Electronic Supplementary Information

Synthesis, Structure and Properties of Trivalent and Pentavalent Tricarbabismatranes

Shigeru Shimada,* Shuang-Feng Yin, and Yoong-Kee Choe

Table of Contents

1. General S2
2. Synthesis of compounds $\mathbf{4 , 5 , 7 a}, \mathbf{8 b}$, and 9 (Figs. S1, S2, and S3) S2
3. Synthesis of a mixture of $\mathbf{8 a}$ and $\mathbf{9}$ S5
4. ${ }^{1} \mathrm{H}$ NMR monitoring of the composition change of the mixture of $\mathbf{8 a}$ and $\mathbf{9}$ (Fig. S4)
S5
5. A plausible reaction pathway for the formation of compound 5 (Scheme S1) S6
6. Single crystal X-ray structure analysis S7
7. Computational Details (Figs. S5 and S6) S7
8. Cartesian Coordinates of compounds $\mathbf{4}$ and $\mathbf{8 b}$ S8
9. References S11
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 (Figs. S7, S8), 5 (Figs. S9, S10), $7 \mathbf{a}$ (Figs. S11, S12), 8b (Figs. S13, S14), and 9 (Figs. S15, S16) S12

1. General.

All manipulations of air-sensitive materials were carried out under a nitrogen atmosphere using standard Schlenk techniques or in a glovebox. Anhydrous toluene, $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from Kanto Chemicals and degassed before use. $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$, and DMSO- d_{6} were dried over molecular sieves and degassed. XeF_{2} was purchased from Acros Organics and used as received. NMR spectra were recorded on Jeol LA500 spectrometer or Bruker Avance Neo 400 spectrometer. Chemical shifts are reported in $\delta(\mathrm{ppm})$ and are referenced to internal tetramethylsilane (0.0 ppm) or the (residual) solvent signals for ${ }^{1} \mathrm{H}\left(7.16 \mathrm{ppm}\right.$ for $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ and ${ }^{13} \mathrm{C}$ (128.06 ppm for $\mathrm{C}_{6} \mathrm{D}_{6}$). ${ }^{51}$ Coupling constants were reported in Hertz. Elemental analysis was performed by the Analytical Center at the National Institute of Advanced Industrial Science and Technology. Tris(2-bromobenzyl)amine was synthesized according to the literature procedure. ${ }^{\mathrm{S} 2}$

2. Synthesis of compounds $4,5,7 \mathrm{a}, 8 \mathrm{~b}$, and 9

Bismatrane 4.

A hexane solution of $n \mathrm{BuLi}(1.57 \mathrm{M}, 1.90 \mathrm{~mL}, 3.0 \mathrm{mmol})$ was added dropwise to a dry $\mathrm{Et}_{2} \mathrm{O}$ solution (15 mL) of tris(2-bromobenzyl)amine $3\left(521 \mathrm{mg}, 0.994 \mathrm{mmol}\right.$) at $-30^{\circ} \mathrm{C}$. The solution was stirred for 30 min at the same temperature and then gradually warmed to rt . The resulting solution was added to $\mathrm{BiCl}_{3}(314 \mathrm{mg}, 0.996 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 3 h and then warmed to rt naturally and stirred overnight. After filtration, the filtrate was concentrated under vacuum to give a solid residue (360 mg). The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the extract was concentrated under vacuum to give bismatrane $\mathbf{4}$ as a colorless solid ($130 \mathrm{mg}, 27 \%$ yield). A similar experiment in lager scale ($\mathbf{3}$, $\left.3.1 \mathrm{~g} ; \mathrm{BiCl}_{3}, 1.86 \mathrm{~g}\right)$ afforded 4 in 25% isolated yield $(0.72 \mathrm{~g})$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}$): $\delta 3.67(6 \mathrm{H}, \mathrm{s}), 7.23-7.26(3 \mathrm{H}, \mathrm{m}), 7.29-7.33(6 \mathrm{H}, \mathrm{m}), 7.99(3 \mathrm{H}$, d, $J=7.3$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 499.1 \mathrm{MHz}\right): \delta 3.34(6 \mathrm{H}, \mathrm{s}), 7.08(3 \mathrm{H}, \mathrm{d}, J=7.3), 7.15(3 \mathrm{H}, \mathrm{dt}, J=$ $1.4,7.3), 7.21(3 \mathrm{H}, \mathrm{dt}, J=1.3,7.1), 7.95(3 \mathrm{H}, \mathrm{dd}, J=1.2,7.1) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125.4 \mathrm{MHz}\right)$: $\delta 58.5\left(\mathrm{CH}_{2}\right)$, 128.1, 128.77, 128.84, 138.0, 145.2, 159.4 (br, CBi$) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 125.4$ $\mathrm{MHz}): \delta 58.6\left(\mathrm{CH}_{2}\right), 128.4,129.24,129.26,138.5,145.6,159.3$ (br, CBi$)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BiN}$: C, 51.12 ; H, 3.68; N, 2.84\%. Found: C, 51.23 ; H, 3.61; N, 2.61\%. HRMS Calcd for: 493.1243. Found: 493.1185

Oxidation product 5.

$\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of bismatrane $4(20.0 \mathrm{mg}, 0.0405 \mathrm{mmol})$ was stirred under air for 2 days to give colorless precipitates, which were separated by filtration and dried under vacuum to give compound 5 as a colorless solid ($20.0 \mathrm{mg}, 94 \%$ yield). Single crystals suitable for X-ray analysis were obtained by the recrystallization from a THF/heptane mixture.
${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 499.1 \mathrm{MHz}$): $\delta 4.04\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.9, \mathrm{NCH}_{2}\right), 4.26(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.9$, NCH) , $5.68(1 \mathrm{H}$, quint, $J=5.7, \mathrm{~N} H), 7.25(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.4), 7.33-7.52(8 \mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}$, $\mathrm{dt}, J=1.2,7.3$), $7.86(2 \mathrm{H}, \mathrm{t}, J=7.2), 8.00(1 \mathrm{H}, \mathrm{d}, J=7.3) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125.4$ $\mathrm{MHz}): ~ \delta 52.3\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right), 127.0,127.5,127.9,128.4,128.6(2 \mathrm{C}), 129.2,129.3(2 \mathrm{C})$, 133.5, 134.4, 135.2, 135.4, 137.1, 140.8, 148.9, 175.0, 178.5, 181.0. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BiNO}_{2}$: C, 48.01 ; H, 3.45; N, 2.67\%. Found: C, $47.66 ; \mathrm{H}, 3.43 ; \mathrm{N}, 2.46 \%$.

Fig. S1 1D arrangement of compound $\mathbf{5}$ in the crystal through intermolecular hydrogen bonds ($\mathrm{N} 1 \cdots \mathrm{Ola}\left(2.858(4) \AA\right.$), N1-H1-O1a (142.4 $\left.{ }^{\circ}\right)$). Symmetry transformations: $\mathrm{a}=3 / 2-$ $\mathrm{x},-1 / 2+\mathrm{y}, 3 / 2-\mathrm{z}$. Similar 1D arrangement was also observed in the crystal $5 \cdot \mathrm{THF}$ (N1 $\cdots \mathrm{O} 1 \mathrm{a}(2.827(4) \AA \AA), \mathrm{N} 1-\mathrm{H} 1-\mathrm{Ola}\left(154.7^{\circ}\right)$)

Compound 7a

To a dry $\mathrm{Et}_{2} \mathrm{O}$ solution (10 mL) of dibenzazabismocine $\mathbf{6 a}(81.2 \mathrm{mg}, 0.151 \mathrm{mmol})$ was added $\mathrm{SO}_{2} \mathrm{Cl}_{2}(12 \mu \mathrm{l}, 0.15 \mathrm{mmol})$ at $-196^{\circ} \mathrm{C}$. The mixture was warmed to $-78^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. Then the volatiles were removed under vacuum at rt to leave a colorless solid. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum to give 7 a (84.5 mg , 92% yield). Single crystals suitable for X-ray analysis were obtained by the recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}\right): \delta 1.07(9 \mathrm{H}, \mathrm{s}), 4.62(2 \mathrm{H}, \mathrm{d}, J=15.8), 4.70(2 \mathrm{H}, \mathrm{d}, J=15.9)$, $7.38(2 \mathrm{H}, \mathrm{tt}, J=2.0,7.3), 7.42(2 \mathrm{H}, \mathrm{tt}, J=1.3,7.1), 7.45(2 \mathrm{H}, \mathrm{dd}, J=2.0,7.4), 7.59(1 \mathrm{H}, \mathrm{tt}, J$ $=1.3,7.4), 7.71$ (2H, d, $J=7.4$), $7.74(2 \mathrm{H}, \mathrm{t}, J=7.6), 8.71(2 \mathrm{H}, \mathrm{dd}, J=1.0,8.3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.4 \mathrm{MHz}\right): \delta 26.3,56.6,59.7,128.7,129.0,129.3,129.8,130.15,130.19,136.3$, 141.7, 146.6, 162.7. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{BiCl}_{2} \mathrm{~N}: \mathrm{C}, 47.38 ; \mathrm{H}, 4.31 ; \mathrm{N}, 2.30 \%$. Found: C, 47.23; H, 4.22; N, 2.07\%.

Fig. S2 Molecular structure of 7a determined by single crystal X-ray diffraction (thermal ellipsoids are shown at 50% probability level). Hydrogens are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Bi1-Cl1 2.6261(8); Bi1-Cl2 2.5781(8); Bi1-N1 2.838(3); Bi1-C1 2.199(3); Bi1-C14 2.201(3); Bi1-C19 2.234(3); Cl1-Bi1-Cl2 178.48(3); Cl1-Bi1-N1 84.96(6); Cl2-Bi1-N1 95.51(6); C11-Bi1-C1 88.54(9); Cl1-Bi1-C14 88.12(8); Cl1-Bi1-C19 89.21(9); Cl2-Bi1-C1 92.98(9); Cl2-Bi1-C14 90.67(9); Cl2-Bi1-C19 90.39(9); N1-Bi1-C1 70.59(10); N1-Bi1-C14 70.66(10); N1-Bi1-C19 173.42(10); C1-Bi1C14 141.25(12); C1-Bi1-C19 106.28(12); C14-Bi1-C19 112.26(12).

Difluorobismatrane 8b

To a stirred $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ solution of bismatrane $4(200 \mathrm{mg}, 0.405 \mathrm{mmol})$ was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 mL) of $\mathrm{XeF}_{2}(75.5 \mathrm{mg}, 0.446 \mathrm{mmol})$ at $-94^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred at $-94^{\circ} \mathrm{C}$ for 1 h and warmed to rt naturally. The solvent was removed under vacuum to give a pale yellow solid residue. Recrystallization from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and heptane gave bismatrane $\mathbf{8 b}$ as yellow crystals ($200 \mathrm{mg}, 93 \%$ yield).
Mp.: 162-163.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}\right): \delta 4.19(6 \mathrm{H}, \mathrm{s}), 7.32(3 \mathrm{H}, \mathrm{d}, J=7.3), 7.37$ $(3 \mathrm{H}, \mathrm{t}, J=7.3), 7.54(3 \mathrm{H}, \mathrm{t}, J=7.0), 8.41(3 \mathrm{H}, \mathrm{d}, J=7.6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.4 \mathrm{MHz}\right): \delta$ $56.8\left(\mathrm{CH}_{2}\right), 128.5,130.4,131.1,136.6,140.3,159.7(\mathrm{br}, \mathrm{CBi})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BiF}_{2} \mathrm{~N}$: C, 47.47 ; H, 3.41; N, 2.64\%. Found: C, 47.16; H, 3.21; N, 2.40\%.

Chlorination of $\mathbf{4}$ with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$; formation of 9

To a dry $\mathrm{Et}_{2} \mathrm{O}$ solution (5 mL) of bismatrane $\mathbf{4}(72.0 \mathrm{mg}, 0.146 \mathrm{mmol})$ was added $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (12 $\mu \mathrm{l}, 0.15 \mathrm{mmol}$) at $-196^{\circ} \mathrm{C}$. The mixture was warmed to $-78^{\circ} \mathrm{C}$ and stirred for 2 h at the same temperature. Then the volatiles were removed under vacuum at rt to leave a yellowish solid. Then the solid residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the $\mathrm{Et}_{2} \mathrm{O}$ extract was evacuated to
give colorless solid (27 mg), which mainly consist of compound $\mathbf{9}$. Single crystals suitable for X-ray analysis were obtained by the recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}$): $\delta 4.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.21(2 \mathrm{H}, \mathrm{d}, J=14.6), 4.37(2 \mathrm{H}$, $\mathrm{d}, J=14.6), 7.27-7.37(5 \mathrm{H}, \mathrm{m}), 7.39-7.48(3 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{t}, J=7.4), 8.65(2 \mathrm{H}, \mathrm{dd}, J=1.1$, 7.4). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta 56.7\left(\mathrm{CH}_{2}\right), 62.8\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 127.3(\mathrm{CH}), 128.2(2 \mathrm{C}$, CH), $128.3(2 \mathrm{C}, \mathrm{CH}), 130.66(\mathrm{CH}), 130.72(\mathrm{CH}), 131.4(2 \mathrm{C}, \mathrm{CH}), 132.1,133.4(\mathrm{CH}), 135.6$, $138.5(2 \mathrm{C}, \mathrm{CH}), 147.9,172.1$.

Fig. S3 Molecular structure of 9 determined by single crystal X-ray diffraction (thermal ellipsoids are shown at 50% probability level). Hydrogens are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Bi1-Cl1 2.6185(10); Bi1-N1 2.555(3); Bi1-C1 2.258(4); Bi1-C14 2.241(4); Cl1-Bi1-N1 154.57(8); Cl1-Bi1C1 90.84(10); C11-Bi1-C14 90.94(10); N1-Bi1-C1 72.27(12); N1-Bi1-C14 73.78(12); C1-Bi1-C14 99.23(13).

3. Synthesis of a mixture of 8a and 9

To a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (6 mL) of bismatrane $\mathbf{4}(120 \mathrm{mg}, 0.243 \mathrm{mmol})$ was added $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ ($35 \mu \mathrm{l}, 0.43 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was gradually warmed to $-10^{\circ} \mathrm{C}$ during 2.3 h with stirring. Then the volatiles were removed under vacuum with keeping the temperature between -10 and $-5^{\circ} \mathrm{C}$ to give a pale yellow solid residue. The product was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and dry hexane (2 mL) was layered over the solution. The mixture was kept at $-35^{\circ} \mathrm{C}$ overnight. The supernatant was removed. The resulted pale yellow solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane ($1 / 1,2 \times 0.5 \mathrm{~mL}$) and dried under vacuum (yield, 129 mg). ${ }^{1} \mathrm{H}$ NMR analysis of the solid suggested that it was a mixture of $\mathbf{8 a}$ and $\mathbf{9}(\mathbf{8 a} / \mathbf{9}=\mathrm{ca} .83 / 17)$.

The following NMR data was obtained from the spectra of a mixture of $\mathbf{8 a}$ and 9 (ca. 3:1).
8a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta 4.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.57(3 \mathrm{H}, \mathrm{t}, J=7.5), 7.65(3 \mathrm{H}, \mathrm{t}, J=$ 7.6), $7.83(3 \mathrm{H}, \mathrm{d}, J=7.6), 7.96(3 \mathrm{H}, \mathrm{d}, J=7.6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta 57.2$, 132.1, 132.5, 133.5 (2C), 141.8, 142.4.

4. ${ }^{1} \mathrm{H}$ NMR monitoring of the composition change of the mixture of 8a and 9

The composition change (conversion of $\mathbf{8 a}$ to $\mathbf{9}$) of a mixture of $\mathbf{8 a}$ and $\mathbf{9}$ in CDCl_{3} (initial ratio of $\mathbf{8 a}$ and 9 was ca. 83:17) was monitored by ${ }^{1} \mathrm{H}$ NMR analysis at $20^{\circ} \mathrm{C}$ for 6 days and then at $40^{\circ} \mathrm{C}$ for 47 h . The change of the ${ }^{1} \mathrm{H}$ NMR spectra is shown in Fig S4.

Fig. S4 Monitoring of the conversion of $\mathbf{8 a}$ to $\mathbf{9}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): a) Original mixture of $\mathbf{8 a}$ and $\mathbf{9}$ in ca. 83:17 ratio. b) After 6 days at $20^{\circ} \mathrm{C}$. c) After 6 days at $20^{\circ} \mathrm{C}$ and 47 h at $40^{\circ} \mathrm{C}$; showing almost complete conversion of $8 \mathbf{a}$.

5. A plausible reaction pathway for the formation of compound 5

Scheme. S1 A plausible reaction pathway for the formation of compound $\mathbf{5}$ from bismatrane 4.

6. Single crystal X-ray structure analysis

Single crystals of $\mathbf{5}, \mathbf{5} \cdot \mathrm{THF}, \mathbf{7 a}, \mathbf{8 b}$ and $\mathbf{9}$ were covered with paratone-8236 oil and mounted on a glass fiber. Data collection was performed on a Bruker Smart Apex CCD
diffractometer (Mo K α radiation, graphite monochromator). The determination of crystal class and unit cell parameters was carried out with the CrysAlisPro program package. ${ }^{53}$ The raw frame data were processed using CrysAlisPro to yield the reduction data file. Structure solution and refinement were performed using Olex2 software package ${ }^{\text {S4 }}$ with SHELXT and SHELXL programs. ${ }^{\text {S5 }}$

CCDC 2144020-2144024 respectively contain the supplementary crystallographic data for $\mathbf{8 b}, \mathbf{5}, \mathbf{5} \cdot \mathrm{THF}, \mathbf{7 a}$, and $\mathbf{9}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

7. Computational Details

Geometry optimizations and frequency calculations were performed using the density functional theory (DFT), as implemented in the Gaussian 16 quantum chemistry package. ${ }^{\mathrm{S} 6}$ For the DFT calculations, the ω B97X-D functional was used. ${ }^{57}$ As for the basis sets, we used def2-SVP basis sets where core electrons of Bi were represented by effective core potential. ${ }^{\text {s8 }}$ To investigate bonding in the molecules, we carried out the Mayer bond order analysis. ${ }^{\text {S9 }}$

Fig. S5 Two views of the molecular structure of compound $\mathbf{4}$ obtained by the DFT calculations.

Fig. S6 Views of molecular orbitals relating to the Bi-N interactions. a) A view of MO85 (HOMO-1) for compound 4. b) A view of MO55 (HOMO-41) for compound $\mathbf{8 b}$.

8. Coordinates of compounds 4 and 8 b in XYZ format

Compound 4

41

H	2.801421	6.338994	-0.081929
Bi	6.748843	5.667738	3.371146
C	7.674737	3.627862	3.821928
C	8.785635	3.302925	3.036860
C	9.027817	1.192010	4.168336
C	7.922653	1.506386	4.957796
C	7.243245	2.717750	4.800105
C	6.067869	3.040733	5.701322
C	4.296507	4.727055	5.799837
C	5.147832	5.891638	6.265408
C	4.905255	6.468338	7.515374
C	5.646645	7.561841	7.960384
C	6.650852	8.088353	7.153296
C	6.899888	7.513742	5.905548
C	6.163362	6.415655	5.449654
C	4.729830	5.102178	2.461893
C	4.316164	5.915101	1.401599
C	3.108282	5.687537	0.739606
C	2.298906	4.627986	1.138813
C	2.702190	3.810287	2.193342
C	3.912509	4.031063	2.856885
C	4.334841	3.097686	3.974138
H	9.142162	4.002293	2.272241
H	7.576305	0.793725	5.712494

H	4.121394	6.049911	8.154029
H	5.442319	7.996827	8.941324
H	7.242793	8.941582	7.492554
H	7.692607	7.941525	5.281459
H	4.942663	6.752349	1.073896
H	1.348519	4.439204	0.634495
H	2.061526	2.982256	2.511653
H	5.010098	2.334714	3.551866
H	3.449343	2.548879	4.359377
H	6.432071	3.660753	6.537615
H	5.675591	2.106298	6.155904
H	3.485685	5.122246	5.165101
H	3.802405	4.250654	6.673125
N	5.053862	3.792469	5.009494
C	9.462868	2.093219	3.201115
H	10.324277	1.856525	2.572291
H	9.543558	0.239035	4.306415

Compound 8b

43

H	2.849901	6.131300	-0.302676
Bi	6.475532	5.605629	3.508492
C	7.639901	3.676411	3.821106
C	8.763331	3.401469	3.042113
C	9.003016	1.268293	4.149634
C	7.884921	1.550258	4.931867
C	7.196821	2.757714	4.780510
C	6.022202	3.086870	5.674454
C	4.296450	4.810172	5.826358
C	5.198010	5.911554	6.352412
C	5.003757	6.449840	7.627740
C	5.797798	7.500691	8.082750
C	6.793879	8.032049	7.264994
C	6.999364	7.507217	5.989257
C	6.217397	6.441118	5.553589
C	4.659124	5.053203	2.361393
C	4.299383	5.836612	1.266692
C	3.137145	5.528630	0.561459
C	2.332918	4.467820	0.977012
C	2.683497	3.718028	2.097564
C	3.857449	3.998300	2.804280
C	4.250480	3.155557	4.000559

F	8.131127	6.115613	2.370593
F	6.022528	7.568082	2.911603
H	9.098634	4.144266	2.318036
H	7.539539	0.823115	5.672612
H	4.217532	6.042733	8.269776
H	5.635036	7.909236	9.082308
H	7.410172	8.861853	7.617169
H	7.759973	7.939614	5.335634
H	4.915301	6.696576	0.998112
H	1.414106	4.233199	0.435227
H	2.033985	2.905081	2.434616
H	4.871802	2.317080	3.645712
H	3.349806	2.706947	4.462364
H	6.385373	3.668898	6.536765
H	5.571570	2.162839	6.085476
H	3.494098	5.262617	5.219196
H	3.801934	4.283039	6.665611
N	5.039662	3.898787	4.971513
C	9.443957	2.194391	3.206676
H	10.321133	1.978488	2.592634
H	9.529457	0.319811	4.276807

9. References:

S1 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
S2 Q. Chen, C. E. Buss, V. G. Young and S. Fox, J. Chem. Crystallogr., 2005, 35, 177-181.
S3 CrysAlisPro 1.171.40.67a. Rigaku OD, 2019.
S4 Olex2 1.5: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
S5 Shelxl Version 2018/3: G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
S6 M. J. Frisch , G. W. Trucks , H. B. Schlegel , G. E. Scuseria , M. A. Robb , J. R. Cheeseman , G. Scalmani , V. Barone , G. A. Petersson , H. Nakatsuji, X. Li , M. Caricato , A. V. Marenich , J. Bloino , B. G. Janesko , R. Gomperts , B. Mennucci , H. P. Hratchian , J. V. Ortiz , A. F. Izmaylov , J. L. Sonnenberg , D. Williams , F. Ding , F. Lipparini , F. Egidi , J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe , V. G. Zakrzewski, J. Gao , N. Rega, G. Zheng, W. Liang, M. Hada , M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao , H. Nakai, T. Vreven , K. Throssell , J. A. Montgomery Jr, J. E. Peralta , F. Ogliaro , M. J. Bearpark , J. J. Heyd , E. N. Brothers , K. N. Kudin , V. N. Staroverov , T. A. Keith , R. Kobayashi , J. Normand , K. Raghavachari , A. P. Rendell , J. C. Burant , S. S. Iyengar , J. Tomasi , M. Cossi , J. M. Millam , M. Klene, C. Adamo , R. Cammi , J. W. Ochterski, R. L. Martin , K. Morokuma , O. Farkas , J. B. Foresman and D. J. Fox , Gaussian 16, Wallingford, CT, 2016.

S7 J.-D. Chai and M. Head-Gordon , Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
S8 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
S9 (a) I. Mayer Chem. Phys. Lett., 1983, 97 , 270 (b) I. Mayer Int. J. Quantum Chem., 1984, 26, 151
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $4,5,7 \mathrm{a}, 8 \mathrm{~b}$, and 9

Fig. S7 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 499.1 \mathrm{MHz}\right)$ spectrum of compound 4 .

Fig. S8 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 125.4 \mathrm{MHz}\right)$ spectrum of compound 4.

Fig. S9 ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 499.1 \mathrm{MHz}$) spectrum of compound $\mathbf{5}$.

Fig. S10 ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125.4 \mathrm{MHz}$) spectrum of compound 5.

Fig. S11 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}\right)$ spectrum of compound $\mathbf{7 a}$.

Fig. S12 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125.4 \mathrm{MHz}\right)$ spectrum of compound $7 \mathbf{a}$.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}\right)$ spectrum of compound $\mathbf{8 b}$.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125.4 \mathrm{MHz}\right)$ spectrum of compound $\mathbf{8 b}$.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 499.1 \mathrm{MHz}\right)$ spectrum of compound $\mathbf{9}$.

Fig. S16 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ spectrum of compound 9.

