ELECTRONIC SUPPLEMENTARY INFORMATION

Phosphorescent biaryl Pt(IV) complexes obtained through double metalation of dibenzoiodolium ions

Juan Carlos López-López, Delia Bautista, and Pablo González-Herrero*

Contents:

1.	Experimental details						
	1.1.	General considerations and materials	2				
	1.2.	Spectroscopic and analytical methods	2				
	1.3.	Synthesis and characterization data of new complexes	2				
	1.4.	X-ray structure determinations	7				
	1.5.	Photophysical characterization	8				
	1.6.	Computational methods	8				
2.	NMR	spectra of new compounds	9				
3.	Addit	tional discussion on NMR data	20				
4.	. Additional photophysical data and discussion						
5.	Comp	putational data	28				
	5.1.	Complex 2aa	28				
	5.2.	Complex 2ab	32				
	5.3.	Complex 2ac	36				
	5.4.	Complex 2ca	40				
	5.5.	Complex 2cb	44				
	5.6.	Complex 2cc	48				
	5.7.	Spin densities	52				
	5.8.	Supplementary computational data	55				
6.	Refer	ences	70				

1. Experimental details

1.1. General considerations and materials

Unless otherwise noted, all reactions were carried out at room temperature using extra-dry MeCN and flame-dried glassware under an N₂ atmosphere. Synthesis grade Et₂O and CH₂Cl₂ were degassed and dried using a Pure Solv MD-5 solvent purification system from Innovative Technologies, Inc. Other solvents were used as received. Complexes *cis*-[Pt(C^N)₂] [C^N = ppy (**1a**), tpy (**1b**) or thpy (**1c**)]^{1,2} and the dibenzoiodolium triflates^{3,4} were prepared following published procedures. All other reagents were obtained from commercial sources. Irradiations were performed using a previously described setup.¹

1.2. Spectroscopic and analytical methods

NMR spectra were registered on Bruker Avance 600, 400 or 300 MHz spectrometers at 298 K. Chemical shifts are referred to residual signals of non-deuterated solvents and are given in ppm downfield from tetramethylsilane. Elemental analyses were carried out with a LECO CHNS-932 microanalyzer. High-resolution electrospray ionization mass spectra (ESI-MS) were recorded on an Agilent 6220 Accurate-Mass time-of-flight (TOF) LC/MS.

1.3. Synthesis and characterization data of new complexes

General procedure for the synthesis of $[Pt(C^N)_2(C^C)]$ complexes $[C^N = cyclometalated 2-phenylpyridine (ppy), 2-(p-tolyl)pyridine (tpy) or 2-(2-thienyl)pyridine, and <math>C^C =$ dimetalated 4,4'-di-*tert*-butylbiphenyl (dbbph), biphenyl (bph) or 4,4'-difluorobiphenyl (dFbph)] (2). To a suspension of the appropriate complex 1 (0.20 mmol) in MeCN (20 mL) was added the dibenzoiodolium triflate (0.1 mmol) and the mixture was stirred at 60 °C for 24 h. The resulting pale yellow solution was cooled to room temperature and the solvent was evaporated under reduced pressure. The residue was chromatographed on silica gel using a hexane/AcOEt (4:1) mixture as the eluent. The corresponding complex 2 was isolated after partial evaporation of the solvents and addition of pentane.

[Pt(ppy)₂(dbbph)] (2aa). White solid. Yield: 68%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 8.05 (d, *J* = 9.1 Hz, 1H), 8.01 (d, *J* = 9.1 Hz, 1H), 7.96 (ddd with satellites, *J*_{PtH} = 13.7 Hz, *J*_{HH} = 0.8, 1.7, 5.5 Hz, 1H), 7.90-7.80 (m, 3H), 7.74 (dd with satellites, *J*_{PtH} = 14.0 Hz, *J* = 7.8, 1.5 Hz, 1H), 7.62 (ddd with satellites, *J*_{PtH} = 9.1 Hz, *J*_{HH} = 5.5, 1.7, 0.8 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.35-7.28 (m, 1H), 7.19-6.95 (m, 8H), 6.89 (dd with satellites, *J*_{PtH} = 48.5 Hz, *J*_{HH} = 7.8, 1.2 Hz, 1H), 6.77 (dd with satellites, *J*_{PtH} = 25.1 Hz, *J*_{HH} = 7.3, 1.5 Hz, 1H), 6.64 (d with satellites, *J*_{PtH} = 50.1 Hz, *J*_{HH} = 2.1 Hz, 1H), 6.27 (d with satellites, *J*_{PtH} = 20.1 Hz, *J*_{HH} = 2.1 Hz, 1H), 1.06 (s, 9H), 1.01 (s, 9H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 169.8 (*J*_{PtC} = 589.8 Hz, C), 167.4 (C), 163.4 (*J*_{PtC} = 53.3 Hz, C), 161.6 (*J*_{PtC} = 561.3 Hz, C), 150.1 (*J*_{PtC} = 36.7 Hz, C), 149.5 (C), 149.4 (C), 149.20 (CH), 146.4 (CH), 144.9 (*J*_{PtC} = 891.3 Hz, C), 144.6 (C), 143.1 (*J*_{PtC} = 891.3 Hz, C), 140.8 (C), 139.3 (CH), 138.4 (CH), 135.0 (*J*_{PtC} = 36.7 Hz, C), 130.3 (*J*_{PtC} = 36.3 Hz, CH), 127.4 (CH), 125.2 (CH), 125.1 (CH), 124.1 (CH), 123.9 (CH), 123.4 (CH), 123.3 (CH), 121.5 (CH), 121.0 (CH), 120.8 (CH), 120.73 (CH), 120.67 (CH), 120.59 (CH), 34.8 (C), 34.7 (C), 31.7 (CH₃), 31.6 (CH₃). Elemental analysis calcd (%) for C₄₂H₄₀N₂Pt: C 65.70, H 5.25, N 3.65; found: C 65.74, H 5.23, N 3.66.

[Pt(ppy)₂(bph)] (2ab). White solid. Yield: 58%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 8.09-7.96 (m, 3H), 7.89-7.79 (m, 3H), 7.75 (dd, J = 7.7, 1.4 Hz, 1H), 7.61-7.54 (m, 2H), 7.51 (dd with satellites, J_{PtH} = 7.1

Hz, $J_{\text{HH}} = 1.3$ Hz, 1H), 7.19-6.93 (m, 8H), 6.87-6.73 (m, 3H), 6.73-6.50 (m, 2H), 6.35 (dd with satellites, $J_{\text{PtH}} = 26.9$ Hz, $J_{\text{HH}} = 7.2$, 1.1 Hz, 1H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 169.3 ($J_{\text{PtC}} = 589.1$ Hz, C), 167.1 ($J_{\text{PtC}} = 23.1$ Hz, C), 163.1 ($J_{\text{PtC}} = 47.1$ Hz, C), 162.1 ($J_{\text{PtC}} = 561.9$ Hz, C), 152.9 ($J_{\text{PtC}} = 39.4$ Hz, C), 152.9 ($J_{\text{PtC}} = 60.9$ Hz, C), 149.4 (CH), 146.3 (CH), 144.5 ($J_{\text{PtC}} = 884.0$ Hz, C), 144.5 (C), 143.7 ($J_{\text{PtC}} = 889.6$ Hz, C), 140.7 (C), 139.4 (CH), 138.6 (CH), 134.7 ($J_{\text{PtC}} = 39.4$ Hz, CH), 133.1 ($J_{\text{PtC}} = 33.4$ Hz, CH), 132.2 ($J_{\text{PtC}} = 57.0$ Hz, CH), 131.6 ($J_{\text{PtC}} = 62.0$ Hz, CH), 131.5 ($J_{\text{PtC}} = 36.0$ Hz, CH), 131.2 (CH), 127.3 ($J_{\text{PtC}} = 23.6$ Hz, CH), 127.2 ($J_{\text{PtC}} = 60.0$ Hz, CH), 125.4 ($J_{\text{PtC}} = 19.7$ Hz, CH), 125.2 ($J_{\text{PtC}} = 33.4$ Hz, CH), 124.7 (CH), 124.6 (CH), 124.2 (CH), 124.0 (CH), 123.6 (CH), 123.5 (CH), 121.7 ($J_{\text{PtC}} = 45.4$ Hz, CH), 121.5 ($J_{\text{PtC}} = 29.5$ Hz, CH), 120.9 (CH), 120.8 (CH). Elemental analysis calcd (%) for C₃₄H₂₄N₂Pt: C 66.40, H 5.57, N 3.52; found: C 66.66, H 5.52, N 3.57.

[Pt(ppy)₂(dFbph)] (2ac). White solid. Yield: 60%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 8.09-7.93 (m, 3H), 7.93-7.79 (m, 3H), 7.76 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.55 (dd with satellites, *J*_{PtH} = 10.0 Hz, *J*_{HH} = 5.7, 1.6 Hz, 1H), 7.51-7.44 (m, 1H), 7.44-7.35 (m, 1H), 7.22-6.95 (m, 6H), 6.86-6.61 (m, 4H), 6.27 (dd with satellites, *J*_{PtH} = 54.1 Hz, *J*_{FH} = 10.0, *J*_{HH} = 2.8 Hz, 1H), 6.05 (dd with satellites, *J*_{PtH} = 22.6 Hz, *J*_{FH} = 8.5, *J*_{HH} = 2.8 Hz, 1H). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ -116.9 (m, 1F), -117.3 (m, 1F). ¹³C NMR (151 MHz, CD₂Cl₂): δ 167.2 (*J*_{PtC} = 589.5 Hz, C), 166.9 (*J*_{PtC} = 25.2 Hz, C), 164.3 (*J*_{PtC} = 561.9 Hz, C), 163.1 (*J*_{PtC} = 52.1 Hz, C), 162.6 (d, *J*_{CF} = 250.3 Hz, C), 161.3 (*J*_{CF} = 147.3 Hz, C), 149.3 (CH), 148.2 (*J*_{PtC} = 35.3 Hz, C), 147.2 (*J*_{PtC} = 60.5 Hz, C), 146.2 (CH), 144.3 (C), 144.2 (C), 143.7 (*J*_{PtC} = 869.1 Hz, C), 140.6 (C), 139.7 (CH), 139.0 (CH), 134.5 (*J*_{PtC} = 38.3 Hz, CH), 132.1 (*J*_{PtC} = 54.5 Hz, CH), 131.9 (CH), 131.8 (*J*_{PtC} = 38.4 Hz, CH), 125.6 (*J*_{PtC} = 16.2 Hz, CH), 125.3 (*J*_{PtC} = 33.0 Hz, CH), 124.6 (CH), 124.1 (CH), 123.8 (CH), 122.7-122.1 (m, CH), 121.1 (CH), 121.0 (CH), 119.6 (*J*_{PtC} = 32.3 Hz, CH), 119.4 (*J*_{PtC} = 39.5 Hz, CH), 117.6 (CH), 117.5 (CH), 111.0 (CH). Elemental analysis calcd (%) for C_{34H22}F₂N₂Pt: C 59.04, H 3.21, N 4.05; found: C 59.10, H 3.29, N 4.00.

[Pt(tpy)₂(dbbph)] (2ba). White solid. Yield: 52%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 8.1, Hz, 1H), 7.90 (ddd with satellites, *J*_{PtH} = 13.0 Hz, *J*_{HH} = 5.6, 1.7, 0.8 Hz, 1H), 7.86-7.74 (m, 2H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.66-7.59 (m, 1H), 7.57 (ddd with satellites, *J*_{PtH} = 8.8 Hz, *J*_{HH} = 5.6, 1.7, 0.8 Hz, 1H), 7.40 (d, *J* = 8.0, 1H), 7.34-7.29 (m, 1H), 7.11-6.88 (m, 6H), 6.76 (s with satellites, *J*_{PtH} = 25.5 Hz, 1H), 6.71 (d with satellites, *J*_{PtH} = 50.7 Hz, *J*_{HH} = 2.2 Hz, 1H), 6.57 (s with satellites, *J*_{PtH} = 50.0 Hz, 1H), 6.26 (d with satellites, *J*_{PtH} = 20.1 Hz, *J*_{HH} = 2.1 Hz, 1H), 2.18 (s, 3H), 2.15 (s, 3H), 1.07 (s, 9H), 1.04 (s, 9H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 170.0 (*J*_{PtC} = 597.5 Hz, C), 167.6 (*J*_{PtC} = 27.1 Hz, C), 163.6 (*J*_{PtC} = 45.4 Hz, C), 161.8 (*J*_{PtC} = 563.4 Hz, C), 150.1 (*J*_{PtC} = 887.0 Hz, C), 149.4 (*J*_{PtC} = 64.0 Hz, C), 149.3 (2 C), 149.0 (*J*_{PtC} = 13.5 Hz, CH), 146.2 (CH), 145.0 (*J*_{PtC} = 887.0 Hz, C), 143.2 (*J*_{PtC} = 15.8 Hz, CH), 125.1 (*J*_{PtC} = 19.8 Hz, CH), 125.0 (CH), 124.9 (*J*_{PtC} = 35.7 Hz, CH), 124.2 (CH), 123.2 (*J*_{PtC} = 15.8 Hz, CH), 122.8 (CH), 121.3 (CH), 120.8 (CH), 120.58 (CH), 120.51 (CH), 120.4 (CH), 120.3 (CH), 34.74 (C), 34.71 (C), 31.7 (3CH₃), 31.6 (3CH₃), 22.2 (CH₃), 22.0 (CH₃). Elemental analysis calcd (%) for C₄₄H₄₄N₂Pt: C 66.40, H 5.57, N 3.52; found: C 66.66, H 5.52, N 3.57.

[Pt(tpy)₂(bph)] (2bb). White solid. Yield: 80%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 8.06-7.88 (m, 3H), 7.84-7.76 (m, 2H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.67-7.60 (m, 1H), 7.56 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.53-7.43 (m, 2H), 7.10-6.87 (m, 6H), 6.81-6.73 (m, 1H), 6.68 (s with satellites, *J*_{PtH} = 12.8 Hz, 1H), 6.66-6.61 (m, 2H), 6.57 (s with satellites, *J*_{PtH} = 24.8 Hz, 1H), 6.32 (d with satellites, *J*_{PtH} = 27.2, *J*_{HH} = 7.3, 1 Hz 1H), 2.15 (s, 3H), 2.15 (s, 3H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 169.5 (*J*_{PtC} = 588.4 Hz, C), 167.2 (C), 163.2 (C), 162.4 (*J*_{PtC} = 555.0 Hz, C), 152.9 (*J*_{PtC} = 34.0 Hz, C), 152.2 (*J*_{PtC} = 60.8 Hz, C), 149.1 (*J*_{PtC} =

35.3 Hz, CH), 152.6 ($J_{PtC} = 60.9$ Hz, CH), 149.1 ($J_{PtC} = 12.5$ Hz, CH), 146.1 (CH), 144.5 ($J_{PtC} = 873.0$ Hz, C), 143.7 ($J_{PtC} = 893.0$ Hz, C), 142.0 ($J_{PtC} = 63.7$ Hz, C), 141.8 (C), 141.5($J_{PtC} = 34.6$ Hz, C) 139.3 (CH), 138.4 (CH), 138.0 (C), 135.4 ($J_{PtC} = 38.1$ Hz, CH), 133.0 ($J_{PtC} = 31.8$ Hz, CH), 132.7 ($J_{PtC} = 56.6$ Hz, CH), 131.2 ($J_{PtC} = 13.2$ Hz, CH), 127.3 ($J_{PtC} = 25.4$ Hz, CH), 127.1 ($J_{PtC} = 58.4$ Hz, CH), 125.3 (CH), 125.2 (CH), 125.0 ($J_{PtC} = 35.1$ Hz, CH), 124.6 (CH), 124.5 (CH), 123.4 (CH), 123.0 (CH), 121.7 ($J_{PtC} = 43.2$ Hz, CH), 121.5 ($J_{PtC} = 27.6$ Hz, CH), 120.5 (CH), 120.4 (CH), 22.2 (CH₃), 22.1 (CH₃). Elemental analysis calcd (%) for C₃₆H₂₈N₂Pt: C 63.24, H 4.13, N 4.10; found: C 63.22, H 4.14, N 4.01.

[Pt(tpy)₂(dFbph)] (2bc). White solid. Yield: 72%. ¹H NMR (600 MHz, CD₂Cl₂): δ 8.02 (d, *J*_{HH} = 8.1 Hz, 1H), 8.00 (d, *J*_{HH} = 8.1 Hz, 1H), 7.93 (d with satellites, *J*_{PtH} = 12.7, *J*_{HH} = 6.1 Hz, 1H), 7.89-7.82 (m, 2H), 7.71 (dd, *J*_{HH} = 8.0, 2.3 Hz, 1H), 7.68-7.61 (m, 1H), 7.55-7.48 (m, 2H), 7.42 (dd, *J*_{HH} = 8.5 Hz, *J*_{FH} = 5.8 Hz, 1H), 7.11-7.03 (m, 2H), 7.03-6.97 (m, 2H), 6.77-6.70 (m, 2H), 6.66 (s with satellites, *J*_{PtH} = 28.0 Hz, 1H), 6.58 (s with satellites, *J*_{PtH} = 48.0 Hz, 1H), 6.30 (dd with satellites, *J*_{PtH} = 54.4 Hz, *J*_{FH} = 9.9, *J*_{HH} = 2.8 Hz, 1H), 6.02 (dd with satellites, *J*_{PtH} = 22.5 Hz, *J*_{FH} = 8.4, *J*_{HH} = 2.6 Hz, 1H), 2.18 (s, 3H), 2.16 (s, 3H). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ -117.1 (m, 1F), -117.4 (m, 1F). ¹³C NMR (151 MHz, CD₂Cl₂): δ 166.7 (C), 166.4 (*J*_{PtC} = 28.4 Hz, C), 164.1 (C), 162.7 (C), 162.3 (d, *J*_{CF} = 248.7 Hz, C), 160.8 (d, *J*_{CF} = 248.7 Hz, C), 141.3 (C), 141.1 (C), 138.9 (CH), 138.2 (CH), 137.4 (C), 134.7 (*J*_{PtC} = 40.2 Hz, CH), 132.0 (*J*_{PtC} = 57.5 Hz, CH), 125.0 (CH), 124.9 (*J*_{PtC} = 18.1 Hz, CH), 124.5 (*J*_{PtC} = 33.1 Hz, CH), 124.3 (CH), 116.8 (CH), 110.2 (t, *J*_{CF} = 21.7 Hz, CH), 21.6 (CH₃), 21.5 (CH₃). Elemental analysis calcd (%) for C₃₆H₂₆F₂N₂Pt: C 60.08, H 3.64, N 3.89; found: C 60.21, H 3.59, N 3.66.

[Pt(thpy)₂(dbbph)] (2ca). White solid. Yield: 66%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 7.82-7.56 (m, 6H), 7.41-7.34 (m, 2H), 7.34-7.24 (m, 2H), 7.06 (dd, *J* = 8.03, 2.1 Hz, 1H), 7.03-6.95 (m, 2H), 6.91-6.85 (m, 1H), 6.64 (d with satellites, *J*_{PtH} = 52.5 Hz, *J*_{HH} = 2.3 Hz, 1H), 6.59 (d with satellites, *J*_{PtH} = 13.7 Hz, *J*_{HH} = 4.8 Hz, 1H), 6.45 (d with satellites, *J*_{PtH} = 22.0 Hz, *J*_{HH} = 2.3 Hz, 1H), 6.59 (d with satellites, *J*_{PtH} = 13.7 Hz, *J*_{HH} = 4.8 Hz, 1H), 6.45 (d with satellites, *J*_{PtH} = 22.0 Hz, *J*_{HH} = 2.3 Hz, 1H), 6.35 (d with satellites, *J*_{PtH} = 22.0 Hz, *J*_{HH} = 4.8 Hz, 1H), 1.10 (s, 9H), 1.09 (s, 9H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 174.2 (*J*_{PtC} = 581.7 Hz, C), 162.7 (*J*_{PtC} = 18.4 Hz, C), 159.1 (*J*_{PtC} = 40.0 Hz, C), 158.4 (*J*_{PtC} = 589.2 Hz, C), 150.4 (*J*_{PtC} = 44.6 Hz, C), 149.7 (*J*_{PtC} = 26.3 Hz, C), 149.3 (C), 149.2 (*J*_{PtC} = 63.3 Hz, C) 149.11 (CH), 147.0 (CH), 142.0 (*J*_{PtC} = 913.2 Hz, C), 141.8 (C), 139.8 (CH), 138.8 (CH), 138.1 (*J*_{PtC} = 861.8 Hz, C), 134.1 (C), 134.0 (*J*_{PtC} = 74.5 Hz, CH), 127.7 (CH), 127.7 (CH), 121.4 (*J*_{PtC} = 14.8 Hz, CH), 121.3 (CH), 121.0 (CH), 120.43 (CH), 120.39 (CH), 119.6 (*J*_{PtC} = 13.3 Hz, CH), 119.5 (*J*_{PtC} = 12.0 Hz, CH), 34.9 (C), 34.8 (C), 31.73 (CH₃), 31.63 (CH₃). Elemental analysis calcd (%) for C₃₈H₃₆N₂PtS₂: C 58.82, H 4.65, N 3.59, S 8.22; found: C 58.72, H 4.77, N 3.47, S 8.12.

[Pt(thpy)₂(bph)] (2cb). Pale yellow solid. Yield: 40%. ¹H NMR (400.9 MHz, CD₂Cl₂): δ 7.82 (ddd with satellites, $J_{PtH} = 16.0$ Hz, $J_{HH} = 5.6$, 1.6, 0.8 Hz, 1H), 7.78-7.69 (m, 2H), 7.67-7.57 (m, 3H), 7.54 (dd, J = 7.6, 1.4 Hz, 1H), 7.48 (dd with satellites, $J_{PtH} = 6.8$ Hz, $J_{HH} = 1.5$ Hz, 1H), 7.34 (d with satellites, $J_{PtH} = 14.6$ Hz, $J_{HH} = 4.7$ Hz, 1H), 7.27 (d with satellites, $J_{PtH} = 11.3$ Hz, $J_{HH} = 4.7$ Hz, 1H), 7.10-6.92 (m, 3H), 6.91-6.77 (m, 2H), 6.72-6.58 (m, 2H), 6.52 (d with satellites, $J_{PtH} = 8.9$, $J_{HH} = 4.5$ Hz, 1H), 6.49 (dd with satellites, $J_{PtH} = 8.9$, $J_{HH} = 7.3$, 1.3 Hz, 1H), 6.35 (d with satellites, $J_{PtH} = 20.2$ Hz, $J_{HH} = 4.7$ Hz, 1H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 173.8 ($J_{PtC} = 583.2$ Hz, C), 162.5 ($J_{PtC} = 17.8$ Hz, C), 159.0 ($J_{PtC} = 583.2$ Hz, C), 158.8 ($J_{PtC} = 38.8$ Hz, C), 153.3 ($J_{PtC} = 44.0$ Hz, C), 152.0 ($J_{PtC} = 62.3$ Hz, C), 149.3 (CH), 146.8 (CH), 141.8 (C), 141.6 ($J_{PtC} = 903.0$ Hz, C), 140.0 (CH), 139.0 (CH), 138.6 (C),

133.9 (J_{PtC} = 32.8 Hz, CH), 133.8 (J_{PtC} = 55.1 Hz, CH), 131.4 (C), 131.2 (J_{PtC} = 92.0 Hz, CH), 130.1 (J_{PtC} = 36.8 Hz, CH), 128.8 (J_{PtC} = 73.5 Hz, CH), 127.5 (J_{PtC} = 24.0 Hz, CH), 126.9 (J_{PtC} = 55.2 Hz, CH), 125.0 (CH), 124.8 (CH), 121.54 (J_{PtC} = 891.3 Hz, CH), 121.46 (CH), 121.3 (CH), 121.2 (CH), 119.7 (CH), 119.63 (CH), 119.59 (CH). Elemental analysis calcd (%) for C₃₀H₂₀N₂PtS₂: C 53.97, H 3.02, N 4.20, S 9.60; found: C 53.88, H 3.28, N 4.15, S 9.73.

[Pt(thpy)₂(dFbph)] (2cc). White solid. Yield: 76%. ¹H NMR (300.1 MHz, CD₂Cl₂): δ 7.83-7.73 (m, 3H), 7.67-7.50 (m, 2H), 7.58 (d with satellites, $J_{PtH} = 9.8$ Hz, $J_{HH} = 5.5$ Hz, 1H), 7.48-7.43 (m, 1H), 7.40-7.34 (m, 2H), 7.31 (d with satellites, $J_{PtH} = 15.0$ Hz, $J_{HH} = 4.8$ Hz, 1H), 6.98 (t, $J_{HH} = 6.9$ Hz, 1H), 6.90 (t, $J_{HH} = 6.9$ Hz, 1H), 6.77-6.70 (m, 2H), 6.50 (d with satellites, $J_{PtH} = 13.6$ Hz, $J_{HH} = 4.8$ Hz, 1H), 6.38 (d with satellites, $J_{PtH} = 20.4$ Hz, $J_{HH} = 4.8$ Hz, 1H), 6.30 (dd with satellites, $J_{PtH} = 55.1$ Hz, $J_{FH} = 9.5$, $J_{HH} = 2.8$ Hz, 1H), 6.20 (dd with satellites, $J_{PtH} = 24.3$ Hz, $J_{FH} = 8.4$, $J_{HH} = 2.8$ Hz, 1H). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ -116.9 (m, 2F). ¹³C NMR (151 MHz, CD₂Cl₂): δ 171.7 ($J_{PtC} = 600.3$ Hz, C), 162.6 (d, $J_{CF} = 247.8$ Hz, C), 161.9 (C), 161.8 (C), 161.1 ($J_{PtC} = 600.0$ Hz, C), 161.09 (d, $J_{CF} = 247.8$ Hz, C), 159.0 (C), 149.3 (CH), 148.7 ($J_{PtC} = 42.4$ Hz, C), 147.2 ($J_{PtC} = 58.8$ Hz, C), 146.8 (CH), 142.0 (C), 140.8 (C), 140.2 (CH), 139.4 (CH), 139.1 (C), 133.5 ($J_{PtC} = 54.5$ Hz, CH), 131.0 ($J_{PtC} = 91.8$ Hz, CH), 130.6 ($J_{PtC} = 34.6$ Hz, CH), 129.2 ($J_{PtC} = 75.3$ Hz, CH), 122.2 (CH), 121.7 (CH), 121.5 (CH), 120.5 ($J_{PtC} = 45.2$ Hz, CH), 120.4 ($J_{PtC} = 45.2$ Hz, CH), 119.9 (CH), 119.85 (CH), 117.8 (CH), 117.7 (CH), 111.2 (CH). Elemental analysis calcd (%) for C₃₀H₁₈F₂N₂S₂Pt: C 51.21, H 2.58, N 3.98; found: C 51.11, H 2.57, N 3.84.

 $[Pt(tpy)_2(dFbphI-\kappa^2 C, C)]$ (2bc'). To a suspension of 1b (100 mg, 0.19 mmol) in MeCN (10 mL) was added 3,7-difluorodibenzo-5-iodolium triflate (88 mg, 0.19 mmol) and the mixture was stirred and irradiated under N₂ with blue light until a pale yellow solution was obtained (2 h). γ -Picoline (55 μ L, 0.57 mmol mmol) was then added and the solution was stirred at 50 C for 12 h, whereupon a white solid gradually precipitated, which was collected by filtration, washed with MeCN (3×2 mL) and vacuumdried to give **2bc'**. Yield: 64%. ¹H NMR (600 MHz, CD₂Cl₂): δ 8.76 (dd, $J_{\text{FH}} = 6.0$ Hz, $J_{\text{HH}} = 8.9$ Hz, 1H), 8.00 (d, $J_{\text{HH}} = 8.4$ Hz, 1H), 7.97 (d, $J_{\text{HH}} = 8.2$ Hz, 1H), 7.86-7.80 (m, 3H), 7.71 (d, $J_{\text{HH}} = 8.0$ Hz, 1H), 7.65 (d, *J*_{FH} = 8.0 Hz, 1H), 7.46-7.38 (m, 2H), 7.08-7.02 (m, 2H), 7.01-6.95 (m, 2H), 6.79 (dt, *J* = 8.7, 2.9 Hz, 1H), 6.58 (s with satellites, $J_{PtH} = 26.3$ Hz, 1H), 6.44 (s with satellites, $J_{PtH} = 48.6$ Hz, 1H), 6.40 (dd with satellites, $J_{PtH} = 57.0$ Hz, $J_{FH} = 9.8$, $J_{HH} = 2.6$ Hz, 1H), 6.11 (d with satellites, $J_{PtH} = 23.8$ Hz, $J_{\rm FH} = 7.1$ Hz, $J_{\rm HH} = 2.6$ Hz, 1H), 2.18 (s, 3H), 2.14 (s, 3H). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ – 115.8 (m, 1F), -117.1 (m, 1F). ¹³C NMR (151 MHz, CD₂Cl₂): δ 168.2 (J_{PtC} = 545.0 Hz, C), 166.93 (J_{PtC} = 605.5 Hz, C), 166.86 (C), 163.1 (J_{PtC} = 49.4 Hz, C), 161.7 (d, J_{CF} = 245.6 Hz, C), 160.4 (d, J_{CF} = 255.1 Hz, C), 148.9 (CH), 147.7 (*J*_{PtC} = 30.5 Hz, C), 146.7 (*J*_{PtC} = 71.6 Hz, C), 146.2 (C), 145.9 (CH), 143.6 (*J*_{PtC} = 863.7 Hz, C), 142.5 (*J*_{PtC} = 60.9 Hz, C), 142.1 (*J*_{PtC} = 38.0 Hz, C), 141.4 (C), 139.7 (CH), 138.9 (CH), 137.9 (C), 134.9 ($J_{PtC} = 37.9$ Hz, CH), 132.5 ($J_{PtC} = 56.8$ Hz, CH), 127.5 ($J_{PtC} = 51.3$ Hz, $J_{CF} = 51.3$ 10.5 Hz, CH), 125.8 (CH), 125.5 (CH), 125.3 (CH), 125.27 (CH), 125.1 (CH), 123.7 (CH), 123.4 (CH), 120.82 (CH), 120.78 (CH), 119.7 (d, $J_{PtC} = 49.3$ Hz, $J_{CF} = 19.3$ Hz, CH), 117.3 ($J_{CF} = 14.1$ Hz, CH), 109.1 ($J_{CF} = 20.3 \text{ Hz}$, CH), 89.9 ($J_{PtC} = 45.7 \text{ Hz}$, $J_{CF} = 5.3 \text{ Hz}$, C), 22.2 (CH₃), 22.1 (CH₃). Elemental analysis calcd (%) for C₃₆H₂₅F₂IN₂Pt: C 51.14, H 2.98, N 3.31; found: C 50.99, H 3.25, N 3.42.

 $[Pt(tpy)_2(dFbphI-\kappa^2 C, I)]OTf(3bc)$. To a suspension of 1b (50 mg, 0.09 mmol) in MeCN (10 mL) was added 3,7-difluorodibenzo-5-iodolium triflate (44 mg, 0.09 mmol) and the suspension was irradiated with blue light until a pale yellow solution was obtained (4 h). The solvent was evaporated under reduced pressure and the residue was treated with CH_2Cl_2 (1 mL) and Et_2O (5 mL) to give a pale brown precipitate, which was separated by filtration. The filtrate was evaporated under reduced pressure and the residue was treated with CH_2Cl_2 (1 mL) and pentane (20 mL) to give a pale yellow precipitate, which was collected by filtration and vacuum-dried to give **3bc**. Yield: 50%. ¹H NMR (600 MHz, CD₂Cl₂): δ 9.25 (d, $J_{\rm HH}$ = 5.3 Hz, 1H), 8.30 (d, $J_{\rm HH}$ = 8.2 Hz, 1H), 8.25 (dt, $J_{\rm HH}$ = 7.8, 1.5 Hz, 1H), 7.91 (d, $J_{\rm HH}$ = 8.0 Hz, 1H), 7.86 (dt, J = 7.3, 1.5 Hz, 1H), 7.78 (d with satellites, $J_{PtH} = 22.5$, $J_{HH} = 7.8$ Hz, 1H), 7.62-7.56 (m, 2H), 7.50 (d, $J_{\text{HH}} = 8.0$ Hz, 1H), 7.40 (d, $J_{\text{PtH}} = 10.7$ Hz, $J_{HH} = 5.2$ Hz, 1H), 7.35-7.30 (m, 1H), 7.22 (dt, J = 8.3, 2.7 Hz, 1H), 7.13-7.10 (m, 1H), 7.09 (dd, $J_{FH} = 7.3, J_{HH} = 2.7$ Hz, 1H), 7.05 (d, $J_{HH} = 2.7$ Hz, 1H), 7.05 (d, J_{HH} = 2.7 Hz, 1H), 7.05 (d, $J_{HH} = 2.7$ Hz, 1H), 7.05 (d, J_{HH} = 2.7 Hz, 1H), 7.05 (d, 7.7 Hz, 1H), 6.93 (d, J_{HH} = 7.9 Hz, 1H), 6.89 (m, 1H), 6.64 (s with satellites, J_{PtH} = 40.2 Hz, 1H), 6.27 (s with satellites, $J_{PtH} = 64.8$ Hz, 1H), 6.14 (dd with satellites, $J_{PtH} = 60.0$ Hz, $J_{FH} = 10.9$, $J_{HH} = 2.7$ Hz, 1H), 2.09 (s, 3H), 2.02 (s, 3H). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ –78.9 (s, 3F), –114.5 (m, 1F), –115.8 (m, 1F). ¹³C NMR (151 MHz, CD₂Cl₂): δ 162.9 (C), 161.7 (*J*_{PtC} = 150.8 Hz, C), 161.2 (*J*_{PtC} = 251.0 Hz, C), 160.4 (*J*_{PtC} = 61.8 Hz, C), 160 (C), 159.3 (*J*_{PtC} = 47.7 Hz, C), 152.8 (CH), 149.1 (CH), 146.6 (C), 146.1 (*J*_{PtC} = 28.1 Hz, C), 143 (C), 142.7 (C), 141.8 (C), 141.5 (CH), 141.0 (CH), 140.9 (C), 139.0 (C), 136.4 (C), 135.9 (*J*_{PtC} = 42.2 Hz, CH), 135.3 (CH), 135.2 (CH), 133.7 (CH), 133.6 (CH), 132.2 (*J*_{PtC} = 59.3 Hz, CH), 128.5 (CH), 127.4 (CH), 126.9 (CH), 124.8 (CH), 122.8 (CH), 122.1 (CH), 121.9 (CH), 120.9 (CH), 117.9 (CH), 113.9 (CH), 101.3 (C), 22.2 (CH₃), 22.1 (CH₃). Elemental analysis calcd (%) for C₃₇H₂₇F₅IN₂O₃PtS: C 44.63, H 2.63, N 2.81, S 3.22; found: C 44.92, H 2.68, N 2.81, S 3.02.

1.4. X-ray structure determinations

Single crystals of **2ba** \cdot 0.5CH₂Cl₂, **2bc'**, and **3bc** \cdot Et₂O suitable for X-ray diffraction were obtained by slow diffusion of Et₂O into solutions of the complexes in CH₂Cl₂. The data were collected on a Bruker D8 QUEST diffractometer with monochromated Mo-*K* α radiation performing φ and ω scans. The structures were solved by direct methods and refined anisotropically on *F*² using the program SHELXL-2018 (G. M. Sheldrick, University of Göttingen).^{5,6} Numerical details are given in Table S1. Methyl hydrogens were included as part of rigid idealized methyl groups allowed to rotate but not tip; other hydrogens were included using a riding model. *Special features of refinement:* In the case of **2ba** \cdot 0.5CH₂Cl₂, there are two independent molecules of the complex and one resolved CH₂Cl₂ molecule in the asymmetric unit; additionally, there is a poorly-resolved region of residual electron density that could not be adequately modelled and was "removed" using the program SQUEEZE,⁷ which is part of the PLATON system; the void volume per cell was 325 Å³, with a void electron count per cell of 9; this additional solvent was not taken into account when calculating derived parameters such as the formula weight, because its nature was uncertain.

	2ba \cdot 0.5CH ₂ Cl ₂	2bc'	3bc ·Et ₂ O
formula	C44.5H45ClN2Pt	$C_{36}H_{25}F_2IN_2Pt$	$C_{41}H_{36}F_5IN_2O_4PtS$
fw	838.36	845.57	1069.77
<i>T</i> (K)	100(2)	100(2)	100(2)
λ (Å)	0.71073	0.71073	0.71073
cryst syst	Monoclinic	Orthorhombic	Monoclinic
space group	$P2_1/n$	Pbca	$P2_1/c$
<i>a</i> (Å)	10.9752(8) Å	17.1359(10)	16.2963(10)
b (Å)	29.683(2) Å	18.0068(10)	21.4916(13)
<i>c</i> (Å)	23.6145(16) Å	18.8414(11)	11.4378(7)
α (°)	90	90	90
β (°)	91.371(2)	90	101.459(2)
γ (°)	90	90	90
$V(\text{\AA}^3)$	7690.8(10)	5813.8(6)	3926.1(4)
Ζ	8	8	4
$ ho_{calcd} ({ m Mg m}^{-3})$	1.448	1.932	1.810
$\mu (\mathrm{mm}^{-1})$	3.751	5.931	4.481
$R1^a$	0.0268	0.0179	0.0355
$wR2^b$	0.0593	0.0395	0.0817

Table S1. Crystallographic data for 2ba · 0.5CH ₂ Cl ₂ , 2bc' and 3bc	\cdot Et ₂ O.
---	----------------------------

 a R1 = $\Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$ for reflections with $I > 2\sigma(I)$. b wR2 = $[\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma [w(F_{o}^{2})^{2}]]^{0.5}$ for all reflections; $w^{-1} = \sigma^{2}(F^{2}) + (aP)^{2} + bP$, where $P = (2F_{c}^{2} + F_{o}^{2}) / 3$ and a and b are constants set by the program.

1.5. Photophysical characterization

Electronic absorption spectra were registered with a Perkin-Elmer Lambda 750S spectrophotometer. Excitation and emission spectra were recorded on a Jobin Yvon Fluorolog 3-22 spectrofluorometer with a 450 W xenon lamp, double-grating monochromators, and a TBX-04 photomultiplier. Measurements in solution were performed using 10 mm quartz fluorescence cells (298 K) or 5 mm quartz NMR tubes (77 K). A liquid nitrogen Dewar with quartz windows was employed for measurements at 77 K. Emission data in PMMA matrices were registered using quartz slides as sample holders. Emission lifetimes were measured using an IBH FluoroHub controller in MCS mode and the Fluorolog's FL-1040 phosphorimeter pulsed xenon lamp as excitation source; the estimated uncertainty is $\pm 10\%$ or better. Emission quantum yields (Φ) were measured using a Hamamatsu C11347 Absolute PL Quantum Yield Spectrometer; the estimated uncertainty is $\pm 5\%$ or better. All emission data were registered under rigorous exclusion of oxygen.

1.6. Computational methods

DFT calculations were carried out with the Gaussian 09 package,⁸ using the hybrid B3LYP functional^{9,10} and the 6-31G**^{11,12} basis set for the light atoms, and the LANL2DZ¹³ basis set and effective core potential for the Pt atom. Geometry optimizations were performed using "tight" convergence criteria and "ultrafine" integration grid. No symmetry restrictions were applied. Vertical excitation energies at the ground-state geometries were obtained from TDDFT calculations. Triplet-state geometries were optimized through spin-unrestricted DFT (UB3LYP), following a previously described methodology.¹⁴ The solvent effect (CH₂Cl₂) was accounted for in all cases by using the integral equation formalism variant of the polarizable continuum solvation model (IEFPCM).¹⁵ Frequency calculations were performed in all cases to confirm the optimized geometries as minima on the potential energy surface (zero imaginary frequencies). Natural spin densities were calculated using the NBO 5.9 program.¹⁶

2. NMR spectra of new compounds

Figure S1. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2aa (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S2. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2ab (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S3. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **2ac** (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S4. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2ba (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S5. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **2bb** (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S6. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **2bc** (CD₂Cl₂, 600 and 151 MHz, respectively).

Figure S7. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2ca (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S8. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **2cb** (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S9. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **2cc** (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S10. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2bc' (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S11. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **3bc** (CD₂Cl₂, 600 and 151 MHz, respectively). **Note:** Analytically pure samples this compound always showed additional signals corresponding to a secondary, minor product, possibly resulting from the decoordination of the iodine atom.

3. Additional discussion on NMR data

The ¹NMR spectra of complexes **2** and **3bc** show a series of resonances flanked by Pt satellites corresponding to inequivalent aromatic protons ortho to the metalated carbon atoms or the coordinated nitrogen atoms, whose chemical shifts are compiled in Table S2. They could be assigned as shown in Figure S12. The assignment to *c* or *d*, or *e* or *f* protons is based on the different values of Pt-H coupling constants, which are assumed to be larger for the protons ortho to shorter C–Pt bonds (*i.e.*, trans to N). The *a* and *b* protons could be distinguished because proton *a* in **3bc** is not shielded by any orthogonal aromatic ring and appears at 9.28 ppm, leaving proton *b* relatively unchanged with respect to the rest of complexes. The *f* resonance is absent for **3bc**. The main difference found for **2bc'** with respect to **2bc** is a resonance at 8.76 ppm arising from proton *g*, which is significantly downfield shifted relative to the analogous protons of **2bc** (*ca*. 7.50, 7.42 ppm) because it is directed toward the C–I bond and undergoes a strong through-space deshielding.

Table S2. Chemical shifts (ppm) of the assignable resonances of the protons ortho to the metalated carbon atoms or coordinated nitrogen atoms for the complexes described in this work (see Figure S12 for atom labeling).

Complex	Ha	Hb	Нс	Hd	Не	Hf
2 aa	7.96	7.62	6.89	6.77	6.64	6.27
2ab	a	7.51	6.82	6.66	6.60	6.35
2ac	7.98	7.55	a	a	6.27	6.05
2ba	7.90	7.57	6.76	6.57	6.71	6.26
2 bb	7.94	7.51	6.68	6.57	6.65	6.32
2bc	7.93	7.52	6.66	6.58	6.30	6.02
2ca	7.78	a	6.59	6.35	6.64	6.45
2cb	7.82	7.48	6.52	6.35	6.62	6.49
2cc	7.80	7.58	6.50	6.38	6.29	6.18
2bc'	a	7.43	6.58	6.44	6.40	6.11
3bc	9.25	7.40	6.64	6.27	6.14	b

^a This resonances could not be discerned. ^b Absent.

Figure S12. Labeling of aromatic H atoms for NMR assignments.

4. Additional photophysical data and discussion

Electronic absorption spectra

The electronic absorption spectra of complexes **2** in CH₂Cl₂ solution at 298 K (Figure S13, Table S3) show vibronically structured bands in the range 270-380 nm that are mainly attributable to singlet π - π * transitions within the C^N and C^C ligands (¹LC). By comparing the different spectra, the maxima of the lowest ¹LC(C^N) absorption band could be identified, which appear in the range 305-330 nm for ppy and tpy derivatives or 350-365 nm for thpy derivatives, being slightly blue-shifted with respect to those of other neutral Pt(IV) complexes bearing these ligands.^{17,18} Additional maxima or shoulders in the 290-300 nm range (ppy and tpy derivatives) or 300-330 nm (thpy derivatives) are assignable to partially obscured ¹LC(C^C) absorptions. A more precise understanding was gained from DFT and TDDFT calculations on the ppy and thpy complexes (see the next section). The most intense absorptions are predicted to arise from ¹LC(C^C) and ¹LC(C^N) transitions, the former having higher energies in all cases. The ¹LC(C^C) energies are affected by the R substituent, increasing in the order *t*-Bu (dbbph) < H (bph) < F (dFbph). Additionaly, the calculations revealed the existence of relatively weak transitions of ligand-to-ligand charge-transfer character [¹LLCT, (C^C) \rightarrow (C^N)], which emerge as the lowest-energy broad shoulder in the spectra of the ppy and tpy complexes at *ca*. 350 nm.

Figure S13. Electronic absorption spectra of complexes 2 in a CH₂Cl₂ solution at 298 K

 $\lambda_{\rm max}/{\rm nm}~(\varepsilon \times 10^{-3}/{\rm M}^{-1}{\rm ~cm}^{-1})$ Complex 2aa 269 (24.3), 297 (28.6), 307 (17.8), 329 (14.9), 352 (6.3) 2ab 270 (24.5), 292 (17.04), 307 (17.3), 325 (15.0), 346 (7.5) 2ac 268 (23.6), 297 (15.8), 308 (17.5), 322 (15.2), 342 (9.0) 2ba 277 (28.5), 299 (21.0), 313 (21.4), 330 (19.2), 349 (10.47) 2bb 276 (30.7), 313 (22.8), 326 (20.3), 347 (12.3) 2bc 275 (26.0), 314 (21.0), 324 (18.9), 345 (12.8) 2ca 296 (29.2), 327 (19.2), 352 (16.2), 366 (13.4) 2cb 292 (31.2), 308 (30.3), 323 (20.4), 350 (19.9), 365 (16.9) 2cc 302 (26.2), 348 (17.0), 362 (15.2)

Electronic absorption data for complexes 2 in CH₂Cl₂ solution (*ca.* 5×10^{-5} M) at 298 K.

	1	0 1 1
Complex	Medium	$\lambda_{\rm em}/{\rm nm}^a$
2aa	CH ₂ Cl ₂	447, 461, 477, 491
	PMMA	448, 462, 479, 495
2ab	CH_2Cl_2	452, 477, 513
	PMMA	452, 477, 514
2ac	CH_2Cl_2	448, 476, 507
	PMMA	448, 478, 503
2ba	CH_2Cl_2	456, 486, 520
	PMMA	457, 484, 520
2bb	CH_2Cl_2	453, 483, 513
	PMMA	454, 482, 516
2bc	CH_2Cl_2	453, 482, 513
	PMMA	452, 482, 511
2ca	CH_2Cl_2	514, 529, 556
	PMMA	513, 528, 551
2cb	CH_2Cl_2	514, 531, 552
	PMMA	513, 527, 552
2cc	CH_2Cl_2	514, 554
	PMMA	513, 528, 550

Table S4.Complete listing of emission peaks for complexes 2 at 298 K.

^aThe most intense peak is italicized.

Table S3.

Complex	$\lambda_{ m em}/{ m nm}^a$	$\pi/\mu s^b$
2 aa	456, 474, 490, 510, 520, 531, 563	337 (25%), 525 (77%)
2ab	452, 467, 475, 484, 513, 526, 554	364
2ac	444, 466, 476, 502, 514, 546	308
2ba	456, 472, 489, 511, 519, 531, 561	488
2bb	451, 467, 475, 484, 511, 522, 557	317
2bc	448, 483, 503, 519, 548	262
2ca	511, 529, 550, 571, 597	293
2cb	511, 530, 551, 572, 597	316
2cc	512, 527, 549, 572, 596	355

Table S5. Emission data for complexes 2 in 2-MeTHF glasses at 77 K.

^{*a*} The most intense peak is italicized. ^{*b*} Emission lifetime.

Additional data and discussion on the dual emission of 2aa

The weak phosphorescence of **2aa** was assigned to a dual emission from ${}^{3}LC(ppy)$ and ${}^{3}LC(dbbph)$ excited states on the basis of its shape. The characteristic peaks of the ${}^{3}LC(ppy)$ emission at *ca.* 447 and 477 nm coincide with those of the corresponding emission of the other ppy derivatives and can be easily identified. The additional peaks correspond to the ${}^{3}LC(dbbph)$ emission. The shapes of the emission spectra measured in CH₂Cl₂, DMSO or MeOH solution, or in PMMA matrix, are very similar, but there are perceptible variations in the relative intensities of the observed peaks, suggesting that the two emissive states are affected differently by the medium (Figure S14). The emission spectra measured at different excitation wavelengths in CH₂Cl₂, DMSO or MeOH solutions are identical, but show some variations in the relative intensities of the different peaks when measured in PMMA (Figure S14), probably because the two emissive states are differently populated and their thermal equilibration is slower in the rigid medium.

Figure S14. Emission spectra of complex **2aa** in PMMA and different solvents at 298 K upon excitation at 329 nm (left) and in PMMA at different excitation wavelengths (right).

The excitation spectra of 2aa registered at different emission wavelengths can be correlated with the absorption spectrum, which demonstrates that the emissions arise from the complex and not from possible impurities or photodecomposition products. The maxima at *ca*. 297, 307, 329 and the shoulder

at *ca.* 355 nm observed in the absorption spectrum can be found in the excitation spectra. However, their relative intensities depend on the medium and the emission wavelength (Figure S15). The differences are mainly attributable to lowest-energy feature at *ca.* 355 nm, which arises from a ¹LLCT transition $[(C^{C}C) \rightarrow (C^{N})]$. The relative contribution of this band to the excitation spectra is larger than expected, particularly in CH₂Cl₂. A possible explanation for this observation is that direct photoexcitation at the ¹LLCT band leads to a more effective population of the emissive excited states via intersystem crossing compared with photoexcitation at higher-lying ¹LC bands, probably because of slow internal conversion between singlet excited states. A similar behaviour has been previously observed for heteroleptic triscyclometalated Pt(IV) complexes.¹⁹

Figure S15. Excitation spectra of 2aa in CH_2Cl_2 , DMSO or MeOH solutions and in PMMA matrix at 298 K registered at the specified emission wavelengths compared with the absorption spectrum in CH_2Cl_2 (green line).

In addition, the biexponential decays observed for **2aa** can be clearly ascribed to the presence of two different emissive states. The proportions of the two lifetime components were found to vary depending on the excitation and emission wavelength employed for the measurement in PMMA (Table S6). This can be explained by the variations in the relative intensities of each of the emissions.

Table S6. Emission lifetimes of **2aa** determined at different excitation or emission wavelengths inPMMA at 298 K.

Excitation wavelength (nm)	Emission wavelength (nm)	τ / μs
328	448	94 (20%), 244 (80%)
328	462	88 (14%), 235 (86%)
307	462	87 (12%), 246 (88%)
352	462	84 (8%), 232 (92%)

Figure S16. Excitation and emission spectra of complexes 2 in CH₂Cl₂ at 298 K.

Figure S17. Excitation and emission spectra of complexes 2 in PMMA at 298 K.

Figure S18. Excitation and emission spectra of complexes 2 in MeTHF at 298 K.

5. Computational data

5.1. Complex 2aa

Table S7. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **2aa** in CH₂Cl₂ solution.

energy (a.u.)	number	L1	L2	L3	Pt
-0.003	168 (LUMO+5)	20	11	43	27
-0.018	167 (LUMO+4)	2	5	89	4
-0.034	166 (LUMO+3)	47	51	0	2
-0.040	165 (LUMO+2)	51	44	4	2
-0.055	164 (LUMO+1)	87	10	2	1
-0.056	163 (LUMO)	11	86	1	2
-0.191	162 (HOMO)	0	0	97	3
-0.210	161 (HOMO-1)	30	30	32	8
-0.222	160 (HOMO-2)	2	77	12	8
-0.225	159 (HOMO-3)	4	11	76	9
-0.226	158 (HOMO-4)	2	8	82	8
-0.231	157 (HOMO-5)	74	9	15	3

Figure S19. Ligand numbering in complex 2aa.

(LUMO+4)

(LUMO+2)

(LUMO+1)

(LUMO)

(HOMO)

(HOMO-1)

(HOMO-2)

Figure S20. Molecular orbital isosurfaces of 2aa (0.03 e bohr⁻³).

Figure S21. Calculated stick absorption spectrum of **2aa** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S8.	Selected ver	rtical single	t excitations	of 2aa	from	TDDFT	calculations	at the	ground	state
geometry in	CH ₂ Cl ₂ solut	tion.								

state	monoexcitations ^a	ΔE/eV	λ/nm	oscillator strength	main character
S4:	H–1 -> L (8%)	3.552	349.0	0.0868	LC(C^N)
	H–1 -> L+1 (90%)				
S5:	H -> L+2 (95%)	3.597	344.7	0.0157	LLCT
	H -> L+3 (4%)				
S7:	H–6 -> L (2%)	3.892	318.6	0.1114	LC(C^N)
	H–2 -> L (88%)				
S12:	H–4 -> L (39%)	4.034	307.4	0.0156	LLCT
	H–4 -> L+1 (5%)				
	H–3 -> L (43%)				
	H–3 -> L+1 (5%)				
S14:	H–4 -> L+1 (5%)	4.126	300.5	0.1631	LC(C^C)
	H–1 -> L+3 (19%)				
	H -> L+4 (61%)				
	H -> L+5 (7%)				
S15:	H–1 -> L+3 (75%)	4.143	299.3	0.0720	LLCT
	H -> L+4 (17%)				
	H -> L+5 (2%)				

state	monoexcitations ^a	ΔE/eV	λ/nm	main character
T1:	H–8 -> L+14 (2%)	2.888	429.3	LC(C^C)
	H -> L+2 (7%)			
	H -> L+4 (75%)			
T2:	H–6 -> L (10%)	2.957	419.3	LC(C^N)
	H–3 -> L (4%)			
	H–2 -> L (54%)			
	H–2 -> L+1 (5%)			
	H–2 -> L+3 (3%)			
T3:	H–5 -> L (7%)	2.971	417.4	LC(C^N)
	H–5 -> L+1 (40%)			
	H–5 -> L+2 (2%)			
	H–5 -> L+3 (2%)			
	H–3 -> L+1 (2%)			
	H–2 -> L+1 (3%)			
	H–1 -> L (4%)			
	H–1 -> L+1 (23%)			

Table S9. Lowest-energy vertical triplet excitations of **2aa** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

5.2. Complex 2ab

Table S10. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of 2ab in CH_2Cl_2 solution.

energy (a.u.)	number	L1	L2	L3	Pt
-0.005	136 (LUMO+5)	19	10	44	27
-0.022	135 (LUMO+4)	2	6	88	4
-0.034	134 (LUMO+3)	48	49	1	2
-0.040	133 (LUMO+2)	49	44	5	2
-0.056	132 (LUMO+1)	87	11	0	1
-0.057	131 (LUMO)	12	86	0	2
-0.199	130 (HOMO)	0	0	95	4
-0.212	129 (HOMO-1)	33	29	30	8
-0.223	128 (HOMO-2)	2	86	4	8
-0.228	127 (HOMO-3)	9	10	72	10
-0.230	126 (HOMO-4)	2	4	87	7
-0.232	125 (HOMO-5)	69	8	21	2

Figure S22. Ligand numbering in complex 2ab.

(LUMO+5)

(LUMO+4)

(LUMO+2)

(LUMO+1)

(LUMO+3)

(LUMO)

(HOMO)

(HOMO-1)

(HOMO-2)

Figure S24. Calculated stick absorption spectrum of **2ab** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S11. Selected vertical singlet excitations of **2ab** from TDDFT calculations at the ground state geometry in CH₂Cl₂ solution.

state	monoexcitations	ΔE/eV	λ/nm	oscillator strength	main character
S4:	H–1 -> L (8%)	3.592	345.2	0.0891	LLCT/LC
	H–1 -> L+1 (89%)				
S5:	H -> L+2 (95%)	3.781	327.9	0.0113	LLCT
	H -> L+3 (4%)				
S6:	H–6 -> L (3%)	3.902	317.8	0.1248	LC(C^N)
	H–2 -> L (88%)				
S11:	H–3 -> L (18%)	4.062	305.3	0.0123	LLCT
	H–3 -> L+1 (78%)				
S15:	H–5 -> L (23%)	4.217	294.0	0.0385	LLCT
	H–5 -> L+1 (57%)				
	H–4 -> L (4%)				
	H–2 -> L+2 (4%)				
	H -> L+4 (2%)				
S16:	H–5 -> L (61%)	4.243	292.2	0.0469	LLCT
	H–5 -> L+1 (17%)				
	H–4 -> L+1 (3%)				
	H–1 -> L+3 (4%)				
	H -> L+4 (8%)				
S17:	H–5 -> L (4%)	4.245	292.1	0.1438	LC(C^C)
	H–5 -> L+1 (8%)				
	H -> L+4 (69%)				
	H -> L+5 (9%)				

state	monoexcitations ^a	ΔE/eV	λ/nm	main character
T1:	H–8 -> L+13 (3%)	2.944	421.2	LC(C^C)
	H–4 -> L+5 (2%)			
	H–3 -> L+9 (2%)			
	H -> L+2 (8%)			
	H -> L+4 (73%)			
T2:	H–6 -> L (10%)	2.956	419.4	LC(C^N)
	H–2 -> L (58%)			
	H–2 -> L+1 (6%)			
	H–2 -> L+3 (3%)			
Т3:	H–7 -> L+7 (2%)	2.974	416.9	LC(C^N)
	H–5 -> L (6%)			
	H–5 -> L+1 (37%)			
	H–5 -> L+3 (2%)			
	H–3 -> L+1 (6%)			
	H–2 -> L+1 (2%)			
	H–1 -> L (4%)			
	H–1 -> L+1 (23%)			

Table S12. Lowest-energy vertical triplet excitations of **2ab** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

5.3. Complex 2ac

Table S13. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **2ac** in CH_2Cl_2 solution.

energy (a.u.)	number	L1	L2	L3	Pt
-0.012	144 (LUMO+5)	14	8	56	21
-0.021	143 (LUMO+4)	2	5	87	5
-0.036	142 (LUMO+3)	47	51	0	2
-0.042	141 (LUMO+2)	51	44	3	2
-0.058	140 (LUMO+1)	83	14	0	2
-0.059	139 (LUMO)	15	82	0	2
-0.197	138 (HOMO)	0	0	97	3
-0.217	137 (HOMO-1)	39	27	27	8
-0.226	136 (HOMO-2)	2	90	2	7
-0.233	135 (HOMO-3)	61	17	17	6
-0.238	134 (HOMO-4)	2	25	67	6
-0.238	133 (HOMO-5)	20	12	60	9

Figure S25. Ligand numbering in complex 2ac.

(LUMO+5)

(LUMO+4)

(LUMO+2)

(LUMO+1)

(LUMO+3)

(HOMO)

(HOMO-1)

(HOMO-2)

Figure S27. Calculated stick absorption spectrum of **2ac** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S14. Selected vertical singlet excitations of **2ac** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations	ΔE/eV	λ/nm	oscillator strength	main character
S4:	H–1 -> L (14%)	3.659	338.8	0.0962	LLCT/LC
	H–1 -> L+1 (83%)				
S5:	H -> L+2 (96%)	3.711	334.1	0.0087	LLCT
	H -> L+3 (3%)				
S7:	H–2 -> L (85%)	3.921	316.2	0.1319	LC(C^N)
	H–2 -> L+1 (5%)				
S11:	H–5 -> L+1 (4%)	4.172	297.2	0.0527	LLCT
	H–4 -> L (3%)				
	H–4 -> L+1 (3%)				
	H–3 -> L (26%)				
	H–3 -> L+1 (50%)				
	H -> L+4 (4%)				
S13:	H–5 -> L (24%)	4.261	291.0	0.0632	LLCT
	H–5 -> L+1 (7%)				
	H–4 -> L (38%)				
	H–4 -> L+1 (9%)				
	H–2 -> L+2 (6%)				
	H–1 -> L+3 (2%)				
	H -> L+5 (3%)				
S19:	H-4 -> L+4 (5%)	4.350	285.0	0.2033	LC(C^C)
	H -> L+4 (43%)				
	H -> L+5 (41%)				

state	monoexcitations ^a	ΔE/eV	λ/nm	main character
T1:	H–6 -> L (5%)	2.957	419.3	LC(C^N)
	H–2 -> L (55%)			
	H–2 -> L+1 (11%)			
	H–2 -> L+3 (4%)			
	H -> L+4 (2%)			
T2:	H–8 -> L+14 (3%)	2.961	418.8	LC(C^C)
	H–5 -> L+9 (2%)			
	H–4 -> L+5 (3%)			
	H -> L+2 (7%)			
	H -> L+4 (71%)			
T3:	H–7 -> L+7 (2%)	2.977	416.5	LC(C^N)
	H–5 -> L+1 (6%)			
	H–3 -> L (9%)			
	H–3 -> L+1 (33%)			
	H–3 -> L+3 (2%)			
	H–1 -> L (6%)			
	H–1 -> L+1 (22%)			
	H-1 -> L+7 (2%)			

Table S15. Lowest-energy vertical triplet excitations of **2ac** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

5.4. Complex 2ca

Table S16. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of 2ca in CH₂Cl₂ solution.

energy (a.u.)	number	L1	L2	L3	Pt
-0.011	170 (LUMO+5)	25	9	43	24
-0.022	169 (LUMO+4)	4	8	79	9
-0.034	168 (LUMO+3)	47	50	1	2
-0.038	167 (LUMO+2)	50	44	4	2
-0.057	166 (LUMO+1)	96	1	0	2
-0.058	165 (LUMO)	2	95	0	3
-0.194	164 (HOMO)	0	0	97	3
-0.209	163 (HOMO-1)	70	11	12	6
-0.212	162 (HOMO-2)	1	94	1	4
-0.227	161 (HOMO-3)	2	7	86	5
-0.228	160 (HOMO-4)	47	17	31	5
-0.230	159 (HOMO-5)	2	3	86	9

Figure S28. Ligand numbering in complex 2ca.

(LUMO+5)

(LUMO+4)

(LUMO+2)

(LUMO+1)

(LUMO+3)

(LUMO)

(HOMO)

(HOMO-1)

(HOMO-2)

Figure S30. Calculated stick absorption spectrum of **2ca** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S17. Selected vertical singlet excitations of 2ca from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm	Oscillator strength	main character
S4:	H–4 -> L+1 (3%)	3.581	346.2	0.1272	LC(C^N)
	H–2 -> L (19%)				
	H–2 -> L+1 (5%)				
	H–1 -> L+1 (67%)				
S6:	H–2 -> L (70%)	3.647	340.0	0.1753	LC(C^N)
	H–2 -> L+2 (4%)				
	H–1 -> L+1 (18%)				
S7:	H -> L+2 (92%)	3.703	334.8	0.0305	LLCT
	H -> L+3 (6%)				
S12:	H–5 -> L (30%)	4.028	307.8	0.0499	LC(C^N)/LLCT
	H–4 -> L (8%)				
	H–4 -> L+1 (16%)				
	H–1 -> L+2 (38%)				
	H–1 -> L+3 (2%)				
S15:	H–4 -> L+1 (68%)	4.104	302.1	0.1304	LC(C^N)
	H–1 -> L+1 (3%)				
	H–1 -> L+2 (18%)				
S17:	H–2 -> L (3%)	4.151	298.7	0.0414	LC(C^N)/LLCT
	H–2 -> L+2 (88%)				
S18:	H–4 -> L+1 (3%)	4.182	296.5	0.0411	LC(C^N)/LLCT
	H–1 -> L+3 (81%)				
	H–1 -> L+4 (4%)				
	H–1 -> L+5 (3%)				
S19:	$H-3 \rightarrow L+4 (4\%)$	4.258	291.2	0.2343	LC(C^C)

	H–2 -> L+3 (12%)				
	H–1 -> L+4 (2%)				
	H -> L+4 (18%)				
	H -> L+5 (53%)				
S20:	H–6 -> L (8%)	4.279	289.8	0.1105	LC(C^N)/LLCT
	H–2 -> L+3 (72%)				
	H -> L+4 (4%)				
	H -> L+5 (8%)				

Table S18. Lowest-energy vertical triplet excitations of **2ca** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm	main character
T1:	H–2 -> L (84%)	2.494	497.2	LC(C^N)
	H–2 -> L+2 (3%)			
	H–2 -> L+3 (5%)			
T2:	H–4 -> L+1 (12%)	2.522	491.6	LC(C^N)
	H–1 -> L+1 (75%)			
	H–1 -> L+2 (3%)			
	H–1 -> L+3 (3%)			
Т3:	H -> L+2 (7%)	2.888	429.4	LC(C^C)
	H -> L+4 (71%)			
	H -> L+5 (4%)			

5.5. Complex 2cb

Table S19. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **2cb** in CH_2Cl_2 solution.

energy (a.u.)	number	L1	L2	L3	Pt
-0.013	138 (LUMO+5)	25	9	42	24
-0.025	137 (LUMO+4)	3	10	79	7
-0.034	136 (LUMO+3)	51	46	1	2
-0.039	135 (LUMO+2)	46	46	6	2
-0.058	134 (LUMO+1)	96	1	0	2
-0.059	133 (LUMO)	2	95	0	3
-0.202	132 (HOMO)	0	0	95	4
-0.211	131 (HOMO-1)	72	11	11	6
-0.212	130 (HOMO-2)	2	93	1	4
-0.230	129 (HOMO-3)	44	24	28	5
-0.231	128 (HOMO-4)	5	2	87	6
-0.233	127 (HOMO-5)	1	3	87	8

Figure S31. Ligand numbering in complex 2cb.

(LUMO+5)

(LUMO+4)

(LUMO+2)

(LUMO+1)

(LUMO+3)

(HOMO)

(HOMO-3)

(HOMO-1)

(HOMO-2)

45

Figure S33. Calculated stick absorption spectrum of **2cb** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S20. Selected vertical singlet excitations of **2cb** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm	oscillator strength	main character
S4:	H–3 -> L+1 (3%)	3.602	344.2	0.1269	LC(C^N)
	H–2 -> L (30%)				
	H–2 -> L+1 (12%)				
	H–1 -> L+1 (48%)				
S6:	H–2 -> L (57%)	3.655	339.2	0.1969	LC(C^N)
	H–2 -> L+2 (4%)				
	H–1 -> L+1 (31%)				
S10:	H–3 -> L+1 (27%)	4.056	305.7	0.0678	LC(C^N)/LLCT
	H–1 -> L+2 (57%)				
	H -> L+3 (5%)				
S14:	H–4 -> L (5%)	4.137	299.7	0.123	LLCT
	H–4 -> L+1 (33%)				
	H–3 -> L+1 (19%)				
	H–2 -> L+2 (11%)				
	H–1 -> L+2 (5%)				
	H–1 -> L+3 (4%)				
	H -> L+4 (9%)				
	H -> L+5 (5%)				
S17:	H–5 -> L+1 (7%)	4.201	295.1	0.0574	LC(C^N)/LLCT
	H–4 -> L+1 (3%)				
	H–3 -> L+1 (2%)				
	H–1 -> L+3 (68%)				
	H–1 -> L+4 (7%)				
	H–1 -> L+5 (4%)				
	H -> L+4 (2%)				

S19:	H–6 -> L (9%)	4.283	289.5	0.0597	LC(C^N)/LLCT
	H–2 -> L+3 (82%)				
S21:	H–6 -> L (79%)	4.339	285.8	0.1123	LC(C^N)
	H–2 -> L+3 (10%)				
	H–1 -> L+4 (3%)				
S23:	H–6 -> L+1 (8%)	4.383	282.9	0.1226	LC(C^C)
	H–5 -> L+4 (3%)				
	H–4 -> L+4 (4%)				
	H–1 -> L+4 (4%)				
	H -> L+4 (16%)				
	H -> L+5 (55%)				

Table S21. Lowest-energy vertical triplet excitations of **2cb** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm	main character
T1:	H–2 -> L (83%)	2.495	496.9	LC(C^N)
	H–2 -> L+2 (3%)			
	H–2 -> L+3 (5%)			
	H–1 -> L (2%)			
T2:	H–3 -> L+1 (9%)	2.525	491.0	LC(C^N)
	H–2 -> L+1 (2%)			
	H–1 -> L+1 (75%)			
	H–1 -> L+2 (3%)			
	H–1 -> L+3 (3%)			
Т3:	H–8 -> L+13 (3%)	2.945	421.0	LC(C^C)
	H -> L+2 (8%)			
	H -> L+4 (70%)			
	H -> L+5 (3%)			

5.6. Complex 2cc

Table S22. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **2cc** in CH_2Cl_2 solution.

energy (a.u.)	number	L1	L2	L3	Pt
-0.018	146 (LUMO+5)	15	6	62	16
-0.025	145 (LUMO+4)	8	11	67	14
-0.036	144 (LUMO+3)	48	49	1	2
-0.041	143 (LUMO+2)	49	45	4	2
-0.060	142 (LUMO+1)	96	1	0	2
-0.061	141 (LUMO)	2	94	0	3
-0.200	140 (HOMO)	0	0	97	2
-0.213	139 (HOMO-1)	74	13	8	5
-0.214	138 (HOMO-2)	5	90	1	4
-0.233	137 (HOMO-3)	48	23	24	4
-0.240	136 (HOMO-4)	2	3	86	8
-0.241	135 (HOMO-5)	2	26	63	9

Figure S34. Ligand numbering in complex 2cc.

(LUMO+5)

(LUMO+4)

(LUMO+2)

(LUMO+1)

(LUMO+3)

(LUMO)

(HOMO)

(HOMO-3)

(HOMO-2)

Figure S36. Calculated stick absorption spectrum of **2cc** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S23. Selected vertical singlet excitations of **2cc** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm	Oscillator strength	main character
S4:	H–2 -> L (18%)	3.618	342.7	0.0388	LLCT
	H–2 -> L+1 (75%)				
	H–1 -> L (2%)				
S5:	H–2 -> L (36%)	3.630	341.5	0.1018	LC(C^N)/LLCT
	H–2 -> L+1 (19%)				
	H–1 -> L+1 (36%)				
S6:	H–2 -> L (32%)	3.669	337.9	0.2062	LC(C^N)
	H–2 -> L+1 (4%)				
	H–2 -> L+2 (4%)				
	H–1 -> L+1 (53%)				
S7:	H -> L+2 (93%)	3.809	325.5	0.0141	LLCT
	H -> L+3 (6%)				
S11:	H–3 -> L+1 (24%)	4.102	302.3	0.0848	LC(C^N)/LLCT
	H–1 -> L+2 (63%)				
	H–1 -> L+3 (3%)				
	H -> L+4 (3%)				
S12:	H–3 -> L+1 (57%)	4.151	298.7	0.1473	LC(C^N)
	H–2 -> L+2 (9%)				
	H–1 -> L+1 (4%)				
	H–1 -> L+2 (20%)				
S14:	H–1 -> L+3 (64%)	4.233	292.9	0.0344	LC(C^N)/LLCT
	H–1 -> L+4 (16%)				
	H–1 -> L+5 (7%)				
S16:	H–6 -> L (4%)	4.286	289.3	0.0437	LLCT

	H–4 -> L (2%)				
	H–4 -> L+1 (71%)				
	H–2 -> L+3 (16%)				
S22:	H–6 -> L+1 (6%)	4.359	284.4	0.1956	LC(C^C)
	H–5 -> L+1 (5%)				
	H–4 -> L+4 (3%)				
	H–1 -> L+4 (3%)				
	H -> L+4 (20%)				
	H -> L+5 (48%)				

Table S24. Lowest-energy vertical triplet excitations of **2cc** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm	main character
T1:	H–2 -> L (79%)	2.498	496.4	LC(C^N)
	H–2 -> L+2 (3%)			
	H–2 -> L+3 (5%)			
	H−1 -> L (6%)			
T2:	H–3 -> L+1 (7%)	2.529	490.2	LC(C^N)
	H–2 -> L+1 (6%)			
	H–1 -> L+1 (75%)			
	H–1 -> L+2 (3%)			
	H–1 -> L+3 (3%)			
T3:	H–4 -> L+8 (2%)	2.960	418.8	LC(C^C)
	H -> L+2 (6%)			
	H -> L+4 (62%)			
	H -> L+5 (12%)			

Figure S37. Spin density distributions (0.001 e bohr⁻³) for the lowest triplet excited states of complexes **2aa**, **2ab** and **2ac**.

2ca (T₁)

2ca (T₃)

2cb (T₁)

2cb (T₂)

2cb (T₃)

Figure S38. Spin density distributions (0.001 e bohr⁻³) for the lowest triplet excited states of complexes **2ca**, **2cb** and **2cc**.

Complex	State	Involved ligand ^a	Spin density on Pt
2 aa	T 1	C^C	0.0167
	T ₂	C^N-1	0.0265
	T ₃	C^N-2	0.0349
2ab	T 1	C^C	0.0188
	T ₂	C^N-1	0.0255
	T ₃	C^N-2	0.0322
2ac	T 1	C^N-1	0.0230
	T ₂	C^C	0.0168
	T ₃	C^N-2	0.0281
2ca	T 1	C^N-1	0.0228
	T ₂	C^N-2	0.0246
	T ₃	C^C	0.0200
2cb	T 1	C^N-1	0.0223
	T ₂	C^N-2	0.0235
	T ₃	C^C	0.0215
2cc	T 1	C^N-1	0.0208
	T ₂	C^N-2	0.0213
	T3	C^C	0.0215

Table S25. Natural spin densities on the Pt atom for the lowest triplet excited states of complexes **2** (ppy and thpy derivatives).

^{*a*} See figure for ligand numeration.

C^N-1

5.8. Supplementary computational data

Structure	E ₀ ^b	ZPE ^c	\mathbf{G}^{d}	H ^e	\mathbf{S}^{f}
2aa (S ₀)	-1853.327077	-1852.621434	-1852.694237	-1852.580303	239.793
2aa (T ₁)	-1853.224788	-1852.523787	-1852.598844	-1852.481913	246.103
2aa (T ₂)	-1853.223010	-1852.522242	-1852.597497	-1852.480319	246.621
2aa (T ₃)	-1853.222399	-1852.521494	-1852.596239	-1852.479630	245.425
2ab (S ₀)	-1538.801482	-1538.320320	-1538.379900	-1538.290568	188.014
2ab (T ₁)	-1538.697214	-1538.220954	-1538.282534	-1538.190458	193.789
2ab (T ₂)	-1538.697391	-1538.221068	-1538.282831	-1538.190550	194.222
2ab (T ₃)	-1538.696663	-1538.220212	-1538.281696	-1538.189743	193.533
2ac (S ₀)	-1737.267245	-1736.802667	-1736.864667	-1736.771109	196.910
2ac (T ₁)	-1737.163096	-1736.703309	-1736.767330	-1736.671010	202.721
2ac (T ₂)	-1737.162589	-1736.702936	-1736.767182	-1736.670505	203.474
2ac (T ₃)	-1737.162255	-1736.702388	-1736.766232	-1736.670126	202.272
2ca (S ₀)	-2494.832350	-2494.194017	-2494.266868	-2494.153317	238.987
2ca (T ₁)	-2494.746407	-2494.112052	-2494.186630	-2494.070683	244.031
2ca (T ₂)	-2494.745436	-2494.111084	-2494.185702	-2494.069696	244.155
2ca (T ₃)	-2494.730039	-2494.096397	-2494.171547	-2494.054915	245.472
2cb (S ₀)	-2180.306685	-2179.892808	-2179.952322	-2179.863503	186.936
2cb (T ₁)	-2180.220695	-2179.810796	-2179.872039	-2179.780821	191.984
2cb (T ₂)	-2180.219677	-2179.809816	-2179.871164	-2179.779810	192.272
2cb (T ₃)	-2180.202321	-2179.793356	-2179.854825	-2179.763295	192.641
2cc (S ₀)	-2378.771947	-2378.374642	-2378.436526	-2378.343547	195.690
2cc (T ₁)	-2378.685888	-2378.292550	-2378.356151	-2378.260788	200.708
2cc (T ₂)	-2378.684821	-2378.291536	-2378.355250	-2378.259740	201.016
$2cc(T_3)$	-2378.667279	-2378.274941	-2378.339099	-2378,242940	202.384

Table S26. Energies, free energies, enthalpies and entropies of the optimized structures in CH_2Cl_2 solution.^{*a*}

^{*a*} Thermal corrections from vibrational calculations at 298.15 K. ^{*b*} Electronic energy (Hartrees). ^{*c*} Sum of electronic and zero-point energies (Hartrees). ^{*d*} Free Energy (Hartrees). ^{*e*} Enthalpy (Hartrees). ^{*f*} Entropy (cal mol⁻¹ K⁻¹).

Table S27. Cartesian coordinates (Å) of the optimized structures at the B3LYP($6-31G^{**}+LANL2DZ$) level in CH₂Cl₂ solution.

2aa	ı (S ₀)			С	-2.576146060	0.475952030	0.071119592
Pt	-0.521953696	-0.011695575	0.177410158	С	-3.313577930	1.311219291	0.920692926
С	-0.075123501	1.180723461	1.743365848	С	-4.674856066	1.554795837	0.713467433
С	-0.097387839	0.826229501	3.097818941	С	-5.338268173	0.961963285	-0.365314828
С	0.216758994	1.756414290	4.091260139	С	-4.633500557	0.128944062	-1.229289624
С	0.563410117	3.067688038	3.751279219	С	-3.263527166	-0.117987388	-1.019174394
С	0.591598696	3.441137127	2.412248420	С	-2.486679687	-1.000248296	-1.910708728
С	0.276045579	2.513831507	1.402335469	С	-3.010414412	-1.692276785	-3.015263019
С	0.286241819	2.871661761	-0.023379453	С	-2.184829994	-2.499278297	-3.788274429
С	0.610918417	4.135507088	-0.542698252	С	-0.833127427	-2.617287765	-3.456820237
С	0.580725722	4.349055545	-1.914916925	С	-0.366465518	-1.914475639	-2.353631525
С	0.224691145	3.299538842	-2.766435346	Η	-2.820590441	1.780320835	1.768409431
С	-0.087214197	2.071806640	-2.197485056	Η	-5.220122203	2.206295201	1.392399579
Н	-0.363546069	-0.185328356	3.382019588	Н	-6.395163941	1.148286076	-0.532393572
Н	0.191555109	1.455221051	5.135371529	Н	-5.159846400	-0.323098480	-2.064785585
Н	0.808785480	3.790967290	4.523004114	Н	-4.060366533	-1.600681945	-3.263869411
Н	0.859357071	4.461541880	2.155844940	Н	-2.592344006	-3.033884671	-4.640720344
Н	0.885025088	4.943181047	0.124584040	Η	-0.155845504	-3.237978086	-4.031979010
Н	0.831802102	5.324921264	-2.318508951	Н	0.668966553	-1.964251782	-2.036048349
Н	0.188161926	3.425350103	-3.842352020	Ν	-1.165575778	-1.131371380	-1.610519911
Н	-0.372154991	1.219925568	-2.804910623	С	-0.777969906	-1.711152442	1.281271832
Ν	-0.054583901	1.867277188	-0.871934862	С	-1.977792120	-2.150325446	1.835365625

С	-2.074388924	-3.352011259	2.569130445	Н	0.826200131	3.799091643	4.537885403
С	-0.904978881	-4.105716742	2.728164348	Н	0.870017992	4.478872461	2.173218797
С	0.307779580	-3.679909136	2.180471642	Н	0.888429476	4.967269481	0.141770425
С	0.396459729	-2.486367256	1.454739336	Н	0.825559038	5.356999513	-2.299838689
С	1.624175885	-1.946920475	0.844499123	Н	0.169203919	3.464530075	-3.827094496
С	2.886921534	-2.556619912	0.885775583	Н	-0.392581347	1.256639071	-2.793879077
С	3.983186073	-1.955304156	0.271458284	Ν	-0.062419617	1.896617108	-0.861005865
С	3.862708109	-0.728035254	-0.403927442	С	-2.584749006	0.495881205	0.075524341
С	2.587795924	-0.132135157	-0.435947337	С	-3.321687905	1.334188303	0.922344504
Н	-2.866228481	-1.544363488	1.698963352	С	-4.684564648	1.572689182	0.719004521
Н	-0.922253517	-5.037415629	3.282566043	С	-5.350269860	0.970199384	-0.352777146
Н	1.192778209	-4.293870476	2.328547655	С	-4.646074660	0.133476718	-1.213861959
Н	3.026837824	-3.506044712	1.397602507	С	-3.274298796	-0.107397787	-1.008589156
Н	4.947291680	-2.453818881	0.323947314	С	-2.499434272	-0.991407199	-1.901456461
Н	2.464629760	0.816245815	-0.948031847	С	-3.028193825	-1.697450858	-2.994698424
С	5.101814908	-0.094902411	-1.066157000	С	-2.202318016	-2.505810889	-3.767205036
Ċ	1.469574471	-0.715235319	0.170387812	Ċ	-0.845981999	-2.606991871	-3.450113312
Ċ	6.184559862	0.167320942	0.008381844	Ċ	-0.374154189	-1.885565030	-2.360498399
Н	6.489874603	-0.755309346	0.510876104	Ĥ	-2.826745260	1.809945871	1.765267272
Н	7 077426611	0.610455382	-0 448048389	Н	-5 228992187	2 227291182	1 395642064
Н	5 815644261	0.858978561	0 773347035	Н	-6 408480475	1 151789377	-0 516922553
C	5 669450367	-1.061857450	-2 133109501	Н	-5 174493074	-0 326359692	-2 043794213
н	6 557651466	-0.629168058	-2 608223615	н	-4 080934197	-1 616768981	-3 235320622
н	5 959137392	-0.0201000000	-1.697547057	H H	-2 613795005	-3.053811772	-4 609244199
н	1 028545322	-2.022709201	-1.097547057	и П	-2.013793003	-3.055611772	-4.009244199
C	4.720343322	1 244448568	1 757774688	и П	0.667420630	1 011764505	2 058378170
с ц	4.782790550	1.244440508	-1./5///4088	N N	1 174582227	1 106528863	-2.038378179
п	4.041457700	1.123307328	-2.334923430	IN C	-1.1/4362227	-1.100326603	-1.0100///22
п	4.404310312	1.966/909/0	-1.049302183	C	-0./92535251	-1.0/4900039	1.2010/9944
П	3.0934/2421	1.030/31423	-2.210694019	C	-1.908234349	-2.129802830	1.81/89//38
C	-3.434392099	-3.//803/093	3.132403902	C	-2.039210098	-3.331948821	2.308834384
U U	-3.330383309	-3.11098/13/	3.921330334	C	-0.855415598	-4.090/80/40	2.70/192383
п	-4.338139772	-3.3/2033/14	4.313810093	C	0.34/810/43	-3.0/3090324	2.238223403
Н	-3.023583622	-5.933580407	3.2/6/85892	C	0.446268299	-2.445940178	1.4/8865061
H	-2.6612319/8	-5.048464109	4.//02/1904	C	1.600940575	-1.940004/21	0.903495/19
С	-3.943961371	-2.691033028	4.128662313	C	2.922495401	-2.546658240	0.964346255
Н	-3.244005807	-2.553881097	4.9599/5894	C	3.982053015	-1.956212484	0.334115370
Н	-4.06/454021	-1./2468/923	3.630999003	C	3.855835102	-0.728043377	-0.400169457
Н	-4.915551660	-2.978263687	4.547303515	С	2.559519988	-0.127019118	-0.449199232
С	-4.458193093	-3.950209181	2.004058151	Н	-2.869623121	-1.545593005	1.6/2432066
Н	-4.592742192	-3.023483222	1.438464982	Н	-0.882485180	-5.012733506	3.338275024
Н	-4.131972179	-4.726662254	1.303572790	Н	1.241004396	-4.263062602	2.440064098
Н	-5.435789613	-4.243472804	2.404187129	Н	3.069757190	-3.474396547	1.509723884
				Н	4.955831764	-2.435221878	0.394985523
2a:	a (T ₁)			Н	2.445179210	0.808384189	-0.987106618
$$	2 > = 2.033636			С	5.089894370	-0.128804497	-1.082150398
Pt	-0.527272792	0.015975358	0.184935710	С	1.454409521	-0.678195240	0.160684141
С	-0.075969603	1.203110913	1.752901516	С	6.182145544	0.163185872	-0.021348933
С	-0.090049618	0.841107123	3.105151644	Н	6.480218124	-0.741523273	0.516884829
С	0.230365158	1.767052525	4.101045653	Н	7.077938485	0.576353724	-0.499926460
С	0.576099412	3.079312575	3.764365497	Н	5.824643872	0.889892847	0.715830913
С	0.599552277	3.458462417	2.426682116	С	5.652320053	-1.135789264	-2.118316779
С	0.277873721	2.535838851	1.414207243	Н	6.546961186	-0.726387968	-2.602254755
С	0.284352814	2.897431666	-0.010419322	Н	5.931288540	-2.085975265	-1.653046991
С	0.609518410	4.162471987	-0.527007062	Н	4.912112013	-1.347978128	-2.897317480
С	0.573670747	4.380466972	-1.898314958	С	4.777996527	1.188352070	-1.818591325
С	0.210445373	3.334884194	-2.751812491	Н	4.033604986	1.046645123	-2.609035939
С	-0.101938496	2.105874616	-2.185534112	Н	4.406382947	1.958546373	-1.134912253
Н	-0.355286929	-0.171649823	3.385743657	Н	5.689866343	1.573171856	-2.287466678
Н	0.210791073	1.461461406	5.143969887	С	-3.418956785	-3.800195385	3.113436628

С	-3.336014511	-5.130850869	3.886307758	С	-0.9050458944	-4.1060236243	2.7322679107
Η	-4.330695074	-5.408065170	4.250896695	С	0.3093347244	-3.6799650028	2.18838044
Н	-2.976467061	-5.948211999	3.252360484	С	0.4004106435	-2.4860513491	1.4636261742
Н	-2.674358135	-5.056687614	4.755733103	С	1.6279261259	-1.9472371629	0.8533396987
С	-3.976716336	-2.719717441	4.075095255	С	2.8912217958	-2.5554769074	0.8971908732
Н	-3.307601297	-2.576516606	4.930303762	С	3.9871084796	-1.9545878757	0.2819459889
Н	-4 095488101	-1 753737473	3 575676786	Ċ	3 8654487326	-0 7291643548	-0 3965871003
н	-4 958692613	-3 020890994	4 458625754	C	2 5900067981	-0 1346242865	-0.4309912306
C	-4 412736910	-3 988605515	1 938484056	н	-2 8621327731	-1 5412945388	1 7027006693
н	-4.542510042	-3.066517477	1 36//09827	н	-0.02/0168824	-5.0382/33758	3 7856833383
и П	4 060621257	-3.000317477 A 7657A7555	1.251600758	и П	1 102620505	4 2046200621	2275262818
п п	5 207060082	4.705747555	2 216252160	и П	2 0216589242	2 5022462252	2.3373302818
п	-3.397000083	-4.209403730	2.510255109	п	3.0310300243	-3.3033403333	0.2262710229
2	· (T)			п	4.931/830/05	-2.431//08419	0.5502/19226
282	(12)			П	2.4001200475	0.8120983910	-0.943/313300
<. 2-	2 > = 2.030253	0.01202(2110	0.104070(00)	C	5.1042142113	-0.09618/2389	-1.059619168/
Pt	-0.51820/5951	-0.0130363119	0.1848/06926	C	1.4/21299136	-0.7174486316	0.176153552
C	-0.0682889884	1.1901/3/13/	1.747325974	С	6.185866/3/9	0.1700401633	0.0150428633
С	-0.0905403263	0.8438853089	3.1038374976	Н	6.49197411	-0.7509408608	0.5200782317
С	0.226044274	1.778290284	4.0927006436	Н	7.0785114101	0.6131376405	-0.4418543078
С	0.5748592221	3.0869261734	3.7453050212	Н	5.8155339615	0.8631759308	0.777995801
С	0.6028295119	3.4530984659	2.404108384	С	5.6737179151	-1.0651278453	-2.1237610738
С	0.285119701	2.5210527296	1.3992012091	Η	6.5617073941	-0.6325400556	-2.5993632666
С	0.2971858371	2.8737271495	-0.0287986203	Η	5.9642847483	-2.0245899524	-1.6855995877
С	0.6247437438	4.1351522267	-0.5524312468	Н	4.9335583571	-1.2646914755	-2.9063209547
С	0.5965266663	4.3433397567	-1.9257616363	С	4.7840669962	1.2410634479	-1.7547702512
С	0.2410884349	3.2912771082	-2.7743434073	Н	4.0433834432	1.1193397625	-2.5521001102
С	-0.0721322135	2.0656109311	-2.2010805122	Н	4.404464126	1.9867289546	-1.0485879218
Η	-0.3587543102	-0.165821521	3.393505224	Н	5.694581026	1.6472834617	-2.2080828055
Н	0.2009253287	1.482811964	5.1384719398	С	-3.4360580111	-3.779894109	3.1492805136
Н	0.8220766473	3.814040458	4.5128660732	С	-3.3544486206	-5.1150038446	3.9139192578
Н	0.8722076472	4.4717918413	2.1425934279	Н	-4.3433655078	-5.37689991	4.3046640649
Н	0.8997891427	4.9451789515	0.1116220797	Н	-3.0263870776	-5.9353942245	3.2670143185
Н	0.8493603566	5.3174797853	-2.3324952238	Н	-2.6675332771	-5.0558610086	4.7646681766
Н	0.2066346257	3.4135863542	-3.8507627074	С	-3.9462383563	-2.6952539985	4.1284066013
Н	-0.3551713922	1.2093473585	-2.8035636377	Н	-3.2477225677	-2.5615927529	4.9614770212
N	-0.0429046813	1 8676540939	-0 8749939369	Н	-4 0679100401	-1 7269944349	3 6339374621
C	-2 5578685108	0 4797487723	0 1002087555	Н	-4 9188748121	-2.983018902	4 5442278498
C	-3 2988694771	1 2970944319	0.9326419447	C	-4 4576766358	-3 9467255517	1 99852092
C	-4 6764013843	1 5318709435	0.7326300416	н	-4 5914126538	-3 0177739645	1 4363830437
C	-5 3548642254	0.9056169972	-0.3608280319	н	-4 1304035281	-4 7202428436	1 295353051
c	-4 6879395249	0.0859925351	-1 2250406219	н	-5 4359349253	-4 2414626163	2 3959023465
c	-3.2622752132	-0.1612153319	-1.0464679496	11	-3.4337347233	-1.2+1+020105	2.3737023403
c	-2 5194358939	-0.9733619451	-1 9025645683	299	(T_2)		
c	-2.019400000	-1 6770819904	-3.0541385403	- 2aa 5 ²	$2^{2} = 2.028266$		
c	2 2250636035	2 4664840470	3 8220268770	-0 D+	0 537457206	0.010/07036	0 107088507
C	-2.2230030033	-2.4004049474	-3.8220208779	C	-0.557457290	1 157206570	1 758221675
C	-0.8319807881	1 2006602702	-3.4/30120031	C	-0.108774300	0.835674002	2 104612460
С	-0.3/36/0221	-1.0900003792	1 7705066007	C	-0.10/20/3//	0.855074092	4 100520151
п	-2.0111032141	1.//40030010	1.//0300009/	C	0.10/030/31	1./0//05144	4.100339131
п	-3.2284930199	2.1013104023	1.4049441278	C	0.394007773	5.080450900 . 2.465700619	5./51925019 5.422402701
п	-0.4108803494	1.08//092409	-0.3009/46842	C	0.0/1104383	3.403/99018	2.423492791
н	-3.223923004	-0.3/98238034	-2.0444//0/93		0.313029220	2.330020133	1.3030910/1
H	-4.08/8/9/188	-1.5/38889518	-3.3046230763	C	0.332304112	2.808333168	0.011095844
H	-2.6210966125	-2.992/0/9/61	-4.6842494582	C	0./00935516	4.1499/8646 -	0.541009139
H	-0.1714606751	-3.2086654452	-4.047067403	C	0.655808005	4.364953057 -	1.895404504
H	0.6656807887	-1.962681377	-2.0526370177	C	0.242119525	3.313527076 -	2.753472668
N	-1.137621075	-1.112603761	-1.5992761026	C	-0.099568201	2.075737680 -	2.176522906
C	-0.7732856549	-1.7105149504	1.2890228741	Н	-0.477117164	-0.160821323	3.398147138
С	-1.974963841	-2.1499097154	1.8386749391	Н	0.112257934	1.493797708	5.148961563
С	-2.074224184	-3.3525080737	2.5703369383	Н	0.859695665	3.793607043	4.512992789

Η	0.996091593	4.468945176	2.171557562	Н	-4.329466668	-5.391177060	4.338779717
Н	1.013663680	4.944305072	0.126043085	Н	-3.016345652	-5.946960759	3.294922543
Н	0.932475957	5.330064444	-2.307272460	Н	-2.652276907	-5.062808533	4.788610071
Η	0.187393097	3.439763500	-3.827856707	С	-3.944825411	-2.708719783	4.154421333
Н	-0.415893197	1.246480852	-2.802645506	Н	-3.242706878	-2.570278664	4.983695127
Ν	-0.056779986	1.844392108	-0.877472501	Н	-4.073517169	-1.742113015	3.658576789
С	-2.594502240	0.462921673	0.063900778	Н	-4.913997408	-3.000065901	4.575734690
С	-3.343204453	1.284347776	0.916810966	С	-4.461143362	-3.966418568	2.029336890
С	-4.702009537	1.527194507	0.693477133	Н	-4.600640872	-3.039238093	1.465690321
С	-5.348944430	0.946333506	-0.401560134	Н	-4.134363996	-4.740605206	1.326635647
С	-4.631277568	0.124274918	-1.265347767	Н	-5.436480189	-4.263674506	2.431951657
С	-3.263493039	-0.121714494	-1.040860628				
С	-2.472465753	-0.995339531	-1.927560954	2at	(S_0)		
С	-2.979039874	-1.678435736	-3.045294606	Pt	-0.523682299	-0.013684574	0.177278959
С	-2.141343647	-2.479999502	-3.810918490	С	-0.078810172	1.179497082	1.744143908
Ċ	-0.795326264	-2.600418013	-3.458432603	Ċ	-0.098791449	0.824654542	3.098324675
Ĉ	-0 345982681	-1 905422152	-2 343124642	Č	0 213555522	1 755842090	4 091513048
н	-2 862927468	1 739065182	1 779372655	C	0.556135231	3 067948663	3 751086011
н	-5 257778847	2 168948517	1 373075258	C	0.582193168	3 441475023	2 412002130
н	-6 403854883	1 132426808	-0 580633201	C	0.268328436	2 513308288	1 402447326
н Н	-5.145690803	-0.321103540	-2.111660006	C	0.206528430	2.515506288	-0.0233/1350
и П	-3.143090803	1 584006101	-2.111009990	C	0.270409381	2.870080094 4 135543204	0.543107641
и П	2 535060744	-1.384090191	-3.303934010	C	0.595555002	4.133343294	1 015535620
п	-2.333000744	-3.008142479	-4.0/5/65651	C	0.304080482	4.346220343	-1.915555029
п	-0.108/00323	-5.210/030//	-4.02/12/024	C	0.215592550	3.290/32960	-2.700313213
п N	0.0840/3283	-1.930908034	-2.011205208		-0.093/10403	2.008030043	-2.19/1800/9
N	-1.130000084	-1.128099731	-1.000331303	п	-0.301422132	-0.18/303303	5.585452957
C	-0./89/98293	-1./13688243	1.301101549	Н	0.190105416	1.454558850	5.135602642
C	-1.9868/9814	-2.15/451839	1.856863445	H	0.800164457	3.791950777	4.522526367
C	-2.0//8/5631	-3.361043537	2.588357666	H	0.84/030125	4.462536924	2.155309121
C	-0.905616804	-4.111392243	2.742466528	H	0.866091825	4.944665262	0.123748402
С	0.304379340	-3.681264999	2.192111166	Н	0.811631257	5.324921052	-2.319606227
С	0.387316085	-2.485866363	1.468896071	Н	0.176863626	3.421671861	-3.842510715
С	1.612167049	-1.944933113	0.853541000	Н	-0.375023353	1.214826040	-2.804327343
С	2.876422488	-2.552689972	0.886202264	Ν	-0.060511565	1.864493975	-0.871417094
С	3.967594130	-1.950204840	0.263910261	С	-2.576444728	0.476215584	0.070905565
С	3.842805361	-0.723948540	-0.412794294	С	-3.312699978	1.311029602	0.921682959
С	2.567071893	-0.129127528	-0.438127004	С	-4.671258343	1.564397557	0.708627297
Η	-2.877513657	-1.553611464	1.724231862	С	-5.332511253	0.982624815	-0.377421968
Η	-0.918546620	-5.044176864	3.295093854	С	-4.628821354	0.149393696	-1.241930674
Η	1.191339540	-4.293253625	2.336246639	С	-3.262005580	-0.108490327	-1.025447119
Η	3.020700310	-3.502152942	1.396579814	С	-2.486942122	-0.992859468	-1.916192079
Н	4.932303544	-2.448064364	0.310378762	С	-3.011065564	-1.681108816	-3.022878282
Н	2.435328216	0.818194547	-0.949824224	С	-2.187434604	-2.491396149	-3.794499712
С	5.076953700	-0.090082838	-1.083041125	С	-0.837253771	-2.616499424	-3.459509960
С	1.458213406	-0.714943123	0.178257065	С	-0.370082494	-1.917264303	-2.354361239
С	6.164656818	0.176902831	-0.014739009	Н	-2.821099520	1.772674996	1.774237022
н	6 474207781	-0 743860585	0 488642651	Н	-5 215907618	2 215376004	1 388506014
н	7 054273202	0.620325416	-0 477094121	Н	-6 387067423	1 177412092	-0 549448564
н	5 798538236	0.870096786	0.750165701	н	-5 153521325	-0 294372412	-2 082852844
C	5 640643492	-1.058768235	-2 150537869	н	-1.059956706	-0.294372412	-3 273801/78
с ц	6 52/002816	-1.038708233	-2.130337809	и П	-4.039930700	-1.384334712	-3.2/36914/8
п п	5.025258072	-0.023030194	-2.031/30240	и П	-2.393304843	-3.023122024	4.022400827
п	1 205215174	-2.01////214	-1./14139/39	п	-0.101432721	-3.239633990	-4.033490627
П	4.8938134/6	-1.239283370	-2.928390003		0.004413310	-1.9/2090903	-2.034911330
U	4./50613102	1.240009096	-1.//0100508	N	-1.10/2/8560	-1.130946536	-1.01244/809
H	4.0051001/1	1.123846840	-2.568821495	C	-0.//4585950	-1./11425021	1.281660936
H	4.3/4314440	1.991891445	-1.067820410	C	-1.9/5/95/46	-2.151724046	1.842172046
H	5.657662203	1.654066711	-2.235242250	С	-2.031187581	-3.348343113	2.569373718
С	-3.434825810	-3.793183193	3.174985186	С	-0.878362964	-4.116067439	2.739894768
С	-3.343787596	-5.126368684	3.941896209	С	0.327928841	-3.686058456	2.185834515

С	0.399003894	-2.488253180	1.457358187	С	-0.795100511	-1.691481691	1.263101468
С	1.628869719	-1.948411766	0.844518126	С	-1.972747204	-2.147884638	1.807800306
С	2.887200463	-2.568159251	0.893187748	С	-2.021364750	-3.358092241	2.552884153
С	3.990901282	-1.973439892	0.278620126	С	-0.834581521	-4.116890474	2.760265436
С	3.842051082	-0.755189021	-0.387681446	С	0.363080901	-3.700935142	2.244545138
С	2.585708309	-0.134805143	-0.437873566	С	0.447951107	-2.469098461	1.464160051
Н	-2.877889637	-1.561973550	1.720384923	С	1.602602027	-1.963120708	0.889744900
Н	-0.915821823	-5.045095346	3.302367400	С	2.924421680	-2.580400021	0.959824409
Н	1 220485242	-4 289842363	2 326584344	Č	3 989015617	-1 996021970	0.326028098
н	3 016374752	-3 516544420	1 408785700	C	3 832113917	-0 781460264	-0.400597833
н	4 962153723	-2 459273301	0 322044955	C C	2 556113558	-0 154790444	-0.469055271
н	2 /02/05/25	0.81/7130/2	-0.960555917	ч	-2.887220870	-1 570/5/385	1 675802271
II C	1 467024456	0.014/13942	-0.900333917	11 U	-2.88/2208/9	-1.3/9434363	2 227050486
С	1.407024430	-0.713693902	0.106097579	п	-0.003200730	-3.030331/18	2 416250400
п	4.099649064	-0.28/950910	-0.803933924	П	1.201146444	-4.263/2/461	2.410239409
н	-2.9/4512894	-3.6/4462293	3.00019/242	Н	3.062395/52	-3.504/83164	1.512169/4/
• •				H	4.9/06/8298	-2.460862008	0.377628952
2at	$\mathbf{D}(\mathbf{I}_1)$			Н	2.4/1386428	0.779999782	-1.019367/66
<s<sup>2</s<sup>	>= 2.037652			С	1.449593876	-0.698993567	0.143518717
Pt	-0.529931686	-0.003957239	0.168548630	Н	4.688529736	-0.333694791	-0.896364637
С	-0.079699924	1.180340416	1.739982484	Н	-2.965078558	-3.701889677	2.965192152
С	-0.093579117	0.815228297	3.091173549				
С	0.225408190	1.739612229	4.088936807	2ab	o (T ₂)		
С	0.569124189	3.052943742	3.754869459	$\langle S^2$	2 > = 2.030294		
С	0.591879763	3.434916612	2.417959830	Pt	-0.520140605	-0.018683543	0.186449748
С	0.271709408	2.514008633	1.403682193	С	-0.074076119	1.186669593	1.749160915
С	0.278182470	2.878059218	-0.020380453	С	-0.095538027	0.841189304	3.105659606
С	0.599681127	4.144742914	-0.534369938	С	0.217609316	1.777627386	4.093840354
С	0.566008478	4.364452037	-1.905522050	С	0.562084798	3.086965589	3.745261267
С	0.208704336	3.318654640	-2.761013978	С	0.589081008	3.452132483	2.403725068
С	-0.101002133	2.087878192	-2.197290800	С	0.274678965	2.518222631	1.399635808
Н	-0.357633511	-0.198256691	3.370377948	Ċ	0.285207338	2.869459791	-0.028656675
Н	0 206242262	1 431770022	5 131156760	Č	0.606861141	4 131692768	-0 553545808
н	0.818143630	3 771511083	4 529802967	C	0.578520016	4 338071339	-1 927148529
н	0.860578756	4 456263379	2 166582211	C	0.228764344	3 283293688	-2 774638462
н	0.874368633	4 949534674	0.136115577	C C	-0.079237407	2 056861071	-2 200312297
и Ц	0.815172384	5 342300407	2 205218527	с ц	0.360118480	0.160060327	2 2067/01/2
и П	0.160751440	3 1/0358568	2.305210527	и П	0.103105006	1 482042850	5 120817015
п п	0.109/31440	1 228705062	-3.830233218	11 U	0.193193090	2 915592795	<i>J</i> .139817013 <i>A</i> 512180181
п N	-0.36/331933	1.236703903	-2.60/015211	п	0.800/2918/	3.013303/03	4.312109101
IN C	-0.004019641	1.8//203904	-0.8/2/94833	П	0.833040821	4.4/14/3/38	2.141501028
C	-2.584/85662	0.483103094	0.05/981406	Н	0.8///18458	4.943/30460	0.109/4512/
C	-3.319591321	1.319932321	0.90/818192	H	0.826965401	5.312892642	-2.334910/63
C	-4.6/896/323	1.5/1826221	0.69//68/34	H	0.194829649	3.403983693	-3.8512365/8
C	-5.342591022	0.985215804	-0.384019/20	H	-0.35//0/835	1.1986/0238	-2.8020/3259
С	-4.640313931	0.14947/215	-1.247451818	Ν	-0.050070991	1.860827147	-0.873858178
С	-3.272469605	-0.106102328	-1.034916005	С	-2.559071600	0.474681395	0.101860254
С	-2.500282590	-0.990921515	-1.929056034	С	-3.303918043	1.273666576	0.947956657
С	-3.029630467	-1.687720966	-3.027870731	С	-4.676657459	1.526787284	0.736013379
С	-2.206275246	-2.496733827	-3.802157426	С	-5.344781815	0.941189183	-0.385787976
С	-0.851628770	-2.608294033	-3.481054084	С	-4.674243987	0.136973427	-1.261437227
С	-0.379318940	-1.896978547	-2.385251707	С	-3.256410229	-0.138913820	-1.063482919
Η	-2.825981630	1.784492181	1.757675277	С	-2.516074002	-0.957446535	-1.915548387
Н	-5.222135923	2.224946201	1.376784246	С	-3.034056633	-1.651639449	-3.073565668
Η	-6.397870841	1.178130302	-0.553850450	С	-2.223847751	-2.450340768	-3.835573159
Н	-5.167136701	-0.298147080	-2.085001267	С	-0.855669684	-2.593771652	-3.474562974
Н	-4.081080319	-1.599347703	-3.271313967	С	-0.380504292	-1.901464663	-2.346973538
Н	-2.618249783	-3.037165089	-4.648799113	Н	-2.822348929	1.727396786	1.810469238
Н	-0.176778452	-3.229086586	-4.059063333	Н	-5.230830041	2.165885660	1.416639622
Н	0.661045293	-1.932328286	-2.080088486	Н	-6.401654829	1.142106259	-0.538442063
Ν	-1.177363038	-1.117279692	-1.638931268	Н	-5.202045466	-0.297687277	-2.102989139

Η	-4.079950467	-1.536444441	-3.331538936	С	-0.364919597	-1.912249544	-2.344679465
Н	-2.619163207	-2.970530275	-4.701747668	Н	-2.860761704	1.728459967	1.794491953
Н	-0.177738858	-3.217639720	-4.044408854	Н	-5.253930146	2.170699744	1.392250853
Н	0.657875304	-1.986622290	-2.041312070	Н	-6.405974185	1.149396708	-0.565850418
Ν	-1.138794012	-1.115376294	-1.600025468	Н	-5.156192342	-0.304370756	-2.103489180
С	-0.768986180	-1.714237148	1.292250704	Н	-4.045659041	-1.578234441	-3.299845024
С	-1.971973705	-2.156025940	1.847406381	Н	-2.564851772	-3.006523371	-4.668928942
С	-2.029057362	-3.352817090	2.573962685	Н	-0.137205082	-3.223623571	-4.029807007
С	-0.875706436	-4.118631705	2.749477994	Н	0.666695620	-1.967632102	-2.016533668
С	0.332138387	-3.687298403	2.199827433	Ν	-1.170738193	-1.132360852	-1.605320305
С	0.404635407	-2.489848152	1.470992264	С	-0.783129046	-1.717372545	1.301149794
С	1.634009046	-1.950016681	0.858268574	С	-1.978983436	-2.164131649	1.867410070
С	2.893662326	-2.566640412	0.910898003	С	-2.024674404	-3.362668259	2.592154090
Ċ	3.996415023	-1.971821932	0.294910639	Ċ	-0.867214025	-4.125274880	2.754100913
Ċ	3.844997700	-0.756679285	-0.376503246	Ċ	0.333873248	-3.688824312	2.193776847
Ċ	2 587385785	-0 139278171	-0 430356604	Č	0 394989667	-2.489167598	1 467544828
Н	-2.873698585	-1 565533103	1 723817326	C	1 619200143	-1 945418686	0.846038357
н	-0.914182765	-5.047609266	3 311923828	C	2 880230934	-2 560928166	0.883144366
н	1 224746288	-4 290373969	2 343153413	C	3 976464601	-1 962430470	0.258846252
н	3 024357618	-3 512537961	1 430653664	C	3 819489161	-0.745009699	-0.407276980
н	1 068830078	-2.455027082	0 3/11/3071	C	2 560705110	-0.128/3/706	-0.407270900
и П	7.908859978	-2.433027082	0.057024273	с ц	2.300793110	1 577020477	1 752274202
II C	1 460626225	0.807735142	-0.937024273	11 U	-2.88442/241	-1.377929477	2 21/7000/0
с u	1.409020233	-0./180/5550	0.177575954	п u	1 220760106	-3.03301/303	2 2 2 7 9 9 9 9 4 9
п	4./01998094	-0.289303729	-0.630112961	п	1.229/09190	-4.269100296	2.32/001903
п	-2.9/3800/33	-5.080529900	5.000519850	п	3.010830310	-3.309200771	1.390//9129
2.1	ь (Т)			П	4.949338482	-2.443302304	0.294138410
2a	D(13)			Н	2.455/40842	0.820096881	-0.9/0113012
.</td <td>2 > = 2.028907</td> <td>0.01(070000</td> <td>0 10 40 1 2000</td> <td>U U</td> <td>1.453050525</td> <td>-0./12/418/8</td> <td>0.169/24336</td>	2 > = 2.028907	0.01(070000	0 10 40 1 2000	U U	1.453050525	-0./12/418/8	0.169/24336
Pt	-0.543124128	-0.0160/2892	0.194913908	H	4.6/22409/2	-0.2/558/669	-0.892168251
C	-0.109625075	1.154310997	1./5529/630	Н	-2.963822524	-3.694330253	3.02///9358
C	-0.1563/0965	0.833000377	3.100958/93	•			
C	0.1/90696/4	1./68628521	4.095134563	2ac	(S_0)	0.010000000	0 170 40 5 5 7 1
C	0.593040984	3.090243673	3.724160414	Pt	-0.523/65036	-0.012903068	0.172435571
C	0.658/75043	3.469331765	2.41533/519	C	-0.080592592	1.180053750	1.742217390
C	0.301338732	2.536003134	1.359733578	C	-0.103519372	0.825002148	3.095645049
С	0.310619386	2.866756637	0.005704129	С	0.209266827	1.756632226	4.088585238
С	0.667305513	4.150948321	-0.549348835	С	0.554751914	3.067591373	3.747383627
С	0.615258406	4.364135520	-1.903583838	С	0.583589942	3.440493960	2.408093161
С	0.206290190	3.308635203	-2.758741792	С	0.269370520	2.512138807	1.399073493
С	-0.124412588	2.068448322	-2.179469016	С	0.279607384	2.866444518	-0.027188587
Η	-0.456872723	-0.165229632	3.398278178	С	0.601717422	4.129032059	-0.549864418
Η	0.132648155	1.493841143	5.143771509	С	0.572663861	4.338228283	-1.922785283
Η	0.858629140	3.799321290	4.503423201	С	0.220256789	3.285355966	-2.771482390
Η	0.974847344	4.474472940	2.160334723	С	-0.089908797	2.058568736	-2.200053344
Η	0.976562322	4.948128669	0.115818108	Н	-0.368628888	-0.186208394	3.381994352
Н	0.882856499	5.330813600	-2.317657886	Н	0.183598576	1.456283893	5.132797389
Н	0.146865569	3.433074779	-3.833062340	Н	0.799000209	3.791625073	4.518640195
Н	-0.437177127	1.236772159	-2.804056886	Н	0.850745589	4.460786003	2.151008498
Ν	-0.075258547	1.838631506	-0.880720083	Н	0.873393471	4.939034398	0.115485804
С	-2.599720002	0.457998452	0.073755868	Н	0.822066585	5.313319000	-2.329079695
С	-3.343932252	1.279051574	0.930704960	Н	0.185286265	3.407614765	-3.847780664
С	-4.701692184	1.529337082	0.709439479	Н	-0.372173148	1.204664260	-2.805489665
С	-5.352025458	0.956859646	-0.387981284	Ν	-0.058503085	1.858621309	-0.873366864
С	-4.639129574	0.134644099	-1.255466446	С	-2.573848394	0.473735968	0.073621718
С	-3.272752906	-0.119625873	-1.032419976	С	-3.307142897	1.302528586	0.932086774
С	-2.487207727	-0.994884148	-1.922226059	С	-4.667488077	1.552682763	0.726147081
С	-2.999331392	-1.675899262	-3.038697004	С	-5.331892486	0.973573826	-0.359153472
С	-2.166694465	-2.479995242	-3.807132771	С	-4.630338797	0.145435374	-1.230258399
				~	2 2 (1001 - 4 (0.100501040	1 001 100001

С	-2.488819098	-0.989895927	-1.917682469	С	-3.300057970	1.261734942	0.958512642
С	-3.015364187	-1.675146460	-3.024858998	С	-4.674788754	1.513446742	0.751484236
С	-2.192933793	-2.481942826	-3.801378191	С	-5.343794265	0.937166717	-0.374169497
С	-0.841576001	-2.606490523	-3.470854648	С	-4.673447195	0.141276407	-1.257381014
С	-0.371785294	-1.910239316	-2.365108199	С	-3.255028235	-0.136104660	-1.062931442
Н	-2.812834280	1.761597475	1.784219834	С	-2.516969348	-0.953107504	-1.917789675
Н	-5.210711658	2.198970795	1.411430391	С	-3.037242095	-1.645135876	-3.076122986
Н	-6.387773028	1.165905816	-0.525286780	С	-2.228390759	-2.442003078	-3.841440973
Н	-5 157897298	-0 297080166	-2.069912037	Č	-0.859503097	-2.585714468	-3 483674421
н	-4 065046095	-1 578722226	-3 272527291	C	-0 382016408	-1 896313593	-2 355407830
н	-2 602592767	-3.011404550	-4 655917875	н	-2 817770265	1 709797632	1 823383655
н	-0.166726005	-3 227035796	-4 048905400	н	-5 228334547	2 145323674	1.029303039
н	0.664015708	-1.065781855	-7.050108078	и Ц	-6 400070232	1 138331//2	-0 523700025
N	-1 168020821	-1.127100077	-1.618372700	и Ц	-5 20133/823	-0.286601134	-0.323700723
C	0.776263130	1 708802011	1 27/772880	и П	4 083702200	1 530030280	2 2212/20/7
C	1 092229202	-1.708802011	1.2/4//2000	11 U	-4.083792209	-1.550050289	-3.331243047
C	-1.962336393	-2.144003934	1.623079767	п	-2.023330002	-2.900073233	-4./0//03263
C	-2.010139173	-3.337000633	2.343012123	п	-0.162436031	-3.207729800	-4.030319627
C	-0.880090902	-4.118804411	2.740099221	П N	0.03/2330/1	-1.9820/4309	-2.055545222
C	0.324384978	-3.080090344	2.188207827	IN C	-1.139062343	-1.112203433	-1.004881342
C	0.398330029	-2.48446048/	1.458037708	C	-0./69558158	-1./11/23530	1.28/652519
C	1.629561301	-1.944105/23	0.849581923	C	-1.9/6156/93	-2.14/539556	1.83/094944
C	2.889020796	-2.55915/999	0.905/55443	C	-2.004936389	-3.34025/894	2.556435081
C	3.998659100	-1.969984190	0.29598/894	C	-0.8/489/213	-4.121/08998	2./5214/259
C	3.818/50546	-0.761757439	-0.364561784	C	0.330108180	-3.682695783	2.201545856
С	2.580894733	-0.125762589	-0.438/45940	C	0.404808110	-2.48/18859/	1.4/133/250
H	-2.898260686	-1.576957849	1./12663//2	C	1.634959189	-1.94/022104	0.861616277
H	-0.946581902	-5.041024576	3.30/3/3809	C	2.895473192	-2.559670931	0.919128747
Н	1.21428/31/	-4.284952538	2.336823/18	C	4.003662/83	-1.9/0191812	0.30/1/4981
Н	3.023099589	-3.504681859	1.424298309	C	3.820965417	-0./64192962	-0.356/04111
Н	4.980643139	-2.429828111	0.329/49969		2.582023812	-0.130533395	-0.432110488
Н	2.515215221	0.819259517	-0.9/05/922/	Н	-2.891239298	-1.5///18113	1.725943893
C E	1.40/442389	-0./1140/83/	0.108339003	П	-0.941801331	-3.044013113	3.319109048
Г Г	4.892140010	-0.1/8204191	-0.902003293	П	1.219888341	-4.28/0430/9	2.330440190
Г	-5.191195215	-3.740072308	5.077011009	П	3.031280800	-3.303430370	1.44041/3/0
2.	м (Т .)			П	4.980334377	-2.426016442	0.541/0/5/9
	(11) = 2.020419			П	2.314334430	0.812003730	-0.900/14//3
 D+	2.030418	0.019272011	0 192152400	E E	1.4/0003423	-0./100550/0	0.177225540
FL C	-0.319763123	-0.0162/3011	1 749565522	г Б	4.092003930	-0.160330731	-0.930963430
C	-0.0/01209/3	1.10/0/3090	1.746303333	Г	-3.1800/2145	-3./49/98/02	5.060609041
C	-0.1002/1040	1 770926951	3.104410639	20	$(\mathbf{T}_{\mathbf{r}})$		
C	0.212/15185	2.087104824	4.092187081	2a	2 - 2.025025		
C	0.539203918	2 451551807	2 400887700	_⊖ D+	2 = 2.033923	0.001040803	0 162561012
C	0.388803200	2 517112248	2.400887709	C II	-0.331231018	-0.001049895	1 727120266
C	0.274030079	2.317113240	0.031207844	C	-0.081010817	0.816162766	3.087530434
C	0.28/04/012	2.803034271	-0.031297644	C	-0.090819518	1.740546520	<i>3.067339434</i> <i>4.085212012</i>
C	0.010030829	4.123129441	1 022402725	C	0.223032100	2 052827224	4.063212913
C	0.364032132	4.327002303	-1.933492733	C	0.570197799	2 121626116	2 412602497
C	0.234120802	2.046206722	-2.778401032	C	0.394991410	2 512067082	2.413003469
с u	-0.070033832	2.040390733	-2.201709032	C	0.273271433	2.313907082	0.024642460
п u	-0.300083434	-0.10///3304	5 128224068	C	0.201307040	2.873430302 4.140011202	-0.024043400
п u	0.180307007	2 816000570	J.136324906 4 500320807	C	0.000102048	4.140011392	-0.341230032
п u	0.003073092	J.0100993/9 A A70946751	+.JU732000/ 2 127066200		0.373330022	+.JJU074UJI 3 310276471	-1.712034173
п u	0.030444043	4.4/0240/31	2.13/900290		0.213340800 _0.000001011	2.2102/04/1 2.081/70269	-2.700320131
ц	0.83/17776/	5 300068167	-7 343602519	с u	-0.099001911	-0 106507275	-2.200/30030
ц	0.0341///04	3 388600186	-2.273073310	п u	0.202402449	1 433770600	5 127/85/22
ц	-0 35/785880	1 18712810/	-3.033300311	и П	0.203143297	аларана Страдина Страда страна Страда страна Страда страна Страда страна Страда страна Страда страда страна Страда страда страна Страда страда страна Страда страна Страда страна Страда страна Страда страна С С С С С С С С С С С С С С С С С С	2.12/+03+23 2 525/57655
N	-0.048620026	1 854302561	-0 874367538	н Н	0.866648900	4 455087955	2 161978284
Γ^{1}	-2 556858/17	0.472097757	0.07-307330	н Н	0.882872448	4 945260158	0 127796848
-							

Η	0.825286946	5.333268136	-2.314508186	Н	-0.455726659	-0.165555233	3.394311434
Η	0.175064916	3.438976936	-3.841771015	Н	0.132124638	1.494371204	5.138400471
Н	-0.388557440	1.232107175	-2.809404110	Н	0.855216444	3.801048572	4.499499780
Ν	-0.063262723	1.873621134	-0.875483769	Н	0.971241212	4.475396651	2.155138435
С	-2.583385962	0.482572095	0.059553460	Н	0.972231234	4.945743418	0.109160655
С	-3.315019309	1.314081795	0.916721414	Н	0.881963988	5.323263140	-2.325590867
С	-4.676007841	1.563435756	0.713686586	Н	0.153307877	3.420390305	-3.837707320
С	-5.343060349	0.979461049	-0.367203740	Н	-0.429042066	1.225615488	-2.806997465
С	-4.643283197	0.148140848	-1.236906993	Ν	-0.071763076	1.830831253	-0.883537735
С	-3.274034673	-0.105316144	-1.031921211	С	-2.594385101	0.456637517	0.075954240
С	-2.504174710	-0.986803749	-1.931047730	С	-3.334513167	1.273688865	0.939559397
С	-3.036802179	-1.682654739	-3.028626602	С	-4.693968678	1.522185151	0.726326969
С	-2.215387064	-2.490324300	-3.806498743	С	-5.349137050	0.951697252	-0.369065939
С	-0.859563201	-2.601029276	-3.490264726	С	-4.639916926	0.132888331	-1.242790327
С	-0.383675823	-1.890014056	-2.395892123	С	-3.272079300	-0.119820198	-1.028070600
Н	-2.818428112	1.776233936	1.765934109	Ċ	-2.489995808	-0.992076603	-1.923620928
Н	-5.217435448	2.212467943	1.397828572	Č	-3.006017002	-1.670237293	-3.039875662
Н	-6 399534204	1 170479098	-0 531287671	Č	-2 175934969	-2 471794159	-3 813669079
Н	-5 173101761	-0 298180320	-2.073143410	Č	-0.827767126	-2 597472850	-3 471104604
н	-4 089159887	-1 594901509	-3 268210496	C	-0 368424131	-1 907443175	-2 357093847
н	-2 629833240	-3 030411750	-4 652097052	н	-2 847310167	1 721450940	1 801835118
н	-0 186266078	-3 220790335	-4 071138962	н	-5 243546287	2 160396864	1 414062148
н	0.658007382	-1 925221806	-2 095640312	н	-6 404386759	1 142705563	-0 540414577
N	-1 179973183	-1 111566509	-1 646026138	н	-5 161050681	-0.305108259	-2 088738724
C	-0.797722616	-1.689661951	1 252761445	н	-4 053336418	-0.505108257	-3 296760714
C	-0.797722010	-2 145546277	1.232701443	и Ц	-7.055550418	-1.372232402	-3.290700714
C	1 001547686	2 25/212/04	2 522052082	и П	-2.377109510	2.330077878	4.075579201
C	-1.99134/080	-3.334213404 A 122827278	2.525055982	и П	0.664727457	1 063607346	2 03/1/281/
C	-0.852880558	-4.122837378	2.759098029	II N	1 172017416	-1.903092340	1 612565207
C	0.305563192	-3.094040233	2.249033830	C	-1.1/201/410	-1.129830290	1 201000467
C	1 602202815	1 055586388	0.803051040	C	1 085380718	-1./10898//2	1.291090407
C	2 025508110	-1.955580588	0.0772/2280	C	-1.985580718	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 564774586
C	2.925598110	1 002627226	0.377243383	C	-2.00+338738	-3.332381114	2.304774380
C	3.998332330	-1.992037330	0.348782000	C	-0.809923290	-4.129429439	2.752500045
C	2 551022414	-0.792579130	-0.307073383	C	0.330023770	-3.084388318	2.193719440
с u	2.331032414	-0.143001363	-0.40001/300	C	1 621500251	-2.40/444//2	0.951099711
п u	-2.908000422	-1.003918933	2 242406710	C	2 882700748	-1.943006432	0.831988/11
п	-0.913208919	-3.033093304	2 422068000	C	2.003/99/40	-2.33300/814	0.899420910
п	1.203641410	-4.2/3900390	2.432908900	C	2 200050042	-1.900520587	0.202295200
п	3.004994331	-3.494/2133/	1.333433030	C	3.800039042	-0./32906043	-0.3/8111330
п	4.991115541	-2.43040/3/3	0.390333303		2.339323010	-0.121228400	-0.443338884
П	2.499134318	0.785220480	-1.024290343	П	-2.904200030	-1.394028/8/	1./38993033
E	1.449000231	-0.094/42/98	0.143910788	П	-0.929380734	-3.032/04313	2.220247419
Г	4.8/8341080	-0.234314442	-0.988228733	п	1.223148232	-4.283883833	2.339247418
Г	-3.1/3202342	-3./89/10033	5.0254/8405	п	5.024500/44	-3.4990/413/	1.410231129
•	(T)			Н	4.9/0/64411	-2.41/100610	0.309828547
2a	c(13)			H	2.483029761	0.823183255	-0.9/6844469
<2.	2 > = 2.029/13	0.017007501	0.10(400001		1.455041554	-0./12140838	0.1/009148/
Pt	-0.541320697	-0.01/90/501	0.186409221	F	4.8681/3680	-0.166480392	-0.98185/011
C	-0.10899331/	1.153/19864	1./51328568	F	-3.1809/6986	-3./684/2124	3.101/36440
C	-0.155959708	0.832229281	3.094723873	•	(0)		
C	0.1/8946012	1./69988157	4.090041793	2ca	(S0)	(40 427 (0 40	70 705 40 4000
C	0.591027031	3.091811631	3.720087749	C	-4.5/91/0860	-6.484376240	-72.785424888
C	0.656506095	3.470239146	2.411377352	C	-4.200058378	-6.857748466	-/4.061935882
C	0.300727573	2.534395965	1.355556777	C	-2.241190652	-6.563550470	-/2.5/5934198
C	0.311104800	2.862520880	0.002337387	C	-3.436150823	-6.322237918	-/1.943769002
C	0.666030847	4.146887135	-0.555272678	C	-5.173360021	-7.086040665	-/5.108316686
C	0.615788383	4.357130520	-1.909607129	C	-7.472468964	-7.099878650	-75.583634275
C	0.210539062	3.298585164	-2.763017311	C	-7.250866095	-7.456098019	-76.908572395
C	-0.119035663	2.058369723	-2.182763578	С	-5.930691469	-7.630510448	-77.336036485

С	-4.888954201	-7.445581680	-76.436684405	Н	-14.244160192	-8.412047512	-72.115760604
С	-6.690917242	-5.950638488	-70.609898370	Н	-13.839072838	-6.745850180	-71.688881255
С	-6.691294228	-7.079454630	-69.806353301	Η	-13.778456325	-7.270303517	-73.381862153
С	-6.676777997	-4.979373299	-68.489083487	С	-11.930565614	-8.469017200	-70.692218241
С	-6.684246063	-4.748736068	-69.840688966	Н	-10.917295960	-8.834693284	-70.501366762
С	-6.695348784	-8.406221164	-70.376937082	Н	-12.122714583	-7.639869001	-70.002853218
С	-6.696953832	-9.570360047	-72.410716065	Н	-12.629666229	-9.278774228	-70.452635358
С	-6.697814115	-10.801907379	-71,766464461	С	-11.846940580	-9.220627649	-73.098855514
C	-6 695780169	-10.818381513	-70 367185403	н	-11 978585010	-8 934731915	-74 148134622
C	-6 693334365	-9 619153152	-69 667471790	н	-10.831669524	-9 611336940	-72 982137534
c	-9 207555860	-4 859057729	-73 034381087	н	-12 545845664	-10.036286320	5 -72 879892552
C	-10 578161607	-4 606684637	-73 156419415	C	-8 771705157	-6 144530144	-72 632682108
C	11 51/633/61	-4.000004037	72 882322005	C	-0.771703137	-0.144330144	-72.032082108
C	11 1121/18760	6 887838640	72 478461866	200	(\mathbf{T}_{i})		
C	-11.112140700	-0.00/030049	-/2.4/0401000	20a	(11) (-2.022914)		
C	9.120054102	-/.124369399	-72.301834904	~s	2 = 2.033614	6 165950179	72 740205609
C	-8.129054102	-3.890623262	-/3.2918/9/95	C	-4.58/649613	-0.405852178	-/2./40395608
C	-5./25203688	-3.515482001	-/3.329821804	C	-4.192001855	-0.8560/55/8	-/4.116380812
C	-5.899782385	-2.1/3132594	-/3./133604/8	C	-2.234848499	-6.554463/56	-/2.585519/15
C	-7.217104322	-1.714963645	-73.883452862	C	-3.468/42/91	-6.318680/36	-/1.946566/62
C	-8.308962514	-2.553984493	-/3.6//811408	C	-5.1432/13/8	-7.083600681	-75.106258716
Н	-1.240458984	-6.508990232	-72.166824092	С	-7.4606/2915	-7.104965154	-75.559580523
Н	-3.489654982	-6.032800982	-70.899455693	С	-7.242812706	-7.463555185	-76.894512156
Н	-8.471093850	-6.947096976	-75.189524227	С	-5.913353824	-7.639974466	-77.344451462
Η	-8.089720781	-7.589826455	-77.581529220	С	-4.874477372	-7.452095587	-76.462983455
Η	-5.717546229	-7.906955818	-78.364001921	С	-6.695175108	-5.951937830	-70.596576862
Η	-3.858198000	-7.573478793	-76.749052443	С	-6.697779719	-7.084477845	-69.798515127
Н	-6.684683481	-3.754943411	-70.270715333	С	-6.687589670	-4.990350901	-68.470790359
Η	-6.695769798	-9.495276357	-73.492945453	С	-6.690727585	-4.753920417	-69.821471365
Η	-6.698841566	-11.717762593	-72.345850576	С	-6.702843416	-8.411235595	-70.371324628
Η	-6.695227338	-11.761046381	-69.828964515	С	-6.708952344	-9.574653103	-72.405312107
Η	-6.689822269	-9.609098255	-68.582913493	С	-6.713016795	-10.806886831	-71.761813522
Н	-6.671174909	-4.253515975	-67.686715838	С	-6.710637826	-10.823505378	-70.362623366
Η	-12.567655493	-5.371393875	-72.987616635	С	-6.705055324	-9.624424446	-69.662209122
Η	-9.390136669	-8.109588529	-72.047801016	С	-9.206442365	-4.853006492	-73.026135976
Η	-4.726166647	-3.905607419	-73.188267419	С	-10.577316246	-4.600852776	-73.145187099
Н	-7.400158480	-0.685967324	-74.179966221	С	-11.512618036	-5.603772221	-72.874373233
Н	-9.311900988	-2.158350409	-73.817009896	С	-11.108406154	-6.885340879	-72.476847875
Η	-10.934888775	-3.627218169	-73.466587664	С	-9.720782543	-7.121208832	-72.362245546
Ν	-6.469799206	-6.923185784	-74.709161462	С	-8.128933926	-3.883896922	-73.283264789
Ν	-6.698511677	-8.409107562	-71.740994631	С	-5.724778653	-3.509391970	-73.327007110
S	-2.453767154	-7.005362566	-74.241138582	С	-5.899445511	-2.168354796	-73.714832120
S	-6.679978355	-6.672165952	-68.100921921	С	-7.216993989	-1.710051790	-73.882431550
Pt	-6.681220387	-6.331641239	-72.578470016	С	-8.308712689	-2.548078493	-73.672132278
С	-4.716435644	-1.214452372	-73.946655147	Н	-1.238246208	-6.501139993	-72.168250225
С	-6.810634387	-4.369851809	-73.122769563	Н	-3.504836982	-6.036723191	-70.898796339
С	-4.752031614	-0.697850788	-75.405245449	Η	-8.464620689	-6.958610867	-75.174283922
Н	-3.920823635	-0.006403400	-75.585741458	Η	-8.088723705	-7.598928727	-77.557790857
Н	-4.663657558	-1.527064996	-76.115390204	Η	-5.715835187	-7.917908676	-78.374633622
Н	-5.682252065	-0.165681062	-75.625604910	Η	-3.844349072	-7.576254646	-76.780359627
С	-4.827835345	-0.012078130	-72.978433822	Η	-6.689817189	-3.758071579	-70.246958449
Н	-3.996816647	0.684715418	-73.137939487	Η	-6.709660912	-9.497563620	-73.487665323
Н	-5.760012968	0.542053412	-73.123531049	Η	-6.717198777	-11.722694472	-72.341326111
Η	-4.794970273	-0.345836928	-71.935706987	Η	-6.712954882	-11.766316405	-69.824620499
С	-3.352976976	-1.892303589	-73.712718056	Η	-6.702975604	-9.615311484	-68.577604787
Н	-3.249353053	-2.256710330	-72.685442667	Η	-6.684591087	-4.268238511	-67.665030154
Η	-3.196140206	-2.737366921	-74.390949190	Η	-12.565964983	-5.367933532	-72.977379701
Η	-2.548663139	-1.170760578	-73.890852877	Η	-9.385171029	-8.107430333	-72.052866301
С	-12.110658391	-8.017307425	-72.161675727	Η	-4.725954701	-3.899260297	-73.181608252
С	-13.575176695	-7.577413597	-72.350563958	Н	-7.400320885	-0.681873239	-74.181528352

Η	-9.311766630	-2.152801382	-73.811314891	С	-11.100940045	-6.888018569	-72.480436226
Η	-10.935006305	-3.620258758	-73.450609157	С	-9.712960879	-7.121525068	-72.363151497
Ν	-6.474538888	-6.924461683	-74.684822484	С	-8.123636703	-3.881812794	-73.289377316
Ν	-6.705131737	-8.414416744	-71.734804315	С	-5.720491524	-3.500853452	-73.330638324
S	-2.430416911	-6.993362307	-74.304798076	С	-5.898681167	-2.159567580	-73.716180463
S	-6 692082649	-6 684870016	-68 090851678	Ċ	-7 217383304	-1 705050658	-73 885464794
Đt	-6 677746232	-6 322988768	-72 570165108	C	-8 307102773	-2 546200777	-73 677208146
$\hat{\mathbf{C}}$	-4 716065950	-1 211289062	-73 954119721	н	-1 226788579	-6 488361579	-72 189996235
C	6 810331062	4 362036258	72 11/221202	и Ц	3 460725108	5 005377857	70.016788804
C	-0.810331902	-4.302030238	75 414247827	п п	-3.409/23108 8 473280002	6 055120411	75 170182227
	-4./34/93002	-0.099042173	-/3.41434/62/	п	-0.4/3200093	-0.955159411	-/3.1/010332/
п	-5.925//8109	-0.009082001	-75.598982002	п	-0.1043/3/92	-/.010114101	-//.55610/655
H	-4.668341169	-1.531246629	-/6.121908610	Н	-5./36868/13	-/.945/44510	-/8.349/63349
Н	-5.685347963	-0.16/901135	-75.634299821	Н	-3.868995396	-/.6011486/8	-/6./46/96031
С	-4.824469307	-0.005660402	-72.989596816	Н	-6.6364842/1	-3./6011326/	-70.258346344
Н	-3.993191333	0.689856862	-73.153182438	Н	-6.678629588	-9.487271969	-73.495171173
Н	-5.756448800	0.548808894	-73.134582916	Н	-6.716214243	-11.709184894	-72.358651374
Η	-4.789704960	-0.335997857	-71.945846552	Η	-6.772461392	-11.781951740	-69.832812692
С	-3.352572150	-1.889307472	-73.720849394	Η	-6.773422696	-9.645149831	-68.568315080
Η	-3.246720788	-2.249140254	-72.692146285	Η	-6.657362007	-4.276016020	-67.663286515
Η	-3.197996925	-2.737326888	-74.395944094	Η	-12.559023448	-5.374329009	-72.989250205
Η	-2.548112895	-1.169227609	-73.904050558	Η	-9.374145568	-8.106172531	-72.051920132
С	-12.105462664	-8.017569580	-72.165347158	Н	-4.720463842	-3.888503717	-73.188925715
С	-13.570635402	-7.577917850	-72.349663298	Н	-7.403281367	-0.676948064	-74.183244474
Н	-14.238524507	-8.414494851	-72.118692775	Н	-9.311044250	-2.152982271	-73.815774796
Н	-13.834343052	-6.750378985	-71.682870860	Н	-10.930735686	-3.625955933	-73.466423619
н	-13 775667296	-7 265138376	-73 378903523	N	-6 469493130	-6 929246980	-74 699638918
C	-11 923090404	-8 478067877	-70 698910216	N	-6 705392833	-8 401267272	-71 755440640
н	-10 909286068	-8 844030087	-70 511495214	S	-2 451096893	-7 008526093	-74 251890405
и П	12 115161107	7 6533/3071	70.004235420	S	6 708/1067/	6742803085	68 063630267
п п	-12.113101107	-7.033343071	-70.004233429	D+	6 670072446	6 21 8 5 6 6 4 9 6	-08.003039207
пС	-12.0211/0036	-9.289907000	-70.403407087	Γι C	-0.070972440	1 109255002	-72.372403971
	-11.041//919/	-9.214002319	-/3.110224336	C	-4./1/9/3/19	-1.196233903	72 121646640
п	-11.9/3009942	-8.9220/4029	-/4.15/558/40	C	-0.803/39898	-4.55/052448	-/3.121040049
H	-10.82596250/	-9.605249602	-/2.99/1825/2	C	-4./56/60046	-0.682/554/8	-/5.4106488/8
Н	-12.539619153	-10.032549700) -/2.89539003/	Н	-3.92/3/1203	0.010455976	-/5.592641401
C	-8.768704405	-6.139454540	-72.629839368	Н	-4.66/40891/	-1.512227089	-76.120361295
				Н	-5.688453069	-0.152815160	-75.630136255
2ca	(T ₂)			С	-4.831058315	0.004442059	-72.984128828
$< S^2$	2 > = 2.035877			Η	-4.001936670	0.703113228	-73.145188686
С	-4.567933141	-6.473399622	-72.791068034	Η	-5.764763974	0.556219704	-73.128356087
С	-4.196383279	-6.860375778	-74.065266523	Η	-4.795993501	-0.328567047	-71.941233714
С	-2.229650989	-6.547329652	-72.593216069	С	-3.352638043	-1.872783584	-73.719159731
С	-3.421226611	-6.299164520	-71.957310648	Η	-3.246650084	-2.235968752	-72.691688546
С	-5.175397883	-7.097314998	-75.104223500	Η	-3.194813818	-2.718081564	-74.396875976
С	-7.476764719	-7.112104337	-75.567721915	Η	-2.550265520	-1.149548968	-73.899092696
С	-7.262122383	-7.479884642	-76.890599419	С	-12.096907455	-8.020169216	-72.165848818
С	-5.944451136	-7.660036316	-77.323209758	С	-13.562270697	-7.583233329	-72.354973592
С	-4.898025839	-7.468902891	-76.430641200	Н	-14.229471925	-8.419654488	-72.121558799
С	-6.674038393	-5.906357677	-70.626395470	Н	-13.828351337	-6.753118694	-71.692346308
С	-6.706151938	-7.134636440	-69.786070995	Н	-13.765722098	-7.275324086	-73.385998731
С	-6.668748896	-4.997900271	-68.467833846	С	-11.916337679	-8.473459219	-70.696940619
C	-6 656682914	-4 764290074	-69 851895353	н	-10 902219065	-8 836789143	-70 506106073
C	-6 723165304	-8 403819440	-70 356432522	н	-12 111137931	-7 645856747	-70.006461677
c	-6 699615600	_0 552682026	-72 411617783	н	-12 613402072	-9 285410587	-70 458088121
c	-6 721/7/052	-10 800167967	-71 760260110	C	-11 870676605	-0.203+10307	-73 10/6200131
C	-0.721474033 6 751/12262	10.00010/00/	70 257965005	с u	11 061000550	-9.221430402 8 02/202070	-13.104027070
C C	-0./31413202	-10.032438419	-/0.33/803003	п		-0.7545257/2	-/4.133392330
C	-0./52100504	-9.04924/304	-09.032992971	H	-10.813622516	-9.010103/01	-/2.98/3/4301
C	-9.200342222	-4.852307374	-/3.0310/9021	H	-12.526869421	-10.038931260	J -12.88/356597
C	-10.5/1595311	-4.604146624	-/3.155149390	C	-8./644516/2	-0.13/369240	-12.030363253
C	-11.505563733	-5.608136240	-/2.88288663/				

2ca	ı (T3)			С	-4.810423768	-0.020056634	-73.012194802
$< S^2$	> = 2.034087			Η	-3.990098710	0.679175763	-73.212225919
С	-4.567039874	-6.499055087	-72.764836718	Н	-5.749738410	0.531466369	-73.115342560
С	-4.185034750	-6.870757707	-74.041047139	Η	-4.727951758	-0.351716608	-71.971698448
С	-2.228883238	-6.576554101	-72.549825122	С	-3.365879852	-1.903365166	-73.802360153
С	-3.425657587	-6.336803363	-71.920725979	Н	-3.222179658	-2.266376600	-72.779472702
С	-5.152389325	-7.099194265	-75.094430017	Н	-3.236220117	-2.749294433	-74.485164437
С	-7.449092453	-7.130416357	-75.577179900	Н	-2.569238392	-1.182054490	-74.012816062
Ċ	-7 220527252	-7 470395965	-76 905792627	C	-12 105442873	-8 003390064	-72 201503194
C	-5 897318377	-7 628943978	-77 329661487	C	-13 571660206	-7 557802605	-72 365002559
c	-4 859520129	-7 445325399	-76 424429718	н	-14 238508261	-8 401754538	-72 159564309
c	-6 680154465	-5 955644717	-70 585059848	н	-13 833078371	-6 753531399	-71 669428170
C	-6 692334326	-7 083226817	-69 780073300	н	-13 781037123	-7 210938984	-73 382389742
c	-6.675/12825	-/ 070683015	-68 /67005683	C	-11 018810630	-8 515022836	-70 750237764
c	6 673822505	4 751867072	60 810278084	с ц	10 003312186	-0.515922050 8 883570843	70 576286618
C	-0.073822393	-4.751807072 9.410097570	70 248405021	и П	-10.905512180	7717260606	-70.370280018
C	-0.099/193//	-0.41090/3/0	-70.346493921	п	-12.1131093//	-7.717300000	-70.020961363
C	-0.090810110	-9.3/0391022	-/2.36030/424	П	-12.012921/91	-9.559552957	-/0.3440/313/
C	-6.699699044	-10.8090/058/	-/1./33813695	C	-11.84/821502	-9.1/3601202	-/3.185145802
C	-6./0//49841	-10.823031976	-/0.33449018/	H	-11.993543634	-8.850999934	-/4.221/25/15
C	-6.706082351	-9.622654930	-69.636773689	H	-10.8298/2386	-9.563942873	-/3.094231034
C	-9.18126//10	-4.809398582	-72.994909756	Н	-12.541337180	-9.999012087	-72.985970894
C	-10.610/915/6	-4.548952743	-73.082982313	С	-8.750431068	-6.162208844	-72.619198672
С	-11.516222633	-5.549746981	-72.836203149		·- `		
С	-11.11119/140	-6.871253546	-72.478413711	2cb	(S_0)		
С	-9.699779498	-7.122012652	-72.375145829	С	-4.574546449	-6.484223308	-72.816044671
С	-8.166439258	-3.899125410	-73.237816401	С	-4.204627146	-6.819442913	-74.105749641
С	-5.724201691	-3.542164695	-73.324404087	С	-2.235053090	-6.554775970	-72.628553996
С	-5.904870107	-2.179240861	-73.706374809	С	-3.425792908	-6.338454873	-71.979597477
С	-7.255043685	-1.701666792	-73.832795783	С	-5.186051411	-7.022748208	-75.149690938
С	-8.337531259	-2.503495453	-73.610898533	С	-7.489364535	-7.033387211	-75.604938421
Η	-1.229224937	-6.522381538	-72.138055900	С	-7.278109675	-7.351625783	-76.941115738
Η	-3.482215247	-6.048244438	-70.876279317	С	-5.961088945	-7.508223248	-77.384861024
Η	-8.450373544	-6.997912173	-75.180366814	С	-4.912091428	-7.343923449	-76.489938157
Η	-8.055435546	-7.605352885	-77.583590894	С	-6.661764444	-6.022097367	-70.606883647
Η	-5.678078444	-7.892992206	-78.359657376	С	-6.644035525	-7.173974313	-69.837345625
Η	-3.826878555	-7.563998742	-76.734493189	С	-6.627162920	-5.113402672	-68.459308271
Η	-6.667847707	-3.759124541	-70.251645901	С	-6.653295386	-4.843119725	-69.803345986
Η	-6.681506989	-9.504769214	-73.462532578	С	-6.647392519	-8.483243389	-70.447134031
Η	-6.699604745	-11.725988812	-72.311521261	С	-6.675179670	-9.586234094	-72.514698336
Η	-6.713977993	-11.764764222	-69.794647371	С	-6.656308098	-10.836162081	-71.907381716
Η	-6.709517611	-9.610684993	-68.552233384	С	-6.629821877	-10.894332154	-70.509542550
Η	-6.670256787	-4.252240266	-67.666116026	С	-6.624162908	-9.716473981	-69.774414808
Η	-12.573429293	-5.319794648	-72.915328377	С	-9.210362352	-4.865546998	-72.970176011
Η	-9.378954889	-8.119125520	-72.085272586	С	-10.583537624	-4.596404977	-73.073224814
Η	-4.719005599	-3.925068002	-73.205872617	С	-11.519473634	-5.601962382	-72.823654240
Η	-7.423083338	-0.665158662	-74.112397695	С	-11.087303412	-6.881776871	-72.469456327
Η	-9.339646439	-2.096871771	-73.709242420	С	-9.715794888	-7.153815570	-72.365712186
Η	-10.966036095	-3.557437830	-73.348022855	С	-8.135367557	-3.884002133	-73.209165157
Ν	-6.450721043	-6.951445543	-74.700064376	С	-5.734579810	-3.505920895	-73.261322984
Ν	-6.694647042	-8.416256164	-71.712581517	С	-5.951770293	-2.162741485	-73.597236235
S	-2.437782238	-7.016796287	-74.215869839	С	-7.253038580	-1.679941076	-73.742723465
S	-6.687365775	-6.672005664	-68.075445741	С	-8.336748711	-2.537505252	-73.549530376
Pt	-6.670219056	-6.340252488	-72.551979403	Н	-1.231164250	-6.505794160	-72.226574554
С	-4.738025594	-1.226518444	-73.983279505	Н	-3.472284590	-6.078437810	-70.927289888
С	-6.783154054	-4.392014668	-73.103270969	Н	-8.485136097	-6.895809328	-75.198310686
С	-4.828285394	-0.705596710	-75.440771764	Н	-8.122393931	-7.470299813	-77.610062986
Η	-4.008835353	-0.007106132	-75.647096915	Н	-5.755995348	-7.754918167	-78.421969585
Н	-4.757764223	-1.532741856	-76.155120832	Н	-3.883688193	-7.458619125	-76.814888443
Н	-5.769080579	-0.179351456	-75.628238625	Н	-6.665636117	-3.837001213	-70.203493947

Η	-6.693486768	-9.479262924	-73.594038946	Η	-6.671110826	-11.738302978	-72.510034697
Н	-6.661356131	-11.734314728	-72.513792385	Η	-6.623361046	-11.855539764	-69.996267607
Н	-6.612995151	-11.852586425	-69.999905171	Η	-6.611256910	-9.741860096	-68.686812154
Η	-6.602126486	-9.738669951	-68.690216351	Н	-6.629509927	-4.423188918	-67.619193350
Η	-6.616207416	-4.411442887	-67.636027007	Н	-12.578792927	-5.385607099	-72.901059642
Η	-12.581366316	-5.385406594	-72.904422563	Η	-9.391736689	-8.153346990	-72.092967353
Н	-9.399189304	-8.156065426	-72.086937907	Η	-4.719207316	-3.860397652	-73.142394101
Н	-4.719053166	-3.869698308	-73.148956428	Η	-7.427959283	-0.634530163	-74.009227182
Н	-7.425617780	-0.639371812	-74.003685638	Η	-9.347213039	-2.146705519	-73.662444630
Н	-9.346151139	-2.151005011	-73.661620172	Η	-10.932805457	-3.600441287	-73.340704863
Н	-10.932461756	-3.604253342	-73.348279506	Ν	-6.483471241	-6.878822950	-74.714082811
Ν	-6.479584487	-6.876496952	-74.734805392	Ν	-6.676483615	-8.449387899	-71.807042301
Ν	-6.673140062	-8.445416529	-71.810538576	S	-2.436037911	-6.945398158	-74.370456272
S	-2.459493037	-6.951595935	-74.303473545	S	-6.625000331	-6.826403816	-68.114783190
S	-6.613954391	-6.816745749	-68.121256086	Pt	-6.668745456	-6.336866388	-72.581385782
Pt	-6.673538426	-6.346571287	-72.586234104	С	-6.811847738	-4.363103455	-73.063378942
С	-6.812241181	-4.371877045	-73.068733687	С	-8.759707016	-6.156303385	-72.615459505
С	-8.763952658	-6.161396663	-72.614749879	Н	-11.806940496	-7.667313720	-72.276379129
H	-11.813806412	-7.666601501	-72.272572757	Н	-5.104171921	-1.492971096	-73.748424291
Н	-5 102737375	-1 499783861	-73 742646734		011011,121	1	, ,
	0.1102/07070	11177705001	/31/12010/31	2ch	(T_2)		
2ch	(T_1)			$< S^2$	> = 2.035867		
$< S^2$	> = 2.03374			Č	-4 560327361	-6 463913167	-72 822878995
c	-4 581372163	-6 466103485	-72 775575841	C	-4 196725678	-6 811543725	-74 110653527
C	-4 196259753	-6 819666173	-74 164169751	C	-2 220354430	-6 521486858	-72 647049800
C	-2 227484855	-6 545611149	-72 643276237	C	-3 408399926	-6 302163262	-71 994162023
C	-3 456791720	-6 331636424	-71 987926198	C	-5 182966006	-7 026354445	-75 147586400
C	-5 155473147	-7 023257541	-75 151381660	C	-7 488318616	-7 044536499	-75 591644960
c	-7 476848329	-7 038467683	-75 584777297	C	-7 282714258	-7 373718510	-76 925996085
c	-7.769896897	-7 360662860	-76 930603103	C	-5.967654130	-7 532240063	-77 374708759
C	-5.944040071	-7 521503957	-77 306708205	C	-4 01/755015	-7.358733744	-76 486157715
C	-/ 80788510/	-7 35/1568855	-76 510803333	C	-6 644507352	-5 97/663/00	-70.624160226
c	-6 664622372	-6.021602533	-70 597345756	C	-6.653540659	-7 227443387	-69 820626269
c	-6.648868871	-7 176681425	-69 832804755	C	-6.618685818	-5 130850339	-68 440051511
c	-6.63735/026	-5 121724403	-68 ///5/23718	C	-6.627761155	-4 856017891	-60 8170/0035
C	6 658857400	4 846312018	60 788552307	C	6 667718852	-4.850017891 8.478604520	70 428585310
c	6 651979142	-4.840312018 9.496192074	-09.788552507	C	6 660024175	0 566144028	72 517706660
C	-0.0318/8143	-0.460163974	72 511294095	C	-0.009034173	-9.300144938	71 012822717
C	-0.081/98193	-9.389300820	-/2.311204003	C	-0.008/4830/	-10.651292460	-/1.912622/1/
C	-0.0043/3043	-10.839848/33	-/1.904024010	C	-0.0/3033322	-10.900282070	-/0.302/4/383
C	-0.03839/24/	-10.89/40920/	-/0.306241013	C	-0.0/3009/8/	-9./44834331	-09./02030008
C	-0.031313233	-9./1930///8	-09.//10/2324	C	-9.204031434	-4.801302423	-72.908949908
C	-9.208/81340	-4.800448/82	-/2.90/284038	C	-10.5/844/02/	-4.3990404//	-/3.0/3/01400
C	-10.582354120	-4.59288826/	-/3.068/08815	C	-11.509/84980	-5.60948844/	-/2.826308593
C	-11.516500345	-5.6005884/9	-/2.8214/4559	C	-11.0/2/3489/	-0.888101233	-/2.4/4096155
C	-11.0818/4106	-6.880654009	-/2.4/1180916	C	-9./00001593	-/.154383695	-/2.36993/13/
C	-9./09943/22	-/.150865989	-/2.368662349	C	-8.133080295	-3.8/52/8963	-/3.208811138
C	-8.135411320	-3.8//489824	-/3.205429166	C	-5./33921884	-3.486116352	-/3.265566985
C	-5./34/060/1	-3.49/510856	-73.259320048	C	-5.95/815508	-2.144/35525	-/3.604191211
C	-5.952794145	-2.155703554	-73.599867304	C	-7.261604689	-1.668417569	-73.748421645
C	-7.254487731	-1.674160963	-73.745231236	С	-8.341132416	-2.530392162	-73.551544954
C	-8.337496121	-2.531913801	-73.548972624	H	-1.214575586	-6.464806524	-72.250863260
Н	-1.227588219	-6.497458189	-72.233349081	Н	-3.450779510	-6.027827616	-/0.945263922
Н	-3.485372514	-6.075022712	-70.933475970	Н	-8.482451899	-6.905651284	-75.181700870
Н	-8.477826625	-6.904955310	-75.187394817	Η	-8.130020592	-7.499331059	-77.589812960
Н	-8.121353092	-7.480651790	-77.589702362	Η	-5.767112251	-7.787580469	-78.410598095
Η	-5.755011396	-7.771158617	-78.435748302	Η	-3.887686709	-7.474755274	-76.814768319
Η	-3.870290039	-7.467247096	-76.849408791	Η	-6.622311052	-3.839824262	-70.192927335
Η	-6.669967591	-3.838454889	-70.184592794	Η	-6.667614816	-9.467536938	-73.599051313
Н	-6.701547514	-9.481131237	-73.590713596	Н	-6.666216359	-11.722093909	-72.529288282

Η	-6.676795512	-11.871287761	-70.006348433	Η	-6.611266806	-9.735085463	-68.679671436
Н	-6.675820344	-9.773423825	-68.678112480	Н	-6.615668767	-4.403231453	-67.642992038
Н	-6.602666194	-4.432763618	-67.614853038	Н	-12.591039094	-5.346482485	-72.863327187
Н	-12.572524664	-5.397571162	-72.907934713	Н	-9.392663755	-8.169049689	-72.150428593
Н	-9.377302798	-8.155522649	-72.094365968	Н	-4.723225565	-3.882002404	-73.182324229
Н	-4.716640589	-3.845127095	-73.153419509	Н	-7.456850615	-0.621033767	-73.970681382
Н	-7.439437508	-0.629213334	-74.011217417	Н	-9.384500826	-2.093564603	-73.596839881
Н	-9.352375798	-2.148572399	-73.662748907	Н	-10.974363916	-3.543608412	-73.260019091
н	-10 931913317	-3 608710078	-73 349399245	N	-6 466434115	-6 905565663	-74 750426704
N	-6 474664091	-6 878593764	-74 727497983	N	-6 670118354	-8 451388877	-71 804265708
N	-6 673114608	-8 433930049	-71 827236764	S	-2 449100075	-6 958058618	-74 304129725
S	-2 452222803	-6 938501708	-74 315927203	S	-6 616626524	-6 810346621	-68 120059616
S	-6 635640021	-6 886075206	-68 0872//205	Dt	-6 668005007	-6 35/6//257	-72 58/066106
Dt	-6 660805535	-6 330/15188	-72 582300201	C	-6 70/302350	-0.334044237	-72.07/0058/0
C	6 807/10000	4 356152717	73 060037036	C	8 746020550	6 184551440	72 628260200
C	-0.807419900 9 754509407	-4.330132717	72 614065782	с u	-0.740920339	7 657240245	-72.028209299
	-0./3439049/	-0.130012607	-72.014903763	п	-11.01/1/3004	-7.037249243	-/2.324/93333
п	-11./90021//0	-/.0/0555625	-/2.2/9129/92	п	-3.120039033	-1.303943047	-/3./80143821
п	-3.1121//309	-1.4/8111005	-/3./3240/408	2	(\mathbf{C})		
2.4	(T-)			200	(S0) 1 578526715	6 177650662	72 812122070
	(13)			C	-4.3/8320/43	-0.4//030002	-/2.0151520/9
<3-	2 = 2.038017	(101200177	70 001155465	C	-4.203366042	-6.811416035	-/4.101/6/053
C	-4.56//9/682	-6.494299477	-/2.821155465	C	-2.240/2/3/3	-6.52910/222	-/2.619065848
C	-4.195209468	-6.829445527	-/4.11019/3/6	C	-3.434573895	-6.320865603	-/1.9/29/4824
C	-2.228019012	-6.559806541	-72.629172605	C	-5.18169/542	-7.021883321	-/5.14/219151
C	-3.42053/966	-6.3455/08/8	-71.983014375	С	-7.484627235	-7.046564306	-75.605803097
C	-5.171013104	-7.037321326	-75.159951156	С	-7.269282099	-7.365330203	-76.941040065
C	-7.4/2025566	-7.070032153	-75.622144620	C	-5.950668704	-7.514662753	-77.382592441
C	-7.254145089	-7.378173071	-76.960142835	С	-4.903883889	-7.343053429	-76.486442412
C	-5.9340/9103	-7.519338775	-77.399758422	С	-6.657603576	-6.022960455	-70.606961436
C	-4.888881942	-7.350771003	-76.500304210	С	-6.642903350	-7.175515065	-69.839028408
C	-6.655129302	-6.024333935	-70.607354615	C	-6.616829887	-5.116215101	-68.460101508
C	-6.643469146	-7.173965793	-69.834/68002	C	-6.643799512	-4.84430/040	-69.804015925
C	-6.626358623	-5.10/9399/6	-68.463886183	C	-6.651383204	-8.483199467	-70.452034213
C	-6.647705104	-4.842158580	-69.809023529	C	-6.684705707	-9.579747863	-72.524018735
С	-6.648667889	-8.485193407	-70.440716699	С	-6.671046001	-10.831180459	-71.920106842
С	-6.670629380	-9.594255363	-72.505020743	С	-6.644324191	-10.893845734	-70.522530147
С	-6.655959687	-10.842391185	-71.893647450	С	-6.633394088	-9.718418655	-69.783534648
С	-6.634879647	-10.896324983	-70.495596084	С	-9.210595930	-4.866312527	-72.963771379
С	-6.629664235	-9.716225903	-69.763989487	С	-10.583414379	-4.595952430	-73.058570837
С	-9.191707372	-4.817031250	-72.959923731	С	-11.525785660	-5.595238867	-72.807074058
С	-10.624161609	-4.544944601	-73.029180862	С	-11.065632227	-6.859153379	-72.461446701
С	-11.524908866	-5.552042023	-72.806658125	С	-9.708705977	-7.160555648	-72.358545009
С	-11.086921028	-6.871984499	-72.496558669	С	-8.135256113	-3.887087120	-73.207821576
С	-9.696445205	-7.156384620	-72.405548649	С	-5.729409166	-3.521304078	-73.272265311
С	-8.182821845	-3.896281982	-73.185582902	С	-5.973104126	-2.190715011	-73.606656119
С	-5.744461507	-3.528462576	-73.276382310	С	-7.255227574	-1.679204773	-73.751167017
С	-5.970375953	-2.165643244	-73.610339192	С	-8.334041123	-2.541131190	-73.548715973
С	-7.300490644	-1.667720161	-73.722217317	Н	-1.238295496	-6.471510459	-72.214768609
С	-8.376430337	-2.487916978	-73.517535262	Н	-3.486363160	-6.059263972	-70.921459413
Н	-1.225031568	-6.508982135	-72.225203985	Η	-8.482186728	-6.914689790	-75.201819660
Н	-3.469896726	-6.084677445	-70.931018470	Н	-8.111815413	-7.490051513	-77.611030322
Н	-8.470365332	-6.952013509	-75.213611317	Н	-5.742669501	-7.761507853	-78.419034239
Н	-8.094661656	-7.502179938	-77.633022929	Н	-3.874379007	-7.452101620	-76.809706739
Н	-5.723103596	-7.758394068	-78.437526867	Н	-6.652736627	-3.837569941	-70.202670018
Н	-3.858610594	-7.456457225	-76.822627660	Н	-6.703090700	-9.469413718	-73.602849218
Н	-6.656733080	-3.837623091	-70.213125502	Н	-6.680415296	-11.727352661	-72.529285636
Н	-6.684274374	-9.490095870	-73.584626470	Н	-6.631702255	-11.853749134	-70.016006447
Н	-6.660302486	-11.742414262	-72.497283113	Н	-6.611647390	-9.744058351	-68.699461078
Н	-6.621607564	-11.853046016	-69.982976791	Н	-6.601987153	-4.414975102	-67.636306413

Η	-12.591671038	-5.405197294	-72.874390696	Н	-9.411809441	-8.166541442	-72.086456356
Н	-9.419996448	-8.170015385	-72.081266185	Н	-4.705908949	-3.847946995	-73.155225062
Н	-4.705562099	-3.861118598	-73.171974580	Η	-7.401677695	-0.629947107	-74.015486290
Н	-7.398681811	-0.636408854	-74.012883267	Η	-9.342250044	-2.144559023	-73.660948117
Н	-9.340945305	-2.148645055	-73.657260810	Η	-10.937042791	-3.602348881	-73.328100390
Н	-10.936711208	-3.604833156	-73.329821274	Ν	-6.481499738	-6.885375170	-74.712995351
Ν	-6.476745504	-6.882622919	-74.734450843	Ν	-6.680081121	-8.443950338	-71.812241468
Ν	-6.677212821	-8.441184805	-71.815586926	S	-2.434681566	-6.935319025	-74.360617280
S	-2.457793923	-6.930357670	-74.293564701	S	-6.619251508	-6.829471404	-68.116554875
S	-6.609195130	-6.819525464	-68.123486568	Pt	-6.668647188	-6.339363787	-72.582043021
Pt	-6.673449842	-6.350022158	-72.587553343	С	-6.811187271	-4.368371341	-73.065548569
С	-6.811628499	-4.378417961	-73.072847510	С	-8.759385911	-6.158390248	-72.612668625
С	-8.763942339	-6.164082449	-72.611693880	F	-11.966066952	-7.841732182	-72.221388617
F	-11.973954974	-7.840009922	-72.214565934	F	-4.913850223	-1.354677782	-73.791463864
F	-4.911756993	-1.365195264	-73.795957109				
				2cc	(T_2)		
200	(T_1)			$< S^2$	>=2.035676		
$< S^2$	2 > = 2.03353			C	-4.565551039	-6.458354001	-72.819371079
c	-4 584961308	-6 459563701	-72 773932745	Č	-4 196176069	-6 804470583	-74 106021638
C	-4 195446027	-6 817749334	-74 159959088	C	-2 227330727	-6 497152960	-72 636320731
c	-2 232281265	-6 520251864	-72 636735606	C	-3 418714840	-6 285836186	-71 986662523
C	-3 464201545	-6 309943861	-71 984482842	C	-5 179023398	-7 025929357	-75 144773294
c	-5.152215575	-7.026621045	-75 1/8005008	C	-7 /83028207	-7.056958194	-75 5028/0806
C	-7 173371386	-7.050246480	-75 58/815308	C	-7.2730/8701	-7 386710707	-76 926207756
C	7 263267576	7 374820362	76 020227840	C	5 057200441	7 538632366	77 3723/0157
C	-7.203207370	7 522160207	77 202204527	C	4 006726062	7 258200467	76 492279216
C	-3.930213099	7 250010052	76 515427002	C	-4.900720903	5 076016705	70.4022/0310
C	-4.891801380	-/.559910055	-70.515457092	C	-0.041972931	-3.9/0840/83	-/0.0242696/4
C	-0.000091002	-0.021933481	-/0.390/28200	C	-0.033212303	-/.229/00932	-09.822014301
C	-0.04/1133/8	-/.1//934310	-09.834133033	C	-0.009992811	-3.134830901	-08.440/320/1
C	-0.020230033	-3.124/13398	-08.4431/9239	C	-0.020101102	-4.838000832	-09.81851/998
C	-6.648918031	-4.84/234390	-69./88080810	C	-0.0/0828298	-8.4/880/032	-/0.433151581
C	-6.655145019	-8.4855/3092	-/0.449218990	C	-0.0/8114963	-9.559/59852	-/2.52/01/053
C	-6.69081140/	-9.581484358	-/2.52133/923	C	-6.680260089	-10.826214501	-/1.925663/32
C	-6.6/856010/	-10.835555885	-/1.918095968	C	-0.682958046	-10.90605//1/	-/0.515/50858
C	-6.65184448/	-10.896298154	-/0.520600238	C	-6.6/8185502	-9./4/295064	-69.//1809139
C	-6.6396/82/9	-9.721008554	-69.780972901	C	-9.204904841	-4.861186667	-72.963162296
C	-9.208847582	-4.861164/33	-/2.9629//084	C	-10.578879065	-4.59/0040/5	-/3.0596/8935
C	-10.582074979	-4.593282922	-73.058400442	C	-11.517123716	-5.600611286	-72.809794558
C	-11.522484440	-5.594962849	-72.809466998	C	-11.052736019	-6.863369705	-72.465440401
С	-11.059744601	-6.858446874	-72.465668477	С	-9.694596312	-7.159546454	-72.362128598
С	-9.702317485	-7.157231727	-72.362001066	С	-8.133119718	-3.878047846	-73.208313182
С	-8.135257965	-3.880043834	-73.204811087	С	-5.728705148	-3.502227931	-73.276914133
С	-5.729733975	-3.510265901	-73.263892139	С	-5.978376213	-2.173373010	-73.613839171
С	-5.974494328	-2.180937811	-73.602596800	С	-7.262939010	-1.667711144	-73.757404958
С	-7.257092448	-1.671839330	-73.750860094	С	-8.337923220	-2.533557383	-73.551548129
С	-8.334972740	-2.535018013	-73.548808049	Н	-1.223170658	-6.431995206	-72.237505239
Н	-1.233613568	-6.461097785	-72.225382317	Н	-3.466767822	-6.010041757	-70.938531200
Н	-3.496886030	-6.045677981	-70.932180015	Н	-8.479897190	-6.923239654	-75.185792469
Н	-8.475774105	-6.919575790	-75.190217449	Η	-8.119338990	-7.517920845	-77.591320057
Н	-8.113416915	-7.499409801	-77.589211815	Н	-5.753547374	-7.794195131	-78.407523046
Н	-5.745036352	-7.783284978	-78.431542930	Н	-3.878507558	-7.469305331	-76.808914032
Н	-3.863401363	-7.469587700	-76.843420622	Η	-6.611354120	-3.841885381	-70.192727836
Н	-6.656808329	-3.838642318	-70.182287168	Η	-6.678254084	-9.457925756	-73.607800200
Н	-6.710792610	-9.469061921	-73.600180577	Н	-6.681619492	-11.714913979	-72.545070994
Н	-6.689446341	-11.729729037	-72.527307043	Н	-6.687873362	-11.872725536	-70.022771449
Н	-6.640780132	-11.856323793	-70.014223649	Н	-6.679263066	-9.779285998	-68.687410124
Н	-6.619456406	-9.747536051	-68.696856467	Н	-6.589927998	-4.436737215	-67.615648391
Н	-6.614401228	-4.427173718	-67.618195851	Н	-12.583681784	-5.414793923	-72.878133037
Н	-12.588722568	-5.407155726	-72.877335567	Н	-9.399891893	-8.168012661	-72.087583503

Н	-4.703394992	-3.837752263	-73.176713363	С	-11.065715837	-6.839357176	-72.488072254
Н	-7.411160446	-0.626049664	-74.020956925	С	-9.689423393	-7.161017672	-72.400883423
Н	-9.346511667	-2.145280334	-73.659326718	С	-8.181199017	-3.899486171	-73.180093747
Н	-10.936275907	-3.607663911	-73.331949625	С	-5.742224357	-3.545616100	-73.296460882
Ν	-6.472358519	-6.884512664	-74.727207465	С	-6.001981170	-2.194124378	-73.625145572
Ν	-6.678145761	-8.429552219	-71.832279823	С	-7.307168702	-1.663837132	-73.725001319
S	-2.451177323	-6.918391862	-74.304909203	С	-8.379253128	-2.488096178	-73.504728643
S	-6.632304035	-6.890368381	-68.088480435	Н	-1.231020457	-6.475834155	-72.212543419
Pt	-6.661935739	-6.334340519	-72.584371400	Н	-3.483634670	-6.064964428	-70.926367532
С	-6.807185474	-4.363023227	-73.074729794	Н	-8.463654994	-6.975732027	-75.221754296
С	-8.755615259	-6.157800692	-72.611992336	Н	-8.077766984	-7.522647879	-77.639318021
F	-11.957409189	-7.847687649	-72.220394822	Н	-5.702698256	-7.763663615	-78.437804156
F	-4.920943600	-1.343798823	-73.806232143	Н	-3.844129363	-7.450809686	-76.817960846
				Н	-6.644750496	-3.838874786	-70.213296955
2c	e (T3)			Н	-6.689382311	-9.483683406	-73.591888369
< S	$^{2} > = 2.036341$			Н	-6.676560875	-11.738208097	-72.509408680
С	-4.570525834	-6.489509471	-72.819365787	Н	-6.641367254	-11.854809182	-69.995459553
С	-4.191850389	-6.824958898	-74.106611671	Н	-6.623742583	-9.740008187	-68.687051342
С	-2.232286467	-6.535640497	-72.619398172	Н	-6.605569736	-4.406435404	-67.644073677
С	-3.428306966	-6.328666681	-71.977239463	Н	-12.602770531	-5.362066279	-72.826280017
С	-5.163499406	-7.040441461	-75.158836709	Н	-9.417724320	-8.181901606	-72.147993320
С	-7.463183861	-7.087308044	-75.626792384	Н	-4.711629296	-3.872174577	-73.219957727
С	-7.239790998	-7.393540008	-76.964249250	Н	-7.433355092	-0.613979401	-73.969888674
С	-5.917777798	-7.526410488	-77.400506679	Н	-9.385341900	-2.087824946	-73.565907883
С	-4.875855333	-7.351738815	-76.498268465	Η	-10.975281403	-3.536025043	-73.232580192
С	-6.650597270	-6.025946232	-70.608124567	Ν	-6.460692594	-6.917105855	-74.752384660
С	-6.643771889	-7.175984181	-69.836561913	Ν	-6.673331042	-8.449180303	-71.808668463
С	-6.619244153	-5.110726565	-68.465252519	S	-2.445043889	-6.940526288	-74.293577401
С	-6.639263087	-4.843924249	-69.810443312	S	-6.615735020	-6.813092310	-68.122183204
С	-6.653607653	-8.485997492	-70.444849573	Pt	-6.666837666	-6.359941321	-72.586639983
С	-6.677643625	-9.590437243	-72.512663650	С	-6.793659386	-4.401747174	-73.082475361
С	-6.668969827	-10.839640786	-71.903727747	С	-8.746101287	-6.187657984	-72.625844080
С	-6.649839911	-10.896861674	-70.505789625	F	-11.978128701	-7.820107777	-72.277111510
С	-6.640539886	-9.718593178	-69.771304304	F	-4.949729964	-1.372258516	-73.856425134
С	-9.190926677	-4.819032026	-72.950604391				
С	-10.624187857	-4.537866708	-73.009271097				
С	-11.532777467	-5.540439706	-72.785011071				

6. References

- 1 F. Juliá and P. González-Herrero, J. Am. Chem. Soc., 2016, 138, 5276–5282.
- 2 D. Poveda, Á. Vivancos, D. Bautista and P. González-Herrero, *Chem. Sci.*, 2020, **11**, 12095–12102.
- 3 J. Bin Lee, M. H. Jeon, J. K. Seo, G. Von Helden, J. U. Rohde, B. S. Zhao, J. Seo and S. Y. Hong, *Org. Lett.*, 2019, **21**, 7004–7008.
- 4 C. Zhu, D. Wang, D. Wang, Y. Zhao, W. Y. Sun and Z. Shi, *Angew. Chem. Int. Ed.*, 2018, **57**, 8848–8853.
- 5 G. M. Sheldrick, *Acta Crystallogr., Sect. A Found. Crystallogr.*, 2008, **64**, 112–122.
- 6 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 7 A. L. Spek, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 9–18.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision A02, Gaussian Inc, Wallingford, CT, 2009.*
- 9 A. Becke, J. Chem. Phys., 1993, **98**, 5648–5652.
- 10 C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- 11 P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213–222.
- 12 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654–3665.
- 13 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
- 14 D. Escudero and W. Thiel, *Inorg Chem*, 2014, **53**, 11015–11019.
- 15 J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3093.
- 16 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, NBO 5.9, Theoretical Chemistry Institute, University of Wisconsin, Madison.
- 17 J.-C. López-López, D. Bautista and P. González-Herrero, *Dalton Trans.*, 2021, 13294–13305.
- 18 F. Juliá, D. Bautista and P. González-Herrero, Chem. Commun., 2016, 52, 1657–1660.
- 19 J. C. López-López, D. Bautista and P. González-Herrero, *Chem. Eur. J.*, 2020, 26, 11307–11315.