Supporting Information

Silyl Formates for the Transfer Hydrosilylation of Ketones

R. Martín Romero, Neethu Thyagarajan, Nora Hellou, Clément Chauvier, Timothé Godou, Lucile Anthore-Dalion and Thibault Cantat*

Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex (France).

E-mail: thibault.cantat@cea.fr

Table of contents

1)	General considerations	S1
2)	Optimization of the reaction conditions	S2
3)	Screening of silyl formates	S3
4)	General procedures	S4
5)	Characterization of isolated and new silyl ethers (scaled up reactions)	S5
6)	Evidence for the crucial role of the N-H function	S9
7)	Study of the selectivity between aldehyde and ketone	S10
8)	TESOCDO synthesis	S11
9)	Deuterium labelling experiment	S14
10)	Experimental evidence of ruthenium monohydride species	S15
11)	Competition reactions	S16
12)	NMR spectra of isolated compounds	S17
13)	References	S31

1. General considerations

Unless otherwise stated, all reactinos were performed in a recirculating *mBraun LabMaster DP* inert atmosphere (Ar) drybox and vacuum Schlenk lines. Glassware were dried overnight at 120 °C. NMR soectra were recorded ib a *Bruker Avance Nea 400 MHz* spectrometer. Chemical shifts were reported as ppm downfield from residual solvent peaks. The following calibrations were used: CDCl₃ d = 7.26 and 77.16 ppm, THF-*d8* δ = 3.58, 1.72 and 67.21, 25.31 ppm, C₆D₆ δ = 7.16 and 128.06 ppm, CD₂Cl₂ δ = 5.32 and 53.84 ppm. HRMS experiments were performed on a Bruker maXis within the service centre at Institute of Organic and Analytic Chemistry, University of Orléans. 4Å molecular sieves (Aldrich) were dried under dynamic vacuum at 250 °C for 48 h prior to use. Deuterated solvents were dried and stored under molecular sieves. Toluene was dried with sodium benzophenone, distilled and stored under molecular sieves. [Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -triphos)] (1), *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^3 -PN^{Me}P^{Nh})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^3 -PN^{Me}P^{Nh})] (2) ^[1], *fac*-[Ru(κ^1 -OAc)(κ^3 -PN^{Me}P^{Nh})] (2)

2. Optimization of the reaction conditions

In a glovebox, a *J. Young* NMR Tube was charged with the catalyst (x mol%), C_6D_6 (0.4 mL), acetophenone **4a** (0.1 mmol, 1.0 equiv.), mesitylene (10 µL) and the triethylsilylformate (1.4 equiv.). The tube was sealed, brought out of the glovebox and heated. The reaction progress was monitored by ¹H NMR spectroscopy. Yields were determined by ¹H NMR integration versus mesitylene as an internal standard.

Table S1. Screening of conditions. 0.1 mmol scale

O J Ja	l 5 \ Cat	O SiEt ₃ a (1.4 equiv.) talyst (x mol%) Mesitylene Solvent, T, t	OSiEt ₃	Ph ₂ P·, Ph ₂ P·, Ph ₂ C	² Ph ₂ u, O) O) 1	$\begin{array}{c} \begin{array}{c} & & \\ $	
	Entry	Catalyst (mol%)	Solvent	T (°C)	t (h)	Yield (%)	
	1	1 (3)	CD ₃ CN	90	24	0	
	2	2 (3)	CD ₃ CN	90	11	78	
	3	2 (3)	d8-THF	90	2.5	99	
	4	2 (3)	CD_2CI_2	90	22	0	
	5	2 (3)	d8-Toluene	90	2.5	92	
	6	2 (3)	C_6D_6	90	1.5	99	
	7	2 (3)	EtOAc	90	3	97	
	8	2 (3)	Anisole	90	9	77	
	9	2 (1.5)	C_6D_6	90	37	79	
	10	2 (3)	C_6D_6	70	4	99	
	11	2 (3)	C_6D_6	50	36	99	

3. Screening of silyl formates

In a glovebox, a *J. Young* NMR Tube was charged with fac-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^HP^{Ph})] (2) (3 mol%), C₆D₆ (0.4 mL), acetophenone **4a** (0.1 mmol, 1.0 equiv.), mesitylene (10 μ L) and the trialkylsilylformate (1.4 equiv.). The tube was sealed, brought out of the glovebox and heated. The reaction progress was monitored by ¹H NMR spectroscopy. Yields were determined by ¹H NMR integration versus mesitylene as an internal standard.

Table S2. Screening of silylformates. 0.1 mmol scale

O J J J J	0 H O SiR'R₂ 5 (1.4 equiv.) 2 (3 mol%) Mesitylene C ₆ D ₆ , 90°C, 1.5h		OSiR'	R ₂
Entry	R'	R	Yield (%)	
1	Et	Et	99	
2	Ме	Ме	93	
3	Ph	Me	98	
4	Ме	Ph	71	
5	<i>t</i> Bu	Me	0	
6	<i>i</i> Pr	<i>i</i> Pr	0	
7	OEt	OEt	38	

4. General procedures 4.1.General Procedure for NMR Scale reactions (GP1)

In a glovebox, a *J. Young* NMR Tube was charged with *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^HP^{Ph})] (2) (3 mol%), C₆D₆ (0.4 mL), ketone (0.1 mmol, 1.0 equiv.), mesitylene (10 μ L) and the appropriate silvl formate (1.4 – 2.0 equiv.). The tube was sealed, brought out of the glovebox and heated at 90 °C. The reaction progress was monitored by ¹H NMR spectroscopy. Yields of silvlethers were determined by ¹H NMR integration versus mesitylene as an internal standard ($\delta_{\rm H} = 6.71$ and 2.15 ppm in C₆D₆).

Representative NMR spectra for the transfer hydrosilylation of acetophenone (3a) with Et₃SiOCHO (5a) is given in Figures S1.

Figure S1. Representative ¹H NMR spectra obtained in C_6D_6 for the transfer hydrosilylation of acetophenone (**3a**) (0.1 mmol) with Et₃SiCHO (**5a**). a) Crude reaction mixture before heating; t = 0. b) Crude mixture after heating 1.5 h at 90 °C.

The formation of known silvl ethers 4c,^[4] 4d,^[5] 4g,^[6] 4i,^[7] 4j,^[8] 4la,^[9] 4lb,^[10] 4m,^[7] 4n,^[7] 4t,^[7] 4u,^[7] 4v,^[11] was confirmed by ¹H NMR and/or ¹³C NMR analysis, with spectroscopic data in accordance with literature.

4.2.General Procedure for preparative scale up reactions (GP2)

In a flamed and dried Schlenk tube, fac-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^HP^{Ph})] (2) (3 mol%), Toluene (2 mL), ketone (0.5 mmol, 1.0 equiv.) and the appropriate silvl formate (1.4 – 2.0 equiv.) were added. The Schlenk tube was sealed, and heated at 90 °C. After reaction completion, the solvent was removed under reduced pressure. The final crude product was purified by chromatography (silica-gel, cyclohexane/ethyl acetate or petroleum ether/Ethyl acetate mixtures).

5. Characterization of isolated and new silyl ethers (scaled up reactions)

(1-(*p*-Tolyl)ethoxy)triethylsilane (4b)

Isolated as a colorless oil in 90% yield (procedure GP2). Spectroscopic data in accordance with literature.^[5]

¹**H** NMR (200 MHz, d_8 -THF): $\delta = 7.21$ (d, J = 7.9 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 4.86 (q, J = 6.3 Hz, 1H), 2.28 (s, 3H), 1.36 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.8 Hz, 9H), 0.63-0.48 (m, 6H).

¹³C NMR (50 MHz, d_8 -THF): $\delta = 144.8, 136.6, 129.2, 125.7, 71.2, 27.7, 21.0, 7.0, 5.4.$

(1-(*p*-Iodophenyl)ethoxy)triethylsilane (4e)

Isolated as a colorless oil in 86% yield (procedure GP2).

¹H NMR (400 MHz, CDCl₃): δ = 7.63 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J*= 8.2 Hz, 2H), 4.80 (q, *J* = 6.3 Hz, 1H), 1.38 (d, *J* = 6.3 Hz, 3H), 0.91 (t, *J* = 7.9 Hz, 9H), 0.61-0.52 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 146.8, 137.3, 127.4, 92.1, 70.2, 27.3, 6.9, 4.9. HRMS (ESI+) (*m*/*z*): [M - H]⁺ calcd. for C₁₄H₂₂IOSi, 361.0479; found: 361.0481

Methyl 4-(1-((triethylsilyl)oxy)ethyl)benzoate (4f)

Isolated as a colorless oil in 85% yield (procedure GP2).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.99 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 4.90 (q, *J* = 6.4 Hz, 1H), 3.90 (s, 3H), 1.42 (d, *J* = 6.3Hz, 3H), 0.91 (t, *J* = 8.0 Hz, 9H), 0.62-0.51 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 167.3, 152.3, 129.7, 128.8, 125.3, 70.4, 52.1, 27.2, 6.9, 4.9. HRMS (ESI+) (*m*/*z*): [M + H]⁺ calcd. for C₁₆H₂₇O₃Si, 295.1724; found: 295.1725.

(1-(p-Nitrophenyl)ethoxy)triethylsilane (4h)

Isolated as a colorless oil in 95% yield (procedure GP2). Spectroscopic data in accordance with literature.^[12]

¹H NMR (200 MHz, *d*₈-THF): δ = 8.18 (d, *J* = 8.8 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 5.06 (q, *J* = 6.3 Hz, 1H), 1.42 (d, *J* = 6.4 Hz, 3H), 0.94 (t, *J* = 7.8 Hz, 9H), 0.70-0.52 (m, 6H). ¹³C NMR (50 MHz, *d*₈-THF): δ = 155.1, 147.9, 126.8, 124.0, 70.6, 27.2, 6.9, 5.2.

(1-(Phenyl)butoxy)triethylsilane (4k)

Isolated as a colorless oil in 80% yield (procedure GP2).

¹**H** NMR (200 MHz, C₆D₆): $\delta = 7.36-7.28$ (m, 2H), 7.24-7.06 (m, 3H), 4.63 (dd, J = 7.2, 5.1 Hz, 1H), 1.90-1.20 (m, 4H), 1.01-0.79 (m, 12H), 0.65-0.48 (m, 6H). ¹³C NMR (50 MHz, C₆D₆): $\delta = 146.3$, 128.4, 127.3, 126.3, 75.3, 43.7, 19.3, 14.3, 7.1, 5.3. **HRMS (ESI+)** m/z [M - H]⁺ calcd. for C₁₆H₂₇OSi, 263.1826; found: 263.1827 (Data of the oxidized product).

(di-p-Tolylmethoxy)triethylsilane (4ma)

Isolated as a white solid in 80% yield (procedure GP2).

¹H NMR (200 MHz, d_8 -THF) δ = 7.23 (d, J = 7.6 Hz, 4H), 7.04 (d, J = 7.6 Hz, 4H), 5.75 (s, 1H), 2.26 (s, 6H), 0.89z (t, J = 7.5 Hz, 9H), 0.70 – 0.43 (m, 6H). ¹³C NMR (50 MHz, d_8 -THF) δ = 143.5, 136.7, 129.2, 126.8, 76.9, 20.9, 7.0, 5.4. HRMS (ESI+) (m/z): [M + Na]⁺ calcd. for C₂₁H₃₀NaOSi, 349.1958; found: 349.1962.

(di-p-Tolylmethoxy)triemethylsilane (4mb)

Isolated as a colorless oil in 70% yield (procedure GP2).

¹H NMR (200 MHz, CD₂Cl₂) δ = 7.20 (d, *J* = 7.7 Hz, 4H), 7.10 (d, *J* = 7.7 Hz, 4H), 5.71 (s, 1H), 2.30 (s, 6H), 0.07 (s, 9H). ¹³C NMR (50 MHz, CD₂Cl₂) δ = 142.7, 137.0, 129.1, 126.6, 76.4, 21.1, 0.1. HRMS (ESI+) (*m*/*z*): [M + Na]⁺ calcd. for C₁₈H₂₄NaOSi, 307.1489; found: 307.1491.

[(p-Nitrophenyl)(Phenyl)methoxy]triethylsilane (40a)

Isolated as a colorless oil in 95% yield (procedure GP2).

¹**H** NMR (200 MHz, d_8 -THF) $\delta = 8.15$ (d, J = 8.9 Hz, 2H), 7.65 (d, J = 8.9 Hz, 2H), 7.47-7.36 (m, 2H), 7.34-7.17 (m, 3H), 5.96 (s, 1H), 0.89 (t, J = 7.7 Hz, 9H), 0.71-0.53 (m, 6H). ¹³**C** NMR (50 MHz, d_8 -THF) $\delta = 153.4$, 147.9, 144.9, 129.0, 128.1, 127.5, 127.0, 124.0, 76.4, 6.9, 5.2.

HRMS (ESI+) (m/z): $[M + H]^+$ calcd. for C₁₉H₂₆NO₃Si, 344.1676; found: 344.1675.

Dimethyl[(4-nitrophenyl)(phenyl)methoxy](phenyl)silane (4oc)

Isolated as a white solid in 63% yield (procedure GP2 with Anisole as solvent).

¹H NMR (400 MHz, CDCl₃) δ = 8.16 (d, J = 8.8 Hz, 2H), 7.57 – 7.48 (m, 4H), 7.47 – 7.40 (m, 1H), 7.40 – 7.24 (m, 7H), 5.80 (s, 1H), 0.35 (d, J = 5.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 152.0, 147.0, 143.2, 136.9, 133.5, 129.9, 128.6, 127.9, 127.8,

¹³C NMR (101 MHz, CDCl₃) δ = 152.0, 147.0, 143.2, 136.9, 133.5, 129.9, 128.6, 127.9, 127.8, 127.0, 126.6, 123.6, 76.2, -1.1, -1.4.

[1-Methyl-3-phenyl-(*E*)-allyloxy]triethylsilane (4q)

Isolated as a colorless oil in 78% yield (procedure GP2). Spectroscopic data in accordance with literature.^[12]

¹**H** NMR (400 MHz, CDCl₃): δ = 7.39-7.35 (m, 2H), 7.28-7.34 (m, 2H), 7.25-7.17 (m, 1H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.22 (ddd, *J* = 15.9, 5.9, 1.0 Hz, 1H), 4.47 (p, *J* = 6.3 Hz, 1H), 1.32 (d, *J* = 6.3 Hz, 3H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.67-0.60 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 137.3$, 134.6, 128.7, 128.2, 127.4, 126.5, 69.3, 24.9, 7.0, 5.0.

HRMS (ESI+) (m/z): $[M - H]^+$ calcd. for C₁₆H₂₅OSi, 261.1669; found: 261.1669.

[(1-Methyl-3-phenyl-2propynyl)oxy]triethylsilane (4r)

OSiEt₃ 4r

Isolated as a colorless oil in 55% yield (procedure GP2). Spectroscopic data in accordance with literature.^[12]

¹H NMR (400 MHz, CDCl₃): δ = 7.43-7.39 (m, 2H), 7.32-7.28 (m, 3H), 4.74 (q, *J* = 6.5 Hz, 1H), 1.52 (d, *J* = 6.5 Hz, 3H), 1.01 (t, *J* = 7.9 Hz, 9H), 0.73-0.65 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 131.7, 128.4, 128.2, 123.3, 91.9, 83.3, 59.2, 25.6, 6.9, 5.0. HRMS (ESI+) (*m*/*z*): [M - H]⁺ calcd. for C₁₆H₂₃OSi, 259.1513; found: 259.1516.

[(4-phenylbut-1-en-3-yn)oxy]triethylsilane

Isolated as a colorless oil in 36% yield (procedure GP2).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.47-7.44$ (m, 2H), 7.35-7.31 (m, 3H), 4.78 (d, J = 6.3 Hz, 2H), 1.04 (t, J = 7.9 Hz, 9H), 0.72-0.74 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 139.6$, 131.7, 128.7, 128.5, 122.6, 102.9, 87.2, 86.9, 6.8

¹³C NMR (100 MHz, CDCl₃): δ = 139.6, 131.7, 128.7, 128.5, 122.6, 102.9, 87.2, 86.9, 6.8, 5.1.

HRMS (**ESI**+) (*m*/*z*): [M - H]⁺ calcd. for C₁₆H₂₁OSi, 257.1356; found: 257.1362.

(Cyclohex-2-en-1-yloxy]triethylsilane (4s)

4s

Isolated as a colorless oil in 73% yield (procedure GP2).

¹H NMR (200 MHz, C₆D₆) δ = 5.88-5.74 (m, 1H), 5.73-5.52 (m, 1H), 4.22 (m, 1H), 1.89-1.57 (m, 5H), 1.51-1.25 (m, 1H), 1.03 (t, *J* = 7.8 Hz, 9H), 0.75-0.51 (m, 6H). ¹³C NMR (50 MHz, C₆D₆) δ = 131.8, 128.8, 66.6, 33.1, 25.3, 19.9, 7.2, 5.5. HRMS (ESI+) (*m*/*z*): [M - H]⁺ calcd. for C₁₂H₂₃OSi, 211.1513; found : 211.1510.

(Cyclohexyloxy]triethylsilane (4w)

4w

Isolated as a colorless oil in 95% yield (procedure GP2). Spectroscopic data in accordance with literature.^[13]

¹H NMR (200 MHz, C₆D₆) δ = 3.74-3.49 (m, 1H), 1.89-1.58 (m, 4H), 1.53-1.30 (m, 3H), 1.29-1.10 (m, 3H), 1.04 (t, *J* = 7.9 Hz, 9H), 0.73-0.53 (m, 6H). ¹³C NMR (50 MHz, C₆D₆) δ = 70.7, 36.5, 26.0, 24.4, 7.3, 5.5.

6. Evidence for the crucial role of the N-H function

In order to prove the importance of the role of the ligand N-H group in the hydrosilylation of ketones, the reaction was performed on aldehydes and ketones with catalysts fac-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^HP^{Ph})] (2) and fac-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^{Me}P^{Ph})] (2-**Me**) following the general procedure for NMR scale reactions (GP1).

 Table S3. Reduction of ketones and aldehydes with catalysts 2 or 2-Me. (0.1 mmol scale)

3a (R 6 (R	$\begin{array}{c} O \\ R \\ R \\ \hline Cat \\ Me \\ \hline C_6 D_6, \\ = H) \end{array}$.4 equiv.) (3 mol%) sitylene 90 °C, 4 h 4a 7	4a (R = Me) 7 (R = H)	
Entry	R	Cat	Yield (%)	
1	Ме	2	99	
2	н	2	99	
3	Ме	2-Me	0	
4	н	2-Me	99	

7. Study of the selectivity between aldehydes and ketones

In a glovebox, a *J. Young* NMR Tube was charged with *fac*-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^HP^{Ph})] (1) (3 mol%), C₆D₆ (0.4 mL), 4-acetylbenzaldehyde (**3x**) (0.1 mmol, 1 equiv.), mesitylene (10 μ L) and triethylsilyl formate (**5a**) (1.0 equiv.). The tube was sealed, brought out of the glovebox and heated at 90 °C. The reaction progress was monitored by ¹H NMR spectroscopy versus mesitylene as an internal standard. After 2 h at 90 °C, the aldehyde is fully hydrosilylated whereas the ketone remains unchanged.

NMR spectra for the transfer hydrosilylation of 4-acetylbenzaldehyde (3x) with Et₃SiOCHO (5a) is given in Figure S2. Spectroscopic data is in accordance with literature.^[14]

Figure S2. ¹H NMR spectra obtained in C_6D_6 for the transfer hydrosilylation of 4-acetylbenzaldehyde (**3x**) with Et₃SiCHO (**5a**). Crude mixture after heating 2 h at 90 °C.

8. TESOCDO synthesis

Deuterated silylformate **5a-d**₁ was synthesized according to literature.^[3] An oven-dried flask equipped with a *J-Young* valve was charged with deuterated sodium formate (1.2 equiv.), diethylether (11 mL) and triethylsilylchloride (10.9 mmol) under inert atmosphere. The final mixture was stirred at 90 °C overnight. Once the reaction is complete, the reaction was cold down and filtered in the glovebox through a plug of Celite. The liquid phase was collected and concentrated under vacuum at 0 °C for 2h to yield the pure product as a colourless liquid in 83% yield.

- 7.76

9. Deuterium labelling experiment

Acetophenone hydrosilylation was carried out according to general procedure for NMR scale reactions and **5a-d**₁ as silylformate source. The final product **4a-d**₁ was obtained in 99% NMR yield with complete selectivity. Spectroscopic data is in accordance with literature.^[5]

Figure S7. ¹H NMR spectra obtained in C_6D_6 for the transfer hydrosilylation of acetophenone (**3a**) with Et₃SiCDO (**5a-d**₁). Crude mixture after heating 4 h at 90 °C.

10.Experimental evidence of ruthenium monohydride species.

In a glovebox, a *J. Young* NMR Tube was charged with fac-[Ru(κ^1 -OAc)(κ^2 -OAc)(κ^3 -PN^HP^{Ph})] (2) (3 mol%), C₆D₆ (0.4 mL), ketone (0.1 mmol, 1.0 equiv.), mesitylene (10 μ L) and triethylsilyl formate (5a) (1.4 equiv.). The tube was sealed, brought out of the glovebox and heated at 90 °C. The reaction was monitored by ¹H NMR spectroscopy after 1.5 minutes of reaction.

Figure S8. ¹H NMR spectra obtained in C₆D₆ for the transfer hydrosilylation of acetophenone (**3a**) with Et₃SiCHO (**5a**). Crude mixture after heating 1.5 min at 90 °C showing the presence of a Ru-H signal

Figure S9. ³¹P NMR spectra obtained in C₆D₆ for the transfer hydrosilylation of acetophenone (**3a**) with Et₃SiCHO (**5a**). Crude mixture after heating 1.5 min at 90 °C showing the presence of a Ru-H signal

11. Competition reactions

In order to test the compatibility of the reaction with free alcohols, amines, amides and carboxylic acids, the benchmark reaction was performed in presence of additives **8** containing these functional groups (benzamide (**8a**), benzyl alcohol (**8b**), morpholine (**8c**), and benzoic acid (**8d**), Table S4). Knowing that alcohols and carboxylic acids are silylated in presence of silyl formate $5^{[15]}$, we envisaged that the same will occur with free amides and amines, which is why an excess of silyl formate was used in those reactions (2.4 – 3 equiv).

Compared to the benchmark reaction (Table S4, entry 1), the presence of additives slowed the reaction: 4.5 - 20 h were necessary to observe full conversion in contrast to 1.5 h in the benchmark reaction (Table S4). In presence of benzamide (**8a**), the reaction was completed within 6.5 h with a yield of 82% (entry 1). Benzyl alcohol (**8b**), morpholine (**8c**), and benzoic acid (**8d**) showed a detrimental effect on the reaction, the yield of **4a** being lowered to 24 - 58%, due to the presence of numerous side-products (entries 3-5). Silylation of alcohol **8b** and carboxylic acid **8d** was observed, whereas in the case of benzamide (**8a**) and morpholine (**8c**) derivatives, it was not possible to identify the products resulting from their reactions with silylformate **5a**.

	o J Ja	$\begin{array}{c} O\\ H\\ \hline O\\ 5a\\ 2 \ (3 \ mol\%) \end{array}$ Mesitylene $C_6 D_6 \ (0.25 \ M), \ 90^{\circ}C\\ Additive \ (1 \ equiv) \end{array}$	→ ()	OSiEt ₃	$P = PPh_2$	
Entry	Additive	5 (equiv.)	t(h)	Yield (%)	Additives	
1	-	2.4	1.5	99		ОН
2	8a	2.4	6.5	82	NH ₂	
3	8b	2.4	4.5 (20)	21 (45)	8a	8b
4	8c	2.4	4.5	24		
5	8d	3	4.5	58	N H	HU OH
					ı ÖC	ða

Table S4. Reduction of ketone 3a in presence of additives 8 with silvl formate 5a. (0.1 mmol scale)

12.NMR spectra of isolated compounds

S17

Figure S13. ¹³C NMR spectra obtained in CDCl₃ for 4e.

S19

Figure S19. ¹³C NMR spectra obtained in C_6D_6 for **4**k.

S24

Figure S27. ¹H NMR spectra obtained in CDCl₃ for 4oc.

Figure S29. ¹³C NMR spectra obtained in CDCl₃ for 4q.

Figure S31. ¹³C NMR spectra obtained in CDCl₃ for 4r.

Figure S35. ¹³C NMR spectra obtained in C_6D_6 for **4s**.

Figure S37. ¹³C NMR spectra obtained in C_6D_6 for **4**w.

13. References

- [1] Chauvier, C., Thuéry, P., Cantat, C. Angew. Chem. Int. Ed. 2016, 55, 14096-14100.
- [2] Chauvier, C., Imberdis, A., Thuéry, P., Cantat, T. Angew. Chem. Int. Ed. **2020**, 59, 14019-14023.
- [3] Godou, T., Chauvier, C., Thuéry, P., Cantat, T. Synlett 2017 28, 2473-2477.
- [4] Rawat, S., Bhandari, M., Porwal, C. K., Singh, S. Inorg. Chem. 2020, 59, 7195-7203.
- [5] Rubio, M., Campos, J., Carmona, E. Org. Lett. 2011, 13, 5236-5239.
- [6] Pérez, M., Qu, Z.-W., Caputo, C. B., Podgorny, V., Hounjet, L. J., Hansen, A.,
- Dobrovetsky, R., Grimme, S., Stephan, D. W. Chem. Eur. J. 2015, 21, 6491-6500.
- [7] Diez-González, S., Kaur, H., Zinn, F. K., Stevens, E. D., Nolan, S. P. J. Org. Chem. 2005, 70, 4784-4796.
- [8] Teci, M., Lentz, N., Brenner, E., Matt, D., Toupet, L. *Dalton Trans.* **2015**, *44*, 13991-13998.
- [9] Egbert, J. D., Nolan, S. P. Chem. Commun. 2012, 48, 2794-2796.
- [10] Kadam, S. T., Kim, S. S. J. Organomet. Chem. 2009, 694, 2562-2566.
- [11] Ison, E. A., Trivedi, E. R., Corbin, R. A., Abu-Omar, M. M. J. Am. Chem. Soc. 2005, 127, 15374-15375.
- [12] Du, G., Abu-Omar, M. M. Organometallics 2006, 25, 4920-4923.
- [13] Tran, B. L., Pink, M., Mindiola, D.J. Organometallics 2009, 28, 2234-2243.
- [14] Liberman-Martin, A. L., Bergman, R. G., Tilley, T. D. J. Am. Chem. Soc. 2015, 137, 5328-5331.
- [15] C. Chauvier, T. Godou and T. Cantat, Chem. Commun. 2017, 11697.