2 Hz, 1H), 2.92 (t, J = 7.7 Hz, 2H), 2.66 (t, J = 7.7 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.50, 169.13, 151.56, 133.13, 128.62 (q, $J_{C-F} = 32.7$ Hz), 127.50 (q, $J_{C-F} = 3.8$ Hz), 125.11 (q, $J_{C-F} = 3.7$ Hz), 123.89 (q, $J_{C-F} = 273.2$ Hz), 123.31, 33.96, 25.26, 20.99. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.4. HRMS (ESI) m/z calcd for C₁₂H₁₁F₃O₄Na⁺ (M+Na⁺) 299.0502, found 299.0506.

21: 3-(2-acetoxy-5-(trifluoromethoxy)phenyl)propanoic acid

The general procedure **A** was followed (4h, HFIP 4 mL). Pale yellow oil, 23.3 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.04 (m, 3H), 2.86 (t, *J* = 7.7 Hz, 2H), 2.64 (t, *J* = 7.7 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.2, 169.4, 147.3, 146.8 (d, *J*_{C-F} = 2.2 Hz), 134.1, 123.9, 122.8, 120.7, 120.5 (q, *J*_{C-F} = 258.6 Hz), 33.9, 25.3, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0. HRMS (ESI) m/z calcd for C₁₂H₁F₃O₅Na⁺ (M+Na⁺) 315.0451, found 315.0448.

2mmono: 3-(2-acetoxy-4-methylphenyl)propanoic acid

The general procedure **B** was followed. Pale yellow oil, 12.9 mg, 29% yield.

¹H NMR (400 MHz, MeOD) δ 7.17 (d, J = 7.8 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.85 (s, 1H), 2.77 (t, J = 7.6 Hz, 2H), 2.51 (t, J = 7.8 Hz, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, MeOD) δ 176.6, 171.4, 150.3, 138.8, 130.9, 130.8, 127.9, 124.0, 35.4, 26.20, 20.9, 20.8. HRMS (ESI) m/z calcd for C₁₂H₁₄O₄Na⁺ (M+Na⁺) 245.0784, found 245.0783.

2mdi: 3-(2,6-diacetoxy-4-methylphenyl)propanoic acid

The general procedure **B** was followed. Pale yellow solid, 13.0 mg, 23% yield, M. p.: 87.6-89.3 \mathbb{C} .

¹H NMR (400 MHz, MeOD) δ 6.82 (s, 2H), 2.70 (t, J = 8.0 Hz, 2H), 2.39 (t, J = 8.0 Hz, 2H), 2.31 (s, 3H), 2.30 (s, 6H). ¹³C NMR (101 MHz, MeOD) δ 176.4, 171.1, 151.0, 139.1, 124.2, 122.0, 34.4, 21.1, 20.9, 20.7. HRMS (ESI) m/z calcd for C₁₄H₁₆O₆Na⁺ (M+Na⁺) 303.0839, found 303.0839.

2n_{mono}

2n_{mono}: 3-(2-acetoxy-4-fluorophenyl)propanoic acid

The general procedure A was followed (2.5h). Pale yellow oil, 20.4 mg, 45% yield.

¹H NMR (400 MHz, CDCl₃)δ 7.22 (dd, J = 8.2, 6.5 Hz, 1H), 6.91 (td, J = 8.3, 2.6 Hz, 1H), 6.83 (dd, J = 9.1, 2.6 Hz, 1H), 2.83 (t, J = 7.7 Hz, 2H), 2.61 (t, J = 7.7 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 169.2, 161.5 (d, $J_{C-F} = 248.5$ Hz), 149.5 (d, $J_{C-F} = 10.7$ Hz), 130.9 (d, $J_{C-F} = 9.2$ Hz), 127.9 (d, $J_{C-F} = 3.7$ Hz), 113.4 (d, $J_{C-F} = 21.0$ Hz), 110.5 (d, $J_{C-F} = 24.3$ Hz), 34.3, 24.8, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.2. HRMS (ESI) m/z calcd for C₁₁H₁₁FO4Na⁺ (M+Na⁺) 249.0534, found 249.0532.

2ndi: 3-(2,6-diacetoxy-4-fluorophenyl)propanoic acid

The general procedure A was followed (2.5h). Pale yellow solid, 10.3 mg, 18% yield, M. p.: 113.8-115.6 \mathbb{C} .

¹H NMR (400 MHz, CDCl₃) δ 6.78 (d, J = 8.8 Hz, 2H), 2.76 (t, J = 8.0 Hz, 2H), 2.52(m, J = 8.0 Hz, 2H), 2.33 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 168.9, 159.7, 150.2 (d, $J_{C-F} = 12.7$ Hz), 121.3, 108.6 (d, $J_{C-F} = 24.4$ Hz), 33.2, 21.0, 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.1. HRMS (ESI) m/z calcd for C₁₃H₁₃FO₆Na⁺ (M+Na⁺) 307.0588, found 307.0581.

20mono: 3-(2-acetoxy-4-chlorophenyl)propanoic acid

The general procedure A was followed (3h). Pale yellow solid, 20.6 mg, 43% yield, M. p.: 85.7-87.4 °C.

¹H NMR (400 MHz, CDCl₃) δ 9.17 (br s, 1H), 7.24 – 7.12 (m, 2H), 7.08 (s, 1H), 2.82 (t, *J* = 7.6 Hz, 2H), 2.60 (t, *J* = 7.7 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 169.3, 149.3, 132., 131.0, 130.8, 126.6, 123.1, 34.2, 24.9, 20.9. HRMS (ESI) m/z calcd for C₁₁H₁₁ClO4Na⁺ (M+Na⁺) 265.0238, found 265.0239.

20di: 3-(2,6-diacetoxy-4-chlorophenyl)propanoic acid

The general procedure A was followed (3h). Pale yellow solid, 16.5 mg, 28% yield, M. p.: 88.3-90.2 °C.

¹H NMR (600 MHz, CDCl₃) δ 7.02 (s, 2H), 2.76 (t, *J* = 7.8 Hz, 2H), 2.51 (t, *J* = 7.8 Hz, 2H), 2.32 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 169.0, 150.1, 132.7, 124.3, 121.1, 33.2, 20.9, 20.0. HRMS (ESI) m/z calcd for C₁₃H₁₃ClO₆Na⁺ (M+Na⁺) 323.0293, found 323.0291.

2pmono: 3-(2-acetoxy-4-bromophenyl)propanoic acid

The general procedure **A** was followed (2.5h). Pale yellow solid, 22.3 mg, 39% yield, M. p.: 78.1-80.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.23 (s, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 2.81 (t, *J* = 7.7 Hz, 2H), 2.61 (t, *J* = 7.7 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 169.2, 149.5, 131.4, 131.3, 129.6, 126.0, 120.33, 34.0, 24.9, 20.9. HRMS (ESI) m/z calcd for C₁₁H₁₁BrO₄Na⁺ (M+Na⁺) 308.9733, found 308.9735.

2pdi: 3-(2,6-diacetoxy-4-bromophenyl)propanoic acid

The general procedure A was followed (2.5h). Pale yellow solid, 17.87 mg, 26% yield, M. p.: 85.6-87.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 2H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.52 (t, *J* = 7.9 Hz, 2H), 2.32 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 178.3, 169.0, 150.2, 124.8, 123.9, 119.8, 33.0, 20.9, 20.0. HRMS (ESI) m/z calcd for C₁₃H₁₃BrO₆Na⁺ (M+Na⁺) 366.9788, found 366.9787.

2qmono: 3-(2-acetoxy-4-(trifluoromethyl)phenyl)propanoic acid

The general procedure **A** was followed (3h, HFIP 4 mL). Pale yellow solid, 22.8 mg, 41% yield, M. p.: 78.9-81.0 ℃.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.34 (d, J = 1.8 Hz, 1H), 2.91 (t, J = 7.7 Hz, 2H), 2.66 (t, J = 7.7 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

178.4, 169.2, 149.1, 136.4, 130.8, 130.3 (q, J_{C-F} = 33.3 Hz), 123.6 (q, J_{C-F} = 273.7 Hz), 123.2 (q, $J_{C-F} = 3.7$ Hz), 120.1 (q, $J_{C-F} = 3.7$ Hz), 33.8, 25.2, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI) m/z calcd for C₁₂H₁₁F₃O₄Na⁺ (M+Na⁺) 299.0502, found 299.0506.

2qdi: 3-(2,6-diacetoxy-4-(trifluoromethyl)phenyl)propanoic acid

The general procedure A was followed (3h, HFIP 4 mL). Pale yellow solid, 18.8 mg, 28% yield, M. p.: 102.4-104.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 2H), 2.84 (t, *J* = 7.9 Hz, 2H), 2.56 (t, *J* = 7.8 Hz, 2H), 2.35 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 169.0, 150.1, 130.2 (q, J_{C-F} = 273.7 Hz), 129.7, 123.1 (q, $J_{C-F} = 273.7$ Hz), 117.7 (q, $J_{C-F} = 3.6$ Hz), 32.8, 20.9, 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. HRMS (ESI) m/z calcd for C₁₄H₁₃F₃O₆Na⁺ (M+Na⁺) 357.0556, found 357.0554.

2r: 3-(2-acetoxy-4-nitrophenyl)propanoic acid

The general procedure A was followed (4.5h, HFIP 4 mL). Pale yellow solid, 22.3 mg, 44% yield, M. p.: 130.7-132.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz, 1H), 7.97 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H), 2.95 (t, J = 7.7 Hz, 2H), 2.68 (t, J = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 168.9, 149.1, 147.3, 140.0, 130.8, 121.3, 118.5, 33.5, 25.3, 20.9. HRMS (ESI) m/z calcd for C₁₁H₁₁NO₆Na⁺ (M+Na⁺) 276.0479, found 276.0477.

2smono: 3-(2-acetoxy-4-(methoxycarbonyl)phenyl)propanoic acid

The general procedure A was followed (6h, HFIP 2 mL). Pale yellow oil, 23.7 mg, 45% yield,.

¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.7 Hz, 1H), 7.72 (d, J = 1.7 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 3.89 (s, 3H), 2.91 (t, J = 7.7 Hz, 2H), 2.65 (t, J = 7.7 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 169.4, 166.2, 148.9, 137.6, 130.2, 130.1, 127.6, 124.0, 52.4, 33.8, 25.4, 21.0. HRMS (ESI) m/z calcd for C₁₃H₁₄NO₆Na⁺ (M+Na⁺) 289.0683, found 289.0684.

2sdi: 3-(2,6-diacetoxy-4-(methoxycarbonyl)phenyl)propanoic acid

The general procedure **A** was followed (6h, HFIP 2 mL). Pale yellow oil, 16.2 mg, 17.3% yield,.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 3.89 (s, 2H), 2.84 (t, *J* = 7.9 Hz, 1H), 2.55 (t, *J* = 7.9 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 169.2, 165.4, 149.8, 130.8, 130.1, 121.7, 52.6, 32.85, 21.0, 20.4. HRMS (ESI) m/z calcd for C₁₅H₁₆NO₈Na⁺ (M+Na⁺) 347.0737, found 347.0737.

2t: 3-(6-acetoxy-2,3-dimethylphenyl)propanoic acid

The general procedure **B** was followed (HFIP 4 mL). Pale yellow solid, 24.5 mg, 52% yield, M. p.: 58.4-60.2 $^{\circ}$ C.

¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.2 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 2.92(t, J = 8.0 Hz, 2H), 2.50 (t, J = 8.0 Hz, 2H), 2.33 (s, 3H), 2.27 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 170.4, 147.4, 136.4, 135.1, 130.3, 128.9, 119.5, 33.7, 22.7, 21.1, 20.7, 15.6. HRMS (ESI) m/z calcd for C₁₃H₁₅O₄⁻ (M-H⁺) 235.0976, found 235.0974.

2u: 3-(6-acetoxy-3-fluoro-2-methylphenyl)propanoic acid

The general procedure **A** was followed (3h ,HFIP 4 mL). Pale yellow oil, 27.4 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, *J* = 8.9 Hz, 1H), 6.85 (dd, *J* = 8.9, 4.9 Hz, 1H), 2.89 (t, *J* = 7.9 Hz, 2H), 2.51 (t, *J* = 7.9 Hz, 2H), 2.33 (s, 3H), 2.25 (d, *J* = 2.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 170.1, 159.1 (d, *J*_{C-F} = 242.5 Hz), 144.9 (d, *J*_{C-F} = 2.8 Hz), 132.7 (d, *J*_{C-F} = 4.4 Hz), 124.9 (d, *J*_{C-F} = 17.6 Hz), 120.9 (d, *J*_{C-F} = 9.2 Hz), 114. 0 (d, *J*_{C-F} = 25.4 Hz), 33.3, 22.6 (d, *J*_{C-F} = 2.2 Hz), 20.9 (d, *J*_{C-F} = 10.2 Hz), 11.0 (d, *J*_{C-F} = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.7. HRMS (ESI) m/z calcd for C₁₂H₁₃FO₄Na⁺ (M+Na⁺) 263.0690, found 263.0692.

2v: 3-(6-acetoxy-3-chloro-2-fluorophenyl)propanoic acid

The general procedure **A** was followed (4.5 h, HFIP 4 mL). Pale yellow solid, 26.4 mg, 51% yield, M. p.: 83.3-85.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 8.5 Hz, 1H), 6.97 (dd, J = 8.9, 4.5 Hz, 1H), 3.03 (t, J = 8.1 Hz, 2H), 2.61 (t, J = 8.1 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 169.7, 156.3 (d, $J_{C-F} = 247.0$ Hz), 145.2 (d, $J_{C-F} = 3.2$ Hz), 132.9, 122.2, 122.0 (d, $J_{C-F} = 8.1$ Hz), 114.8 (d, $J_{C-F} = 23.2$ Hz), 32.5, 23.2 (d, $J_{C-F} = 2.1$ Hz), 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.1. HRMS (ESI) m/z calcd for C₁₁H₁₀ClFO₄Na⁺ (M+Na⁺) 283.0144, found 283.0146.

2wmono: 3-(2-acetoxyphenyl)butanoic acid

The general procedure A was followed (2.5h). Pale yellow oil, 12.6 mg, 28% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 2H), 7.07 – 6.99 (m, 1H), 3.44 (dq, *J* = 13.3, 6.8 Hz, 1H), 2.66 (dd, *J* = 15.5, 5.8 Hz, 1H), 2.51 (dd, *J* = 15.5, 8.9 Hz, 1H), 2.34 (s, 3H), 1.29 (d, *J* = 6.9 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 178.0, 169.9, 148.2, 137.1, 127.5, 127.2, 126.6, 122.8, 41.8, 29.6, 21.1, 20.6. HRMS (ESI) m/z calcd for C₁₂H₁₄O₄Na⁺ (M+Na⁺) 245.0784, found 245.0785.

2wdi: 3-(2,6-diacetoxyphenyl)butanoic acid

The general procedure **A** was followed (2.5h). Pale yellow solid, 13.5 mg, 24% yield, M. p.: 58.5-60.5 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.5 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 2H), 3.54 (dq, *J* = 13.7, 6.8 Hz, 1H), 2.76 – 2.61 (m, 2H), 2.34 (s, 6H), 1.27 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 169.4, 149.6, 129.2, 127.4, 121.0, 39.6, 27.5, 21.3, 19.1. HRMS (ESI) m/z calcd for C₁₄H₁₅O₆⁻ (M-H⁺) 279.0874, found 279.0874.

2xmono: 3-(2-acetoxyphenyl)pentanoic acid

The general procedure A was followed (2.5h). Pale yellow oil, 17.4 mg, 37% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.17 (m, 3H), 7.07 – 7.00 (m, 1H), 3.32 - 3.17 (m, 1H), 2.59 (d, J = 7.3 Hz, 2H), 2.32 (s, 3H), 1.80 – 1.54 (m, 2H), 0.78 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 169.8, 148.9, 135.4, 127.7, 127.4, 126.4, 122.8, 40.53, 36.6, 28.2, 21.1, 12.0. HRMS (ESI) m/z calcd for Cl₃H₁₅O4⁻ (M-H⁺) 235.0976, found 235.0975.

2xdi: 3-(2,6-diacetoxyphenyl)pentanoic acid

The general procedure A was followed (2.5h). Pale yellow oil, 19.0 mg, 32% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 2H), 3.44 - 3.32 (m, 1H), 2.69 (dd, *J* = 7.1, 2.5 Hz, 2H), 2.32 (s, 6H), 1.74 - 1.54 (m, 2H), 0.76 (t, *J* = 7.4 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 178.0, 169.3, 150.0, 127.5, 127.3, 120.9, 38.6, 34.7, 26.8, 21.2, 12.5. HRMS (ESI) m/z calcd for C₁₅H₁₇O₆⁻ (M-H⁺) 293.1031, found 293.1031.

$4a_{mono}$: 2-(2-acetoxyphenyl)acetic acid

The general procedure **C** was followed (50 °C, 16h). Yellow oil, 20.5 mg, 53% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.28 (m, 2H), 7.22 (td, *J* = 7.4, 1.2 Hz, 1H), 7.12 (d, *J* = 8.1 Hz, 1H), 3.59 (s, 2H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.8, 169.4, 149.2, 131.6, 129.0, 126.4, 126.0, 122.7, 36.3, 21.0. HRMS (ESI) m/z calcd for C₁₀H₁₁O₄⁺ (M+H⁺) 195.0652, found 195.0645.

4adi: 2-(2,6-diacetoxyphenyl)acetic acid

The general procedure C was followed (50 °C, 16h). Brown oil, 9.1 mg, 18% yield.

¹H NMR (600 MHz, CDCl₃) δ 7.34 (t, *J* = 8.2 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 3.55 (s, 2H), 2.31 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 169.0, 150.0, 128.6, 120.3, 119.5, 30.4, 21.0. HRMS (ESI) m/z calcd for C₁₂H₁₃O₆⁺ (M+H⁺) 253.0707, found 253.0707.

4b: 2-(2-acetoxy-6-fluorophenyl)acetic acid

The general procedure **C** was followed (70 °C, 24h). Brown oil, 33.4 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (br s, 1H), 7.36 – 7.20 (m, 1H), 7.06 – 6.84 (m, 2H), 3.65 (s, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 161.5 (d, $J_{C-F} = 247.9$ Hz), 150.1 (d, $J_{C-F} = 6.4$ Hz), 129.0 (d, $J_{C-F} = 9.9$ Hz), 118.3 (d, $J_{C-F} = 3.4$ Hz), 114.8 (d, $J_{C-F} = 18.4$ Hz), 113.1 (d, $J_{C-F} = 22.2$ Hz), 29.2, 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.6. HRMS (ESI) m/z calcd for C₁₀H₈FO₄⁻ (M-H⁺) 211.0412, found 211.0411.

4c: 2-(2-acetoxy-6-chlorophenyl)acetic acid

The general procedure **C** was followed (70 °C, 24h). Brown oil, 37.4 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (br s, 1H), 7.38 – 7.20 (m, 2H), 7.06 (dd, *J* = 7.9, 1.4 Hz, 1H), 3.81 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 150.2, 135.8, 129.0, 127.2, 125.3, 121.3, , 33.4, 20.9. HRMS (ESI) m/z calcd for C₁₀H₈ClO₄⁻ (M-H⁺) 227.0117, found 227.0117.

4d:2-(2-acetoxy-6-bromophenyl)acetic acid

The general procedure C was followed (70 °C, 24h). Pale yellow solid, 42.0 mg, 77% yield, M. p.: 119.9-121.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.20 (t, J = 8.1 Hz, 1H), 7.11 (dd, J = 8.2, 1.2 Hz, 1H), 3.84 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 168.92, 150.0, 130.5, 129.4, 127.0, 126.1, 122.0, 36.1, 20.9. HRMS (ESI) m/z calcd for C₁₀H₈BrO₄⁻ (M-H⁺) 272.9757, found 272.9759.

4e: 2-(2-acetoxy-6-iodophenyl)acetic acid

The general procedure C was followed (70 °C, 24h). White solid, 35.2 mg, 55% yield, M. p.: 125.5-127.5 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 7.9, 1.2 Hz, 1H), 7.12 (dd, J = 8.1, 1.2 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 3.86 (s, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 168.9, 149.1, 137.2, 130.2, 130.1, 122.9, 102.1, 41.1, 21.0. HRMS (ESI) m/z calcd for C₁₀H₁₀IO₄⁺ (M+H⁺) 320.9618, found 320.9617.

4f: 2-(2-acetoxy-6-(trifluoromethyl)phenyl)acetic acid

The general procedure C was followed (80 °C, 16h). Pale yellow solid, 39.6 mg, 76% yield, M. p.: 118.2-120.4 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.57 (dd, J = 7.9, 1.3 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 3.81 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 168.7, 150.5, 130.8 (q, J_{C-F} = 30.3 Hz), 128.6, 126.5, 124.8, 123.8 (q, J_{C-F} = 274.7 Hz), 123.6 (q, J_{C-F} = 5.6 Hz), 32.4, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -59.6. HRMS (ESI) m/z calcd for C₁₁H₁₀F₃O₄⁺ (M+H⁺) 263.0537, found 263.0537.

4g: 2-(2-acetoxy-6- methylphenyl)acetic acid

The general procedure C was followed (50 $^{\circ}$ C 16h). White solid, 32.7 mg, 79% yield, M. p.: 84.6-86.7 $^{\circ}$ C.

¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 3.62 (s, 2H), 2.36 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 169.5, 149.5, 139.1, 128.2, 128.1, 124.8, 120.2, 32.7, 21.0, 20.0. HRMS (ESI) m/z calcd for C₁₁H₁₁O₄⁻ (M-H⁺) 207.0663; found, 207.0664.

4h: 2-(2,6-diacetoxy-3-fluorophenyl)acetic acid

The general procedure C was followed (70 °C, 16h). Pale yellow solid, 32.3 mg, 60% yield, M. p.: 123.2-125.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 9.1 Hz, 1H), 7.02 (dd, J = 9.1, 4.3 Hz, 1H), 3.54 (s, 2H), 2.33 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 169.1, 167.6, 152.2 (d, $J_{C-F} = 248.3$ Hz), 145.2, 137.6 (d, $J_{C-F} = 15.4$ Hz), 121.9, 120.8 (d, $J_{C-F} = 7.5$ Hz), 115.6 (d, $J_{C-F} = 20.3$ Hz), 30.6, 20.8, 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -128.7. HRMS (ESI) m/z calcd for C₁₂H₁₂FO₆⁺ (M+H⁺) 271.0623, found 271.0617.

4i_{mono}: 2-(2-acetoxy-5-chlorophenyl)acetic acid

The general procedure C was followed (70 °C, 16h). White solid, 20.0 mg, 44% yield, M. p.: 98.8-100.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (br s, 1H), 7.33 – 7.27 (m, 2H), 7.07 (d, *J* = 8.5 Hz, 1H), 3.55 (s, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 169.1, 147.7, 131.6, 131.4, 128.9, 127.7, 124.0, 36.0, 20.9. HRMS (ESI) m/z calcd for C₁₀H₁₀ClO₄⁺ (M+H⁺) 229.0262, found 229.0265.

4idi: 2-(2,6-diacetoxy-3-chlorophenyl)acetic acid

The general procedure C was followed (70 °C, 16h). Pale yellow solid, 19.0 mg, 33% yield, M. p.: 93.5-95.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.8 Hz, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 3.54 (s, 2H), 2.36 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 167.9, 148.4, 146.6, 129.2, 125.0, 122.2, 121.3, 31.1, 20.9, 20.4. HRMS (ESI) m/z calcd for C₁₂H₁₂ClO₆⁺ (M+H⁺) 287.0317, found 287.0310.

4j: 2-(2-acetoxy-5-bromophenyl)acetic acid

The general procedure C was followed (50 °C, 24h). Pale yellow solid, 41.3 mg, 76% yield, M. p.: 108.6-110.4 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.20 (t, J = 8.1 Hz, 1H), 7.11 (dd, J = 8.2, 1.2 Hz, 1H), 3.84 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 169.1, 148.3, 134.3, 131.8, 128.2, 124.4, 119.2, 36.0, 20.9. HRMS (ESI) m/z calcd for C₁₀H₉BrO₄Na⁺ (M+Na⁺) 294.9576, found 294.9580.

4k: 2-(2-acetoxy-5-methylphenyl)acetic acid

The general procedure C was followed (40 °C, 16h). Yellow oil, 33.5 mg, 81% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (m, 2H), 6.99 (d, *J* = 8.8 Hz, 1H), 3.54 (s, 2H), 2.33 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDC₁₃) δ 177.0, 169.6, 146.9, 136.1, 132.1, 129.5, 125.6, 122.4, 36.3, 20.93, 20.90. HRMS (ESI) m/z calcd for C₁₁H₁₂O₄Na⁺ (M+Na⁺) 231.0628, found 231.0629.

41: 2-(2-acetoxy-5-(trifluoromethyl)phenyl)acetic acid

The general procedure C was followed (70 °C, 24h). White solid, 33.3 mg, 64% yield, M. p.: 108.8-110.6 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.60 (m, 2H), 7.36 – 7.17 (m, 1H), 3.65 (s, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 168.7, 151.7, 128.8 (q, $J_{C-F} = 3.8$ Hz), 128.6, 126.9(q, $J_{C-F} = 21.7$ Hz), 126.2 (q, $J_{C-F} = 3.9$ Hz), 123.8, 123.4(q, $J_{C-F} = 181.8$ Hz), 36.1, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3. HRMS (ESI) m/z calcd for C₁₁H₉F₃O₄Na⁺ (M+Na⁺) 285.0345, found 285.0346.

4m:2-(2,6-diacetoxy-3-methoxyphenyl)acetic acid

The general procedure C was followed (50 °C, 24h). Yellow oil, 20.9 mg, 37% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (br s, 1H), 7.00 (d, *J* = 9.0 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 1H), 3.80 (s, 3H), 3.50 (s, 2H), 2.30 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 169.5, 168.4, 149.3, 142.6, 139.0, 121.0, 120.2, 111.3, 56.3, 30.7, 20.8, 20.4.

4n_{mono}

4n_{mono}: 2-(2-acetoxy-4-fluorophenyl)acetic acid

The general procedure C was followed (50 °C, 48h). Brown oil, 25.3 mg, 60% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.4, 2.4 Hz,1H), 6.70- 6.788 (m, 2H), 3.55 (s, 2H), 2.29 (s,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 168.8, 162.2 (d, $J_{C-F} = 9.8$ Hz) 149.7 (d, $J_{C-F} = 10.7$ Hz), 132.2 (d, $J_{C-F} = 9.4$ Hz), 121.8 (d, $J_{C-F} = 3.7$ Hz), 113.4 (d, $J_{C-F} = 21.3$ Hz), 110.7 (d, $J_{C-F} = 24.6$ Hz), 35.6, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.9. HRMS (ESI) m/z calcd for C₁₀H₉FO₄Na⁺ (M+Na⁺) 235.0377, found 235.0378.

4ndi: 2-(2,6-diacetoxy-4-fluorophenyl)acetic acid

The general procedure C was followed (50 °C, 48h). White solid, 11.8 mg, 22% yield, M. p.: 117.7-119.9 °C.

¹H NMR (400 MHz, CDCl₃) δ 6.85 (d, J = 8.8 Hz, 2H), 3.50 (s, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 161.4 (d, $J_{C-F} = 248.3$ Hz), 150.3 (d, $J_{C-F} = 12.9$ Hz), 115.7, 108.5 (d, $J_{C-F} = 24.7$ Hz), 30.1, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4. HRMS (ESI) m/z calcd for C₁₂H₁₁FO₆Na⁺ (M+Na⁺) 293.0432, found 293.0435.

40mono: 2-(2-acetoxy-4-chlorophenyl)acetic acid

The general procedure C was followed (50 °C, 48h). Pale yellow solid, 25.5 mg, 56% yield, M. p.: 73.3-75.1 °C.

¹H NMR (400 MHz, CDCl³)δ 7.35 (dd, J = 8.2, 2.0 Hz, 1H), 7.31 (s, 1H), 3.54 (s, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 149.5, 134.0, 132.3, 126.6, 124.6, 123.3, 35.8, 20.8. HRMS (ESI) m/z calcd for C₁₀H₉ClO₄Na⁺ (M+Na⁺) 251.0082, found 251.0082.

40di: 2-(2,6-diacetoxy-4-chlorophenyl)acetic acid

The general procedure C was followed (50 °C, 48h). Pale yellow solid, 15.6 mg, 27% yield, M. p.: 135.8-137.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 2H), 3.51 (s, 2H), 2.29 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 150.1, 133.7, 120.9, 118.3, 30.2, 20.8. HRMS (ESI) m/z calcd for $C_{12}H_{10}ClO_6^{-1}$ (M-H⁺) 285.0171, found 285.0171.

4p_{mono}

4p_{mono}: 2-(2-acetoxy-4-bromophenyl)acetic acid

The general procedure C was followed (50 °C, 48h). Pale yellow solid, 28.0 mg, 52% yield, M. p.: 80.6-82.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 2H), 7.19 (d, J = 8.2 Hz, 1H), 3.54 (s, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 168.8, 149.6, 132.6, 129.5, 126.1, 125.1, 121.6, 35.8, 20.8. HRMS (ESI) m/z calcd for C₁₀H₉BrO₄Na⁺ (M+Na⁺) 294.9576, found 294.9577.

4pdi: 2-(2,6-diacetoxy-4-bromophenyl)acetic acid

The general procedure C was followed (50 °C, 48h). Pale yellow solid, 17.4 mg, 26% yield, M. p.: 156.4-158.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 2H), 3.50 (s, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 168.5, 150.2, 123.8, 120.9, 118.9, 30.3, 20.9. HRMS (ESI) m/z calcd for C₁₂H₁₁BrO₆Na⁺ (M+Na⁺) 352.9631, found 352.9633.

4q_{mono}

 $4q_{mono}$: 2-(2-acetoxy-4-methylphenyl)acetic acid

The general procedure **C** was followed (40 °C, 24h). Pale yellow oil, 23.6 mg, 57% yield. ¹H NMR (400 MHz, MeOD) δ 7.20 (d, J = 7.8 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 6.91 (s, 1H), 3.49 (s, 2H), 2.33 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, MeOD) δ 174.9, 170.9, 150.5, 139.7, 132.2, 127.8, 125.6, 124.1, 36.8, 21.0, 20.7. HRMS (ESI) m/z calcd for C₁₁H₁₁O₄⁻ (M-H⁺) 207.0663; found, 207.0662.

4qdi: 2-(2,6-diacetoxy-4-methylphenyl)acetic acid

The general procedure **C** was followed (40 °C, 24h). Pale yellow solid, 12.6 mg, 24% yield. ¹H NMR (400 MHz, MeOD) δ 6.88 (s, 2H), 3.44 (S, 2H), 2.34 (s, 3H), 2.28 (s, 6H). ¹³C NMR (101 MHz, MeOD) δ 174.0, 170.6, 151.1, 139.7, 121.8, 119.07, 31.0, 21.1, 20.7. HRMS (ESI) m/z calcd for C13H14O6Na+ (M+Na⁺) 289.0683, found 289.0683.

4rmono: 2-(2-acetoxy-4-(trifluoromethyl)phenyl)acetic acid

The general procedure C was followed (60 °C, 24h). White solid, 33.8 mg, 65% yield, M. p.: 111.4-113.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 2H), 7.42 (s, 1H), 3.65 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 149.3, 132.2, 131.4 (q, $J_{C-F} = 33.4$ Hz), 130.1, 123.5, (q, $J_{C-F} = 273.7$ Hz) 123.1 (q, $J_{C-F} = 3.6$ Hz), 120.2 (q, $J_{C-F} = 3.9$ Hz), 119.4, 36.1, 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ

-62.6. HRMS (ESI) m/z calcd for $C_{11}H_9F_3O_4Na^+$ (M+Na⁺) 285.0345, found 285.0346.

4rdi: 2-(2,6-diacetoxy-4-(trifluoromethyl)phenyl)acetic acid

The general procedure C was followed (60 °C, 24h). White solid, 8.4 mg, 13% yield, M. p.: 141.2-143.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 2H), 3.59 (s, 2H), 2.32 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 168.5, 150.2, 131.0 (q, J_{C-F} = 34.0 Hz), 123.6, 123.1 (q, J_{C-F} = 273.7 Hz), 117.6 (q, J_{C-F} = 3.8 Hz), 30.5, 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8. HRMS (ESI) m/z calcd for C₁₃H₁₁F₃O₆Na⁺ (M+Na⁺) 343.0400, found 343.0401.

4s: 2-(2-acetoxy-4-nitrophenyl)acetic acid

The general procedure C was followed (70 °C, 24h). White solid, 21.1 mg, 44% yield, M. p.: 133.6-135.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.4, 2.3 Hz, 1H), 8.04 (d, J = 2.3 Hz, 1H), 7.51 (d, J = 4.0 Hz, 1H), 3.70 (s, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 168.5, 149.4, 148.0, 133.3, 132.2, 121.2, 118.5, 36.1, 20.8. HRMS (ESI) m/z calcd for C₁₀H₉NO₆Na⁺ (M+Na⁺) 262.0322, found 262.0322.

4t: 2-(2-acetoxy-4-(methoxycarbonyl)phenyl)acetic acid

The general procedure **C** was followed (50 °C, 16h). Pale yellow oil, 30.0 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.7 Hz, 1H), 7.79 (d, J = 1.7 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 3.91 (s, 3H), 3.64 (s, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 169.0, 166.1, 149.1, 131.1, 131.1, 131.0, 127.5, 124.0, 52.5, 36.3, 20.9 (d, J = 6.0 Hz). HRMS (ESI) m/z calcd for C₁₂H₁₂O₆Na⁺ (M+Na⁺) 275.0526, found 275.0528.

4u: 2-(2-acetoxy-4-(methoxycarbonyl)phenyl)acetic acid

The general procedure **C** was followed (50 °C, 16h). Pale yellow oil, 12.5 mg, 28% yield. ¹H NMR (600 MHz, (CD₃)₂CO) δ 7.28 (d, *J* = 8.5 Hz, 1H), 6.80 (dd, *J* = 8.5, 2.7 Hz, 1H), 6.72 (d, *J* = 2.6 Hz, 1H), 3.78 (s, 3H), 3.48 (s, 2H), 2.25 (s, 3H). ¹³C NMR (151 MHz, (CD₃)₂CO) δ 172.4, 169.2, 160.4, 151.1, 132.6, 120.4, 112.2, 109.3, 55.8, 35.7, 20.8. HRMS (ESI) m/z calcd for C₁₁H₁₂O₅Na⁺ (M+Na⁺) 247.0577, found 247.0578.

4v_{mono}: 2-(2-acetoxyphenyl)propanoic acid

The general procedure C was followed (50 °C, 16h). Pale yellow oil, 24.1 mg, 58% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.31 (td, *J* = 7.6, 1.7 Hz, 1H), 7.24(td, *J* = 7.6, 1.6 Hz, 1H), 7.09 (dd, *J* = 8.0, 1.4 Hz, 1H), 3.86 (q, *J* = 7.2 Hz, 1H), 2.30 (s, 3H), 1.49 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0, 169.5, 148.4, 132.0, 128.7, 128.5, 126.5, 122.8, 39.7, 20.9, 17.1. HRMS (ESI) m/z calcd for C₁₁H₁₂O₄Na⁺ (M+Na⁺) 231.0628, found 231.0627.

4vdi: 2-(2,6-diacetoxyphenyl)propanoic acid

The general procedure C was followed (50 °C, 16h). Pale yellow solid, 16.0 mg, 30% yield, M. p.: 101.5-103.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 8.2 Hz, 1H), 7.03 (d, J = 8.2 Hz, 2H), 3.90 (q, J = 7.1 Hz, 1H), 2.28 (s, 6H), 1.35 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 169.0, 149.0, 127.98, 125.9, 120.5, 36.0, 20.8, 15.6. HRMS (ESI) m/z calcd for C₁₃H₁₃O₆⁻ (M-H⁺) 265.0718, found, 265.0718.

 $4w_{mono}$: 2-(2-acetoxyphenyl)butanoic acid

The general procedure **C** was followed (50 °C, 16h). Pale yellow oil, 14.6 mg, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 7.6, 1.8 Hz, 1H), 7.30 (td, J = 7.7, 1.8 Hz, 1H), 7.23 (td, J= 7.5, 1.4 Hz, 1H), 7.08 (dd, J = 7.9, 1.4 Hz, 1H), 3.63 (t, J = 7.6 Hz, 1H), 2.31 (s, 3H), 2.17 – 2.02 (m, 1H), 1.87 – 1.70 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 148.7, 130.6, 129.1, 128.5, 126.5, 122.9, 46.8, 25.2, 21.0, 12.2. HRMS (ESI) m/z calcd for C₁₂H₁₃O₄⁻ (M-H⁺) 221.0819; found, 221.0819.

 $4w_{di}$: 2-(2,6-diacetoxyphenyl)butanoic acid

The general procedure C was followed (50 °C, 16h). Yellow solid, 35.3 mg, 63% yield, M. p.: 116.2-118.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 8.2 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 3.77 – 3.68 (m, 1H), 2.27 (s, 6H), 2.16 – 2.06 (m, 1H), 1.63 (dt, J = 13.8, 7.6 Hz, 1H), 0.82 (t, J = 7.5 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 178.1, 169.0, 149.4, 128.1, 124.3, 120.6, 43.2, 23.4, 20.9, 12.3. HRMS (ESI) m/z calcd for $C_{14}H_{15}O_6^-$ (M-H⁺) 279.0874; found, 279.0874.

4x: 2-(2-acetoxyphenyl)-2-methylpropanoic acid

The general procedure C was followed (50 °C, 16h). White solid, 32.4 mg, 73% yield, M. p.: 122.1-124.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 7.7, 1.7 Hz, 1H), 7.35 – 7.28 (td, J = 7.9, 2.0 Hz, 1H), 7.28 -7.21 (td, J = 7.9, 1.2 Hz, 1H), 7.14 (dd, J = 7.9, 1.5 Hz, 1H), 2.23 (s, 3H), 1.54 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 183.2, 169.1, 148.0, 136.1, 128.1, 126.2, 126.1, 123.3, 44.5, 25.9, 21.0. HRMS (ESI) m/z calcd for $C_{12}H_{14}O_4Na^+$ (M+Na⁺) 245.0784, found 245.0785.

4y: 2-(2-acetoxy-3,6-dimethylphenyl)acetic acid

The general procedure C was followed (70 °C, 16h). White solid, 28.2 mg, 64% yield, M. p.: 128.2-130.4 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 7.8 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 3.57 (s, 2H), 2.34 (s, 3H), 2.32 (s, 3H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 169.1, 148.3, 136.4, 130.0, 128.1, 128.1, 125.0, 33.0, 20.6, 19.7, 16.4. HRMS (ESI) m/z calcd for $C_{12}H_{13}O_4^-$ (M-H⁺) 221.0819; found, 221.0820.

4z: 2-(2-acetoxy-4,6-difluorophenyl)acetic acid

The general procedure C was followed (90 °C, 12h). Pale yellow solid, 20.7 mg, 45% yield, M. p.: 93.3-95.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.78 (br, 1H), 6.79 – 6.75 (m, 2H), 3.60 (s, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 168.4, 162.9 (dd, J_{C-F} = 37.7, 14.9 Hz), 160.5 (dd, J_{C-F} = 37.4, 14.7 Hz), 150.5 (dd, $J_{C-F} = 13.2, 8.5$ Hz), 110.9 (dd, $J_{C-F} = 18.9, 4.4$ Hz), 106.8 (dd, $J_{C-F} = 24.9, 4.0$ Hz), 101.9 (t, $J_{C-F} = 26.0$ Hz), 28.8 (d, $J_{C-F} = 3.2$ Hz), 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4 (d, J = 6.7 Hz), -113.4 (d, J = 7.2 Hz). HRMS (ESI) m/z calcd for $C_{10}H_7F_2O_4^-$ (M-H⁺) 229.0318; found, 229.0317.

4za_{mono}: 2-(2-acetoxy-4-isobutylphenyl)propanoic acid

The general procedure C was followed (50 °C, 16h). Pale yellow oil, 16.5 mg, 31% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 8.0 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 3.80 (q, J = 8.0 Hz, 1H), 5.87 (s, 1H), 3.80 (q, J = 8.0 Hz, 1H), 5.87 (s, 1H), 5.87 (s, 1H), 5.80 (q, J = 8.0 Hz, 1H), 5.87 (s, 1H), 5.80 (q, J = 8.0 Hz, 1H), 5.80 (q, J

= 7.2 Hz, 1H), 2.45 (d, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.91 – 1.78 (m, 1H), 1.46 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 169.6, 148.1, 142.5, 129.1, 128.2, 127.4, 123.3, 45.0, 39.4, 30.2, 22.5, 21.0, 17.2. HRMS (ESI) m/z calcd for C₁₅H₂₀O₄Na⁺ (M+Na⁺) 287.1254, found 287.1250.

4zadi: 2-(2,6-diacetoxy-4-isobutylphenyl)propanoic acid

The general procedure **C** was followed (50 °C, 16h). Pale yellow oil, 29.1 mg, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (s, 2H), 3.83 (q, *J* = 7.1 Hz, 1H), 2.45 (d, *J* = 7.1 Hz, 2H), 2.26 (s, 6H), 1.84 (dt, *J* = 13.5, 6.8 Hz, 1H), 1.33 (d, *J* = 7.2 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 169.2 (d, *J* = 1.6 Hz), 148.7, 142.4, 123.0, 121.2, 44.9, 36.0, 30.0, 22.4 (d, *J* = 1.6 Hz), 20.9, 15.7. HRMS (ESI) m/z calcd for C₁₇H₂₂O₆Na⁺ (M+Na⁺) 345.1309, found 345.1309.

4zb

4zb: 2-(2-acetoxy-5-benzoylphenyl)propanoic acid

The general procedure **C** was followed (70 °C, 24h). Pale yellow oil, 43.3 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.79 (dd, *J* = 8.1, 1.3 Hz, 2H), 7.74 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 1H), 3.93 (q, *J* = 7.2 Hz, 1H), 2.33 (s, 3H), 1.53 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 179.4, 168.8, 151.7, 137.3, 135.5, 132.7, 132.4, 131.0, 130.6, 130.1, 128.5, 122.8, 39.9, 20.9, 16.9. HRMS (ESI) m/z calcd for C₁₈H₁₅O₅⁻ (M-H⁺) 311.0925; found, 311.0918.

4zc: 2-(3,5-diacetoxy-2-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid

The general procedure **C** was followed (70 °C, 16h). Yellow oil, 44.2 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (br, 1H), 7.57 – 7.49 (m, 2H), 7.48 – 7.35 (m, 3H), 7.14 (d, *J* = 6.3 Hz, 1H), 3.94 (q, *J* = 7.1 Hz, 1H), 2.32 (d, *J* = 19.6 Hz, 6H), 1.41 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 169.2, 167.8, 149.5 (d, *J*_{C-F} = 250.5 Hz), 144.0 (d, *J*_{C-F} = 3.5 Hz), 137.4 (d, *J*_{C-F} = 16.1 Hz), 134.0, 129.3 (d, *J*_{C-F} = 13.4 Hz), 129.1 (d, *J*_{C-F} = 2.8 Hz), 128.7, 128.5, 127.0, 121.8 (d, *J*_{C-F} = 3.4 Hz), 36.4, 20.8, 20.2, 15.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -133.6. HRMS (ESI) m/z calcd for C₁₉H₁₆FO₆⁻ (M-H⁺) 359.0936; found, 359.0936.

4zd: 2-(2-bromo-6-hydroxyphenyl)acetic acid

The general procedure **D** was followed. White solid, 29.9 mg, 65% yield, M. p.: 130.1-132.1 °C. ¹H NMR (400 MHz, MeOD) δ 7.04 (d, *J* = 8.0 Hz, 1H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 2H). ¹³C NMR (101 MHz, MeOD) δ 173.7, 156.9, 128.7, 125.7, 123.0, 122.2, 113.7, 34.9.

5: 3-(phenyl-d5)propanoic acid ¹H NMR (600 MHz, CDCl₃) δ 2.97 (t, *J* = 7.8 Hz,2H), 2.70 (t, *J* = 7.8 Hz, 2H).

2.6 Mechanistic studies

			PhI(OAc) ₂ (4.0 equiv)) ₂ (10 mol%), Ac-Gly-OH	(20 mol%)		о Пон
K H		Ac ₂	O (9.0 equiv), KOAc (2.0	equiv)		OAc
1a	D 5		HFIP, 90 C, 12h		2a _{mono} D	6
0.5 equiv	0.5 equiv				-	
Entry ^a	Time (min)	% Conv.	% Conv. 2y	k _H ([M]/min)	K _D ([M]/min)	k _H / k _D
		2a				
1	60	20.0	6.7	3.3×10 ⁻⁴	1.1×10 ⁻⁴	2.99
2	60	19.0	5.7	3.2×10 ⁻⁴	9.5×10 ⁻⁵	3.33
3	60	18.4	5.7	3.3×10 ⁻⁴	9.5×10 ⁻⁵	3.23
Average						3.18

Results from the kinetic isotope experiments with 1a and 5a:

^a The conversion was determined by ¹H NMR analysis of the crude reaction mixture, as discussed in the preceding section.

Results from the reversibility experiments of 5:

3. References

^{S1}Daichao Xu; Chunxin Lu; Wanzhi Chen. *Tetrahedron Lett.* **2012**, *68*, 1466.

4. NMR Spectrc of Compounds

S32

S33

S35

