Supporting Information:

N, S co-doped V₃Nb₁₇O₅₀@C fibers used for lithium- ion storage

Hongliang Fu^a, Qi Duan^a, Yue Lian^a, Dawei Wang^a, Yongqing Bai^a, Zonglun Cao ^b, Jie Sun^b, Jing Zhao^a, Huaihao Zhang^{a,*}

^a School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou

225002, PR China

^b SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, PR China

Experimental section

Synthesis of V₃Nb₁₇O₅₀ precursor

NH₄VO₃ (1.5 mmol, 99%) and NbCl₅ (8.5 mmol, 99.9%) were dissolved in 60 mL isopropyl alcohol successively and stirred at room temperature for 4 h to form a homogeneous solution. The obtained solution was transferred into a Teflon-lined autoclave (100 mL) and kept at 200 °C for 24 h. After cooling down naturally, the precipitate was collected by centrifugation, washed with deionized water and ethanol individually, and dried at 80 °C for 12 h in a vacuum oven.

Synthesis of V₃Nb₁₇O₅₀@NC and S-V₃Nb₁₇O₅₀@NC

 $V_3Nb_{17}O_{50}$ precursor (0.6g), PAN (0.2 g, Mw = 15000), and DMF (2 mL) were added to a beaker, and stirred in a 60 °C water bath for 10 h to acquire the precursor solution. Then, the precursor solution was transferred to a syringe with a 21 G needle (inner diameter = 0.5 mm), and spun into nanofibers under such condition: a voltage of 16 kV, a speed of 0.1 mL h⁻¹, and a distance of 15 cm between the needle and the plate. The spun fibers were cured at 200 °C for 2 h, then kept at 800 °C for 2 h in a tubular furnace in N₂ atmosphere at a heating rate of 2 °C min⁻¹, thus to obtain V₃Nb₁₇O₅₀@NC (the contrast sample). After that, V₃Nb₁₇O₅₀@NC mixed with sublimated sulfur in a mass ratio of 1:5 were placed in the tubular furnace, and hold at 500 °C for 2 h at a heating rate of 2 °C min⁻¹ under N₂ atmosphere to acquire S-V₃Nb₁₇O₅₀@NC.

Material characterization

The composition and purity of the obtained samples were characterized by X-ray powder diffraction (XRD, Bruker, D8 super speed, Germany) with Cu K α radiation (λ = 1.5406 Å). The Raman spectra of products were recorded using a Raman spectrometer (Renishaw Invia) at 532 nm laser wavelength. The morphology and microstructure were observed by scanning electron microscopy (FESEM, Hitachi, S-4800 II, Japan) and transmission electron microscopy (TEM, Philips, TECNAI 12, Holland). The lattice parameters of samples were determined by high-resolution transmission electron microscopy (HRTEM, Tecnai, G2F30 S-TWIN, USA) equipped with an energy dispersive X-ray spectrometer (EDS). Surface analysis of samples were carried out by X-ray photoelectron spectroscopy (XPS, Thermo Science, ESCALAB 250Xi, USA). The carbon content of the samples was available by thermogravimetric analysis (Pyris 1 TGA, PerkinElmer) from room temperature to 800 °C at a rate of 5 °C min^{-1} in the air atmosphere.

Electrochemical measurements

Electrochemical tests were attainable on V₃Nb₁₇O₅₀@NC and S-V₃Nb₁₇O₅₀@NC electrodes using half-cell and full-cell. V₃Nb₁₇O₅₀@NC/S-V₃Nb₁₇O₅₀@NC (the active material, 80 wt%), acetylene black (the conductive agent, 10 wt%), and polyvinylidene fluoride (PVDF, the binder, 10 wt%) were homogeneously mixed in N-methyl-2pyrrolidone (NMP). The resulting slurries were coated on Cu foil, dried overnight at 80 °C, and then roll-pressed (with ~ 1 mg cm⁻² mass loading of the active material). The half-cell tests were carried out using 2032-type coin cells with Li metal as anode, S-V₃Nb₁₇O₅₀@NC as cathode, 1.0 M LiPF₆ in ethylene carbonate/dimethyl carbonate (EC/DMC, 1:1) as electrolyte, and polypropylene membrance (Celgard 2400) as separator. All coin cell assembly steps were operated in an Ar-filled glove box. For LIC, the activated carbon (AC) cathode was prepared using Al foil as current collector in the same way as mentioned above. S-V₃Nb₁₇O₅₀@NC was employed as anode and activated carbon as cathode. The mass ratio of cathode to anode was controlled at about 3.6:1 in the voltage range of 0.5–3.0 V. The galvanostatic charge/discharge (GCD) performances of LIB and LIC were available on a Neware Battery Tester. Cyclic voltammetry (CV) measurements were acquired on a CHI 660E electrochemical workstation.

Fig. S1. Digital photo of V₃Nb₁₇O₅₀@PAN precursor after electrospinning.

Fig. S2. TGA curve of $S-V_3Nb_{17}O_{50}$ @NC.

Fig. S3. V₃Nb₁₇O₅₀@NC nanofibers plate (A); Contact angle of V₃Nb₁₇O₅₀@NC with water (B) and DMC (C); S-V₃Nb₁₇O₅₀@NC nanofibers plate (D); Contact angle of S-V₃Nb₁₇O₅₀@NC with water (E) and DMC (F).

Fig. S4. (A~D) Bending test of S-V₃Nb₁₇O₅₀@NC nanofibers.

Fig. S5. SAED pattern of S-V₃Nb₁₇O₅₀@NC.

Fig. S6. EDS of $S-V_3Nb_{17}O_{50}$ @NC. (Copper element from the TEM matrix.)

Element	Weight (%)	Atomic (%)	Uncertainly (%)	Detector Correction	K-Factor
С	37.29	69.43	0.63	0.26	4.032
N	1.71	2.73	0.16	0.26	3.903
0	10.07	14.08	0.26	0.49	2.008
S	2.47	1.72	0.13	0.93	1.015
V	1.83	0.80	0.07	0.99	1.257
Nb	46.6	11.21	0.61	0.99	3.705

Table. S1. Quantification results of S-V $_3Nb_{17}O_{50}@NC$

Fig. S7. XPS spectra of S-V₃Nb₁₇O₅₀@NC: (A) Scanning spectrum; (B) S 2p; (C) Nb 3d; (D) C 1s; (E) N 1s; (F) V 2p and (G) O 1s. Scanning spectrum of V₃Nb₁₇O₅₀ (H).

Fig. S8. CV curves of $V_3Nb_{17}O_{50}@NC$ (A) and S- $V_3Nb_{17}O_{50}@NC$ (B) at scanning rates from 0.1 to 1 mV s⁻¹; Total current (solid line) and capacitive current (shaded part) of $V_3Nb_{17}O_{50}@NC$ (C) and S- $V_3Nb_{17}O_{50}@NC$ (D) at 1 mV s⁻¹; (E) Relationship between scanning rate and peak current density to calculate b value; (F) Contribution ratio of capacitance and diffusion control processes at various scanning rates.

The dynamic behavior of the sample is studied by the relationship between current *(i)* and scan rate *(v)*:

$$i = av^b \tag{1}$$

To gain b value, the formula (1) is converted (1) into (2):

$$\log(i) = \operatorname{blog}(v) + \log(a) \tag{2}$$

where a and b are adjustable parameters. The b value, the key parameter to distinguish capacitive-controlled behavior and diffusion-controlled behavior, can be obtained from a linear relationship between log(i) and log(v). Specifically, b \approx 1 demonstrates the dominance of capacitive controlled process, while b \approx 0.5 shows the ruling diffusion-

controlled process. The b values of $V_3Nb_{17}O_{50}$ @NC and S- $V_3Nb_{17}O_{50}$ @NC (Fig. S8E) are 0.84 and 0.91 individually, proving the higher capacitance contribution of the latter (Fig. S8F). Obviously, the defects from N, S co-doping widen the Li⁺ transmission channel and boost the ion/electron transmission rate. To further quantify the capacitance contribution ratio, the total current can be divided into capacitive current ($k_1 v$) and diffusion current ($k_2 v^{1/2}$) as follows:

$$i = k_1 v + k_2 v^{1/2}$$
(3)

where k_1 and k_2 represent the ratio of capacitive control and diffusive control at fixed potentials. At the current density of 1 mV s⁻¹, the capacitance contribution ratio of V₃Nb₁₇O₅₀@NC and S-V₃Nb₁₇O₅₀@NC are 78.7% (Fig. S8C) and 85.9% (Fig. S8D) respectively, illustrating the larger capacitance reactivity of S-V₃Nb₁₇O₅₀@NC. With the rise of the scan rate, the capacitance contribution ratio of the electrode materials gradually increases (Fig. S8F). From the CV curve (integrated area) and capacitance contribution ratio, the S-V₃Nb₁₇O₅₀@NC electrode supplies superior electrochemical performance. Accordingly, the N, S co-doping is helpful to expand lattice channels, provide more reactive sites, and accelerate the lithium-ion transport dynamics.

Fig. S9. (A) Impedance spectra of V₃Nb₁₇O₅₀@NC and S-V₃Nb₁₇O₅₀@NC electrode; (B) Warburg impedance coefficient (σ) from the linear fitting line of Z' versus $\omega^{-1/2}$.

Fig. S10. GCD curves (A) and CV curves (B) of AC//Li.

The energy density and power density of $S-V_3Nb_{17}O_{50}$ (MC//AC were achieved by the following formulas:

$$C = \frac{I \times t}{(V_{\max} - V_{\min}) \times m} \tag{1}$$

$$E = \int_{t_1}^{t_2} IV dt = \frac{1}{2} C(V_{\max} + V_{\min})(V_{\max} - V_{\min}) = \frac{V_{\max} + V_{\min}}{2} \times \frac{I \times t}{m} \times \frac{1}{3.6}$$
(2)

$$P = \frac{3600 \times E}{t} \tag{3}$$

where V_{max} (3.0 V) and V_{min} (0.5 V) are the initial and final discharge potentials (V), *I* is the discharge current (A), *t* is the discharge time (s), *m* is the total mass of the active materials in both anode and cathode (g), *C* is the specific capacitance (F g⁻¹), *E* is the energy density (Wh kg⁻¹), and *P* is the power density (W kg⁻¹).

Fig. S11. CV curves (A); GCD curves (B); Ragone plots (C); (D) Cycling performance and Coulombic efficiency at 1 A g⁻¹.

The diffusion coefficient of lithium-ion (D_{Li}) can be further calculated from the low-frequency region according to the following formula:

$$D_{\rm Li} = \frac{({\rm R}T)^2}{2A^2 {\rm n}^4 F^4 C_{\rm Li}^2 \sigma^2}$$
(4)

$$Z' = R_{\rm ct} + R_{\rm s} + \sigma \omega^{-1/2} \tag{5}$$

where R is the gas constant, T is the absolute temperature (K), A is the surface area of the electrode (cm²), n is the electrons number per molecule in the intercalation

process, F is the Faraday constant, C_{Li} is the Li⁺ molar concentration in electrode (mol L⁻¹), ω is the angular frequency, and σ is the Warburg factor related with Z'. In addition, the σ can be obtained by linearly fitting Z' with $\omega^{-1/2}$. D_{Li} is acquired by substituting different values of σ (Fig. S9B) into equation (4). From the calculation results, the D_{Li} of S-V₃Nb₁₇O₅₀@NC (1.16×10⁻⁷ cm² s⁻¹) is larger than that of V₃Nb₁₇O₅₀@NC (2.18×10⁻⁸ cm² s⁻¹), which proves that N, S co-doping endows S-V₃Nb₁₇O₅₀@NC with good conductivity and ion mobility.

Based on the good electrochemical performance of S-V₃Nb₁₇O₅₀@NC with lithium foil electrode in half battery, its application in lithium-ion hybrid capacitor (LIC) was further studied. Herein, the assembled LIC as an energy storage device combine Li⁺-intercalation Faraday reaction (S-V₃Nb₁₇O₅₀@NC) with ion adsorption/desorption non-Faraday reaction (AC). To maximize the energy storage capacity, the working voltage range and the mass ratio of $S-V_3Nb_{17}O_{50}$ (a)NC anode to AC cathode need to be optimized. According to the specific capacity at the same current density, the optimum mass ratio of two electrodes was calculated to be 1:3.6 using the charge conservation law $(C_* \times E_* \times m_* = C_* \times E_* \times m_-)$. The voltage range was carefully determined to be 0.5 V to 3 V. The electrochemical performance of AC electrode was also tested in a half-cell with AC as cathode and Li as anode. As for CV curve, the AC electrode at a scan rate of 1 mV s⁻¹ (Fig. S10B) shows the typical characteristics of double-layer capacitance, along with highly symmetric triangles (vs. Li/Li⁺) in the GCD curve (Fig. S10A). The CV (Fig. S11A) and GCD (Fig. S11B) curves of the LIC (S-V₃Nb₁₇O₅₀(a)NC//AC) do not appear typically rectangular and triangular, owning to the coupling of pseudo-capacitive intercalation and surface adsorption behavior. During the discharge process, Li⁺ is de-embedded from S-V₃Nb₁₇O₅₀@NC, accompanied by the PF⁶⁻ desorption from AC surface. While for the charge process, the reaction is reversed. S-V₃Nb₁₇O₅₀@NC//AC (Fig. S11D), retaining a specific capacitance of 85.8% after 2000 cycles at a current density of 1 A g⁻¹, with nearly 100% Coulombic efficiency, demonstrate good cycling stability.

The crystal plane spacing of $V_3Nb_{17}O_{50}$ and $V_3Nb_{17}O_{50}$ @NC was analyzed by HRTEM (Fig. S12). The crystal plane spacing of $V_3Nb_{17}O_{50}$ (Fig. S12A), $V_3Nb_{17}O_{50}$ @NC (Fig. S12B), S- $V_3Nb_{17}O_{50}$ @NC (Fig. 2H) are 0.316 nm, 0.348 nm, 0.367 nm, respectively, indicating that the crystal plane spacing of $V_3Nb_{17}O_{50}$ is widened after N and S doping.

Fig. 12. HRTEM images of V₃Nb₁₇O₅₀ (A), V₃Nb₁₇O₅₀@NC (B), and S-V₃Nb₁₇O₅₀@NC (C).

The specific surface area and pore size distribution of S-V₃Nb₁₇O₅₀@NC were analyzed by N₂ adsorption analyzer (BET). From BET information, a large S_{BET} (78.4 m² g⁻¹) and a good mesoporous size distribution (centred at 10 nm) of S-V₃Nb₁₇O₅₀@NC (Fig. S13) are achieved, which is helpful to accelerate Li⁺ diffusion and provide more electroactive sites.

Fig. S13. BET adsorption isotherms (A) and pore size distribution (B) of S-V₃Nb₁₇O₅₀@NC.

Fig. S14. SEM of V₃Nb₁₇O₅₀@NC (A and B) and S-V₃Nb₁₇O₅₀@NC (C and D).

The GCD curves of V₃Nb₁₇O₅₀, V₃Nb₁₇O₅₀@NC, and S-V₃Nb₁₇O₅₀@NC (Fig. S15) were tested at 0.1 A g⁻¹ current density. Specifically, the V₃Nb₁₇O₅₀, V₃Nb₁₇O₅₀@NC, and S-V₃Nb₁₇O₅₀@NC display reversible capacity of 163.4 mAh g⁻¹, 186.4 mAh g⁻¹, and 221.2 mAh g⁻¹, respectively. Compared with V₃Nb₁₇O₅₀, V₃Nb₁₇O₅₀@NC increases by 23 mAh g⁻¹, while S-V₃Nb₁₇O₅₀@NC rising 58.7 mAh g⁻¹, indicating sulfur vapor etching produces advanced porous structure and large specific surface area of S-V₃Nb₁₇O₅₀@NC, which is conducive to Li⁺ transport dynamics.

Fig. S15. GCD curves of V₃Nb₁₇O₅₀, V₃Nb₁₇O₅₀@NC and S-V₃Nb₁₇O₅₀@NC at 0.1 A g⁻¹.

GCD curves and time-capacity curves of $V_3Nb_{17}O_{50}$, $V_3Nb_{17}O_{50}$ @NC, and S- $V_3Nb_{17}O_{50}$ @NC were tested at 5 A g⁻¹ current density (Fig. S16). Specifically, the reversible specific capacity of $V_3Nb_{17}O_{50}$, $V_3Nb_{17}O_{50}$ @NC, and S- $V_3Nb_{17}O_{50}$ @NC are 38.7 mAh g⁻¹, 51.2 mAh g⁻¹, and 84.8 mAh g⁻¹, respectively. Meanwhile, when the reversible specific capacity reaches 38.7 mAh g⁻¹, the charging time required for $V_3Nb_{17}O_{50}$ @NC and S- $V_3Nb_{17}O_{50}$ @NC and S- $V_3Nb_{17}O_{50}$ @NC is 30.02 s, 27.98 s and 25.73 s, individually, indicating that the N, S co-doping enhances the conductivity and provides more active sites to increase capacitance performance.^{1,2,3}

Fig. S16. GCD curves and time-capacity curves at 5 A g⁻¹.

To further illustrate the carbon layer effect, the GCD curves of initial three cycles for $V_3Nb_{17}O_{50}$ and $S-V_3Nb_{17}O_{50}$ @NC are supplemented (Fig. S17). In detail, the first charge/discharge cycle of $V_3Nb_{17}O_{50}$ delivers specific capacity of 176.3/220.6 mAh g⁻¹ with a low initial cycle Coulombic efficiency (79.9%). Relatively, $S-V_3Nb_{17}O_{50}$ @NC shows high specific capacity (228.8/235.7 mAh g⁻¹) and initial Coulombic efficiency (97.1%), verifying the improved Li⁺ transport efficiency. Specifically, the retention of Li⁺ in the $V_3Nb_{17}O_{50}$ lattice and SEI layer formation leads to lattice blockage, thus lowering $V_3Nb_{17}O_{50}$ specific capacity.⁴ Meanwhile, the amorphous carbon layer, as a SEI layer to some extent, can provide more Li⁺ transport channels, lessen excessive Li⁺ entering $V_3Nb_{17}O_{50}$ lattice, and boost the Li⁺ transport uniformity and stability.^{5,6,7}

Fig. S17 GCD curves of $V_3Nb_{17}O_{50}$ (A) and S- $V_3Nb_{17}O_{50}$ @NC (B) at 0.1 A g⁻¹.

Sample	Theoretical capacity (mAh g ⁻¹)	References	
This work	423		
TiNb ₂ O ₇	387	8	
Ti ₂ Nb ₁₀ O ₂₉	396	9	
FeNb ₁₁ O ₂₉	400	10	
CrNb ₁₁ O ₂₉	401	11	
AlNb ₁₁ O ₂₉	390	12	
GaNb ₁₁ O ₂₉	379	13	
Mg ₂ Nb ₃₄ O ₈₇	396	14	
Zn ₂ Nb ₃₄ O ₈₇	389	15	
Cu ₂ Nb ₃₄ O ₈₇	401	16	
AgNb ₁₃ O ₃₃	377.9	17	
MoNb ₁₂ O ₃₃	401	18	
ZrNb ₁₄ O ₃₇	378.3	19	
HfNb ₂₄ O ₆₂	378	20	

Table. S2. Theoretical capacity of bimetallic niobium oxide

References:

- X. Li, X. Hu, L. Zhou, R. Wen, X. Xu, S. Chou, L. Chen, A.-M. Cao and S. Dou, *J. Mater. Chem. A*, 2019, 7, 11976–11984.
- Z. Lu, Y. Zhai, N. Wang, Y. Zhang, P. Xue, M. Guo, B. Tang, D. Huang, W.
 Wang, Z. Bai and S. Dou, *Chem. Eng. J.*, 2020, **380**, 122455.
- 3 W. Gou, X. Kong, Y. Wang, Y. Ai, S. Liang, A. Pan and G. Cao, *Chem. Eng. J.*, 2019, **374**, 545–553.
- 4 Q. Fu, X. Zhu, R. Li, G. Liang, L. Luo, Y. Chen, Y. Ding, C. Lin, K. Wang and X. S. Zhao, *Energy Storage Mater.*, 2020, **30**, 401–411.
- 5 L. Chen, J. Zhang, R. Tong, J. Zhang, H. Wang, G. Shao and C. Wang, *Small*, 2022, **18**, 2106142.
- 6 Y. Lian, Y. Zheng, D. Wang, Y. Bai, H. Yan, Z. Wang, J. Zhao and H. Zhang, *J. Colloid Interface Sci.*, 2022, **606**, 77–86.
- 7 H.-S. Lim, Y.-K. Sun and K.-D. Suh, J. Mater. Chem. A, 2013, 1, 10107.
- 8 Y. Huang, X. Li, J. Luo, K. Wang, Q. Zhang, Y. Qiu, S. Sun, S. Liu, J. Han and Y. Huang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 8696–8703.
- 9 J. Zeng, L. Yang, R. Shao, L. Zhou, W. Utetiwabo, S. Wang, R. Chen and W. Yang, J. Colloid Interface Sci., 2021, 600, 111–117.
- 10 R. Zheng, S. Qian, X. Cheng, H. Yu, N. Peng, T. Liu, J. Zhang, M. Xia, H. Zhu and J. Shu, *Nano Energy*, 2019, 58, 399–409.
- 11 Q. Fu, X. Liu, J. Hou, Y. Pu, C. Lin, L. Yang, X. Zhu, L. Hu, S. Lin, L. Luo and Y. Chen, *J. Power Sources*, 2018, **397**, 231–239.
- 12 X. Lou, R. Li, X. Zhu, L. Luo, Y. Chen, C. Lin, H. Li and X. S. Zhao, *ACS Appl. Mater. Interfaces*, 2019, **11**, 6089–6096.
- 13 X. Lou, Q. Fu, J. Xu, X. Liu, C. Lin, J. Han, Y. Luo, Y. Chen, X. Fan and J. Li, ACS Appl. Nano Mater., 2018, 1, 183–190.
- 14 X. Zhu, Q. Fu, L. Tang, C. Lin, J. Xu, G. Liang, R. Li, L. Luo and Y. Chen, *ACS Appl. Mater. Interfaces*, 2018, **10**, 23711–23720.
- 15 X. Zhu, H. Cao, R. Li, Q. Fu, G. Liang, Y. Chen, L. Luo, C. Lin and X. S. Zhao, *J. Mater. Chem. A*, 2019, **7**, 25537–25547.
- 16 X. Cai, H. Yan, Z. Yang, J. Zhang, H. Yu, L. Zhang and J. Shu, *Ceram. Int.*, 2021, **47**, 24511–24518.
- 17 Z. Chen, X. Cheng, W. Ye, R. Zheng, H. Zhu, H. Yu, N. Long, M. Shui and J. Shu, *Chem. Eng. J.*, 2019, **366**, 246–253.
- 18 X. Zhu, J. Xu, Y. Luo, Q. Fu, G. Liang, L. Luo, Y. Chen, C. Lin and X. S. Zhao, J. Mater. Chem. A, 2019, 7, 6522–6532.
- 19 Y. Li, R. Zheng, H. Yu, X. Cheng, T. Liu, N. Peng, J. Zhang, M. Shui and J. Shu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 22429–22438.
- 20 Q. Fu, H. Cao, G. Liang, L. Luo, Y. Chen, V. Murugadoss, S. Wu, T. Ding, C. Lin and Z. Guo, *Chem. Commun.*, 2020, **56**, 619–622.