Electronic Supplementary Information

Adsorptive separation of picoline isomers by adaptive calix[3]acridan

crystals

He-Ye Zhou^{a,b} and Chuan-Feng Chen*a,b

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn

Table of Contents

1.	Materials and methods	.S2
2.	Crystal structures and crystal data	.S4
3.	Characterization of activated calix[3]acridan crystals	.S7
4.	Solid-vapor adsorption experiments	.S9

1. Materials and methods

1.1 Materials

All the reagents including 2-picoline (2-MP), 3-picoline (3-MP) and 4-picoline (4-MP) were commercially available and used without further purification. Calix[3]acridan (C[3]A) was synthesized according to previously reported procedures. Activated crystalline C[3]A, referred to as C[3]A α , was initially recrystallized from acetone, and then dried under vacuum at 80 °C for 24 hours.

Table S1. Physical properties of 2-MP, 3-MP and 4-MP.

Picoline isomers	2-MP	3-MP	4-MP
Structural formula	CH ₃	CH3	CH ₃
Melting point (°C)	-70	-18	2.4
Boiling point (°C)	128	143	144
Saturated Vapor pressure at 298K (kPa)	1.2	0.6	0.76

1.2 Methods

Solution NMR spectroscopy. NMR spectroscopy experiments were recorded on the Bruker Avance III 400 MHz NMR spectrometer.

Single-crystal X-ray diffraction. Single-crystal X-ray diffraction data were recorded on a XtaLAB Synergy-R X-ray diffractometer at 170 K.

Powder X-ray diffraction. Powder X-ray diffraction (PXRD) patterns were recorded on an Empyrean X-ray diffractometer. Data were collected over the range of 5–45° in 5°/min steps.

BET surface area measurement. Brunauer-Emmett-Teller (BET) surface area measurement was performed on a Quantachrome Autosorb-iQ-C analyzer. Samples were degassed under dynamic vacuum for 12 h at 200 °C before each measurement. N₂ isotherms were measured using a liquid nitrogen bath (77 K).

Thermogravimetric analysis. Thermogravimetric analysis (TGA) was taken with TGA 8000 operated at 10 K/min at nitrogen atmosphere.

Gas chromatography. Gas chromatography (GC) measurements were performed on 7890B with FID Agilent detector and an an а 2,3-diO-acetyl-6-0-TBDMS-β-cyclodextrin capillary column (Supelco Beta DEX 225; 30 mm \times 0.25 mm \times 0.25 μ m). The following GC method was used: the oven was programmed from 50 °C, ramped at 2 °C/min increments to 100 °C with 15 min hold; injection temperature 250 °C; detection temperature 280 °C with nitrogen, air, and make-up flow-rates of 25, 400, and 30 mL/min, respectively; helium (carrier gas) flow-rate 2.0 mL/min.

Solid-vapor adsorption experiments. In a typical solid-vapor picoline isomers adsorption experiment, an open vial (3 mL) containing 20 mg of activated guest-free C[3]A crystals was placed into a sealed vial (20 mL) containing 1 mL of 2-MP, 3-MP, 4-MP (single-component adsorption), 1:1 mixture of binary mixture of picoline isomers (two-component adsorption) and 1:1:1 mixture ternary mixture of picoline isomers (three-component adsorption). The adsorption process was monitored over time by completely dissolving a portion of the crystals in CDCl₃ and measuring ¹H NMR spectra. The relative uptake amount of picoline isomers was determined by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurement, the crystals were heated at 50 °C for 30 minutes to remove the surface-physically adsorbed vapor.

2. Crystal structures and crystal data

Fig. S1 Packing mode in the single-crystal structure of 2(2-MP)@C[3]A.

Fig. S2 Packing mode in the single-crystal structure of 2(3-MP)@C[3]A.

Fig. S3 Packing mode in the single-crystal structure of 2(4-MP)@C[3]A.

Compound	2(2-M p)@C[3]A
CCDC No.	2107535
Empirical formula	$C_{63}H_{65}N_5$
Formula weight	892.20
Temperature/K	169.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.27290(10)
b/Å	13.6876(3)
c/Å	20.4931(4)
α/°	73.661(2)
β/°	82.2150(10)
γ/°	84.642(2)
Volume/Å ³	2468.83(8)
Z	2
$\rho_{calc}g/cm^3$	1.200
μ/mm^{-1}	0.532
F(000)	956.0
Crystal size/mm ³	0.4 imes 0.3 imes 0.2
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	4.522 to 150.598
Index ranges	$-11 \le h \le 11, -15 \le k \le 16, -25 \le l \le 25$
Reflections collected	32982
Independent reflections	9747 [$R_{int} = 0.0160, R_{sigma} = 0.0138$]
Data/restraints/parameters	9747/0/624
Goodness-of-fit on F ²	1.029
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0489, wR_2 = 0.1291$
Final R indexes [all data]	$R_1=0.0504,wR_2=0.1305$
Largest diff. peak/hole / e Å $^{-3}$	0.65/-0.39
Crystallization solvents	2-picoline

Table S2. Crystal data and structure refinement parameters for 2(2-Mp)@C[3]A.

Table S3. Crystal data and structure refinement parameters for 2(3-Mp)@C[3]A.

Compound	2(3-Mp)@C[3]A
CCDC No.	2107531
Empirical formula	C ₆₃ H ₆₅ N ₅
Formula weight	888.20
Temperature/K	169.97(12)
Crystal system	monoclinic

Space group	P2 ₁ /c	
a/Å	13.18180(10)	
b/Å	39.3842(4)	
c/Å	9.47760(10)	
$\alpha/^{\circ}$	90	
β/°	98.4260(10)	
$\gamma/^{\circ}$	90	
Volume/Å ³	4867.23(8)	
Z	4	
$\rho_{calc}g/cm^3$	1.212	
μ/mm^{-1}	0.526	
F(000)	1904.0	
Crystal size/mm ³	$0.4 \times 0.25 \times 0.1$	
Radiation	$CuK\alpha \ (\lambda = 1.54184)$	
2Θ range for data collection/°	4.488 to 150.506	
Index ranges	$-14 \le h \le 16, -48 \le k \le 48, -11 \le l \le 11$	
Reflections collected	45750	
Independent reflections	9670 [$R_{int} = 0.0349$, $R_{sigma} = 0.0284$]	
Data/restraints/parameters	9670/0/624	
Goodness-of-fit on F ²	1.048	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0426, wR_2 = 0.1089$	
Final R indexes [all data]	$R_1 = 0.0461, wR_2 = 0.1117$	
Largest diff. peak/hole / e Å ⁻³	0.22/-0.23	
Crystallization solvents	3-picoline	

Table S4. Crystal data and structure refinement parameters for 2(4-Mp)@C[3]A.

2(4-Mp)@C[3]A
2107534
$C_{63}H_{65}N_5$
886.20
169.99(11)
triclinic
P-1
9.6062(2)
14.1110(3)
20.1126(3)
102.6520(10)
103.668(2)
104.100(2)
2456.15(9)

Z	2
$\rho_{calc}g/cm^3$	1.198
μ/mm^{-1}	0.515
F(000)	950.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	4.73 to 150.498
Index ranges	$\text{-}11 \leq h \leq 10, \text{-}17 \leq k \leq 17, \text{-}25 \leq l \leq 25$
Reflections collected	30441
Independent reflections	9645 [$R_{int} = 0.1296$, $R_{sigma} = 0.0919$]
Data/restraints/parameters	9645/0/624
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0883, wR_2 = 0.1666$
Final R indexes [all data]	$R_1=0.1147,wR_2=0.1757$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.28
Crystallization solvents	4-picoline

3. Characterization of activated calix[3]acridan crystals

Fig. S4 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of activated C[3]A.

Fig. S5 Thermogravimetric analysis of activated C[3]A.

Fig. S6 Power X-ray diffraction pattern of **C[3]A**: (a) recrystallized from acetone and then activated under vacuum at 80 °C; (b) recrystallized from acetone.

Fig. S7 N₂ adsorption isotherm of activated C[3]A. The BET surface area value is $4.545 \text{ m}^2/\text{g}$.

4. Solid-vapor adsorption experiments

Fig. S8 Time-dependent ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298K) of C[3]A α after adsorption of 2-MP vapor.

Fig. S9 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C[3]A α after adsorption of 2-MP vapor for 24 hours.

Fig. S10 Time-dependent ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298K) of C[3]A α after adsorption of 3-MP vapor.

Fig. S11 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C[3]A α after adsorption of 3-MP vapor for 24 hours.

Fig. S12 Time-dependent ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298K) of C[3]A α after adsorption of 4-MP vapor.

Fig. S13 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C[3]A α after adsorption of 4-MP vapor for 24 hours.

4.2 Two/Three-component adsorption experiments

Fig. S14 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C[3]Aα after adsorption of
2-MP/4-MP mixture vapor for 12 hours.

Fig. S15 Relative uptake of the 2-MP/4-MP mixture vapor adsorbed in C[3]A determined by gas chromatography.

Fig. S16. Thermogravimetric analysis of C[3]A α after adsorption of 2-MP/4-MP mixture vapor for 12 hours.

Fig. S17 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C[3]A α after adsorption of 3-MP/4-MP mixture vapor for 12 hours.

Fig. S18 Relative uptake of the 3-MP/4-MP mixture vapor adsorbed in C[3]A determined by gas chromatography.

Fig. S19 Thermogravimetric analysis of C[3]A α after adsorption of 3-MP/4-MP mixture vapor for 12 hours.

Fig. S20 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of **C[3]Aα** after adsorption of **2-MP/3-MP** mixture vapor for 12 hours.

Fig. S21 Relative up of the **2-MP/3-MP** mixture vapor adsorbed in **C[3]A** determined by gas chromatography.

Fig. S22 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of **C[3]Aα** after adsorption of **2-MP/3-MP/4-MP** mixture vapor for 12 hours.

Fig. S23 Relative up of the 2-MP/3-MP/4-MP mixture vapor adsorbed in C[3]A determined by gas chromatography.

Fig. S24 Thermogravimetric analysis of $C[3]A\alpha$ after adsorption of 2-MP/3-MP/4-MP mixture vapor for 12 hours.

4.3 Cyclic adsorption experiments

Fig. S25 Thermogravimetric analysis of desolvated **4-MP**-loaded **C[3]A** crystals upon removel of **4-MP**.

Fig. S26 Power X-ray diffraction patterns of C[3]A: (a) desolvated 4-MP-loaded C[3]A crystals; (b) original C[3]A α .

Fig. S27 ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of (a) original C[3]A α ; (b) C[3]A α after adsorption of 2-MP/3-MP/4-MP mixture vapor; (c) 4-MP-loaded C[3]A crystals after removal of 4-MP; (d) desolvated 4-MP-loaded C[3]A crystals after adsorption of 2-MP/3-MP/4-MP mixture vapor.