Electronic supplementary information

for

From trihydroborates to bisborylenes: a route to dinuclear

bisborylene complexes

Yongliang Wei and Tongdao Wang*

Zhang Dayu School of Chemistry, Dalian University of Technology,

Dalian 116024, P. R. China. Email: wangtd@dlut.edu.cn

Contents

General information	S3
Synthesis of Li[PhBH ₃]·2THF (2a)	. \$5
Synthesis of $Li[(3,4,5-F_3C_6H_2)BH_3] \cdot 2THF(2b)$. \$5
Synthesis of $\text{Li}[(2-iPrC_6H_4)BH_3]$ ·THF (2c)	. S6
Synthesis of [Cp*Ru(H) ₂ (BPh)] ₂ (3a/4a)	. S6
Synthesis of $[Cp*Ru(H)_2{B(3,4,5-F_3C_6H_2)}]_2$ (3b / 4b)	S 11
Synthesis of $[Cp^*Ru(H)_2 \{B(2-^{i}PrC_6H_4)\}]_2$ (4c)	S 16
VT ¹ H NMR spectroscopy of compounds $3a/4a$ and $3b/4b$	S21
Stacking ${}^{1}\text{H}/{}^{11}\text{B}$ NMR spectra and selected NMR data of 3a/4a , 3b/4b and 4c	S22
Solid state ¹ H MAS NMR spectroscopy of compounds 3a/4a , 3b/4b and 4c	S24
Observation of the intermediate 5 in the reaction of compounds 1 and 2c	S26
Trapping experiment of the intermediate 5 with PPh ₃	S29

General information: All manipulations were carried out under dry nitrogen atmosphere using standard Schlenk line or glovebox techniques unless otherwise specified. All glassware was oven-dried overnight at 120 °C and cooled under vacuum prior to use. Reaction solvents (*n*-hexane, diethyl ether, THF and toluene) were dried using a Mikrouna solvent purification system and stored over activated 4 Å molecular sieves. Deuterated solvents (C₆D₆ and C₇D₈) were dried by refluxing over CaH₂ prior to use. NMR spectra were recorded on a Bruker Avance II 400 MHz spectrometer (¹H: 400 MHz, ¹³C: 101 MHz, ¹¹B: 128 MHz, ¹⁹F: 377 MHz, ³¹P: 162 MHz). Chemical shifts were given in ppm, and were referenced internally to the residual solvent signals (¹H and ¹³C) or an external standard (¹¹B: BF₃·OEt₂, ¹⁹F: CFCl₃, ³¹P: 85% H₃PO₄). NMR assignments were supported by additional 2D NMR experiments. Elemental analyses were performed on a Vario EL elemental analyzer.

X-Ray diffraction: Single-crystal X-ray diffraction data were collected on a Bruker D8 Venture diffractometer equipped with a Photon 100 CMOS detector using Mo_{Ka} radiation ($\lambda = 0.71073$ Å). All of the data were corrected for absorption effects using the multi-scan technique. Final unit cell parameters were based on all observed reflections from integration of all frame data. The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that implanted in Olex2. For all compounds, all non-H atoms were refined anisotropically unless otherwise stated. The hydrogen atoms were introduced at their geometric positions and refined as riding atoms, except for the hydrogen atoms bound to ruthenium and boron, which were located by Fourier differences and isotropically refined. CCDC 2150383, 2150384, 2150387 and 2150388 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures/</u>.

Materials: Unless otherwise noted, all commercially available reagents were used as received. Li[PhBH₃]·2THF, Li[(3,4,5-F₃C₆H₂)BH₃]·2THF, and Li[(2-^{*i*}PrC₆H₄)BH₃]·THF were synthesized from their corresponding boronic acids, according to modified literature procedures as described below.¹ [(1) (a) B. Singaram, T. E. Cole and H. C. Brown, *Organometallics*, 1984, **3**, 774-777; (b) N. Tsoureas, T. Bevis, C. P. Butts, A. Hamilton and G. R. Owen, *Organometallics*, 2009, **28**, 5222-5232.]

Synthesis of Li[PhBH₃]·2THF (2a)

To a solution of LiAlH₄ (0.76g, 20 mmol) in Et₂O (20 mL) was added dropwise a solution of phenylboronic acid (1.46g, 12 mmol) in a mixture of Et₂O (30 mL) and THF (20 mL) at 0 °C under N₂, the mixture was then warmed to room temperature and stirred for 5 h. After removal of the solvent under vacuum, the residue was extracted with the mixture of Et₂O/*n*-hexane (v/v 3:1, 3×12 mL). The solvent was removed under vacuum from the combined extract to yield the product as a white solid. Yield: 3.19 g, 91%.

¹**H NMR** (400 MHz, 298 K, C₇D₈): δ = 7.76 (br, 2H, *o*-Ph), 7.34 (m, 2H, *m*-Ph), 7.17 (m, 1H, *p*-Ph), 3.62 (m, 8H, THF), 1.50 (br 1:1:1:1 q, ¹J_{BH} ~ 76 Hz, 3H, BH₃), 1.36 (m, 8H, THF).

¹¹**B** NMR (128 MHz, 298 K, C_7D_8): $\delta = -27.0$ (q, ¹*J*_{HB} ~ 76 Hz).

Synthesis of $Li[(3,4,5-F_3C_6H_2)BH_3] \cdot 2THF$ (2b)

Following the same procedure of synthesis of **2a** using corresponding boronic acids, $\text{Li}[(3,4,5-F_3C_6H_2)BH_3]\cdot 2\text{THF}$ (**2b**) was obtained as a white solid. Yield: 94%.

¹**H NMR** (400 MHz, 298 K, C₇D₈): δ = 7.15 (m, 2H, F₃C₆H₂), 3.34 (m, 8H, THF), 1.27 (m, 8H, THF), 1.19 (br 1:1:1:1 q, ¹J_{BH} ~ 77 Hz, 3H, BH₃) ¹¹**B NMR** (128 MHz, 298 K, C₇D₈): δ = -26.6 (q, ¹J_{HB} ~ 77 Hz).

Synthesis of Li[(2-^{*i*}PrC₆H₄)BH₃]·THF (2c)

Following the same procedure of synthesis of **2a** using corresponding boronic acids, $\text{Li}[(2-^{i}\text{PrC}_{6}\text{H}_{4})\text{BH}_{3}]\cdot\text{THF}(2\mathbf{c})$ was obtained as a white solid after vacuuming at 0.2 mbar for 24 h. Yield: 87%.

¹**H NMR** (400 MHz, 298 K, C₇D₈): $\delta = 7.69$ (br, 1H, ^{*i*}PrC₆H₄), 7.13-7.32 (m, 3H, ^{*i*}PrC₆H₄), 3.75 (sept, ³J_{HH} = 6.8 Hz, 1H, CH^{*i*Pr}), 3.41 (m, 4H, THF), 1.50 (br 1:1:1:1 q, ¹J_{BH} ~ 76 Hz, 3H, BH₃), 1.42 (d, ³J_{HH} = 6.8 Hz, 6H, CH₃^{*i*Pr}), 1.21 (m, 4H, THF).

¹**B** NMR (128 MHz, 298 K, C_7D_8): $\delta = -26.8$ (q, ¹*J*_{HB} ~ 76 Hz).

Synthesis of [Cp*Ru(H)₂(BPh)]₂ (3a/4a)

Scheme S1

Toluene (20 mL) was added to a mixture of $[Cp*RuCl]_4$ (217.4 mg, 0.20 mmol) and Li[PhBH₃]·2THF (213.0 mg, 0.88 mmol, 4.4 equiv.). The resulting red mixture was stirred at room temperature for 3 h. The solvent was concentrated to *ca*. 5 mL under vacuum and *n*-hexane (5 mL) was added. The obtained suspension was filtered through Celite to remove remaining lithium salt. After removal of the solvent under vacuum, the

brown residue was washed with *n*-hexane $(2\times 2 \text{ mL})$ and dried under vacuum to give a mixture of **3a** and **4a** as a yellow solid. Yield: 189.7 mg, 73%.

[Comment: Our efforts to isolate the pure **3a** or **4a** were not successful. In situ NMR studies show that the ratio of **3a** and **4a** is consistent with that for the isolated material. The conversion between **3a** and **4a** was not observed either at low temperature or at high temperature.]

Crystallization of the obtained solid in the mixture of *n*-hexane/toluene (v/v 5:1) at -25 °C gave compound **3a** as yellow crystals suitable for X-ray crystal structure analysis.

Elemental analysis: calc. for C₃₂H₄₄B₂Ru₂: C, 58.91; H, 6.80. Found: C, 59.02; H, 6.86.

NMR spectroscopic data for the mixture of two isomers (3a:4a = 93:7): ¹H NMR (400 MHz, 298 K, C₆D₆)

3a: δ = 7.86 (m, 4H, *o*-Ph), 7.37 (m, 4H, *m*-Ph), 7.25 (m, 2H, *p*-Ph), 1.49 (s, 30H, C₅*Me*₅), -10.38 (s, 4H, Ru*H*).

4a [selected signals]: $\delta = 1.74$ (s, C₅*Me*₅), -12.21 (br, Ru*H*).

¹³C{¹H} NMR (101 MHz, 298 K, C₆D₆)

3a: $\delta = 150.1$ (br, *i*-Ph), 132.9 (*o*-Ph), 128.1 (*p*-Ph), 127.7 (*m*-Ph), 96.3 (*C*₅Me₅), 10.5 (*C*₅Me₅).

4a [selected signals]: $\delta = 94.9 (C_5 Me_5), 11.9 (C_5 Me_5).$

¹H-¹³C GHSQC (400 MHz/101 MHz, 298 K, C₆D₆)

3a: δ^{1} H/ δ^{13} C = 7.86/132.9 (*o*-Ph), 7.37/127.7 (*m*-Ph), 7.25/128.1 (*p*-Ph), 1.49/10.5 (C₅*Me*₅).

4a: $\delta^1 H / \delta^{13} C = 1.74 / 11.9 (C_5 M e_5).$

¹¹**B NMR** (128 MHz, 298 K, C₆D₆)

3a: $\delta = 126.0 (v_{1/2} \sim 750 \text{ Hz}).$

4a: $\delta = 115.6 (v_{1/2} \sim 980 \text{ Hz}).$

Figure S1. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of the mixture of compounds **3a** (*) and **4a** (#).

Figure S2. $C{H}$ NMR (101 MHz, 298 K, C_6D_6) spectrum of the mixture of compounds **3a** (*) and **4a** (#).

Figure S3. ¹H-¹³C GHSQC (400 MHz/101 MHz, 298 K, C_6D_6) spectrum of the mixture of compounds **3a** (*) and **4a** (#).

Figure S4. ¹¹B NMR (128 MHz, 298 K, C_6D_6) spectrum of the mixture of compounds 3a (*) and 4a (#).

X-ray crystal structure analysis of compound 3a: formula $C_{32}H_{44}B_2Ru_2$, M = 652.43 g/mol, yellow crystal, 0.4 x 0.2 x 0.1 mm, a = 9.8015(9), b = 17.1267(15), c = 17.3776(15) Å, a = 90, $\beta = 90$, $\gamma = 90^{\circ}$, V = 2917.1(4) Å³, $\rho_{calc} = 1.486$ g·cm⁻³, $\mu = 1.054$ mm⁻¹, empirical absorption correction ($0.6147 \le T \le 0.7462$), Z = 4, orthorhombic, space group *Pccn* (No. 56), $\lambda = 0.71073$ Å, T = 150 K, ω and φ scans, 20694 reflections collected ($\pm h$, $\pm k$, $\pm l$), 4550 independent ($R_{int} = 0.0253$) and 3952 observed reflections [$I \ge 2\sigma(I)$], 176 refined parameters, R = 0.0306, $wR^2 = 0.0784$, max. (min.) residual electron density 2.68 (-0.93) e.Å⁻³.

Figure S5. A view of the molecular structure of compound **3a** (thermal ellipsoids are shown at the 30% probability level).

Synthesis of [Cp*Ru(H)₂{B(3,4,5-F₃C₆H₂)}]₂ (3b/4b)

Scheme S2

Toluene (25 mL) was added to a mixture of $[Cp*RuCl]_4$ (271.8 mg, 0.25 mmol) and Li $[(3,4,5-F_3C_6H_2)BH_3]\cdot 2THF$ (325.7 mg, 1.10 mmol, 4.4 equiv.). The resulting red mixture was stirred at room temperature for 3 h. The mixture was concentrated to *ca*. 5 mL under vacuum and *n*-hexane (10 mL) was added. The obtained suspension was filtered through Celite to

remove remaining lithium salt. After removal of the solvent under vacuum, the brown residue was washed with *n*-hexane (2×2 mL) and dried under vacuum to give a mixture of **3b** and **4b** as a yellow solid. Yield: 261.8 mg, 69%.

[Comment: Our efforts to isolate the pure **3b** or **4b** were not successful. In situ NMR studies show that the ratio of **3b** and **4b** is consistent with that for the isolated material. The conversion between **3b** and **4b** was not observed either at low temperature or at high temperature.]

Crystallization of the obtained solid in *n*-hexane at -25 °C gave compound **3b** as yellow crystals suitable for X-ray crystal structure analysis.

Elemental analysis: calc. for C₃₂H₃₈B₂F₆Ru₂: C, 50.55; H, 5.04. Found: C, 50.38; H, 5.37.

NMR spectroscopic data for the mixture of two isomers (3b:4b = 78:22): ¹H NMR (400 MHz, 298 K, C₆D₆)

3b: $\delta = 7.30$ (m, 4H, F₃C₆*H*₂), 1.26 (s, 30H, C₅*Me*₅), -10.67 (s, 4H, Ru*H*).

4b: $\delta = 6.98$ (m, F₃C₆*H*₂), 1.54 (s, C₅*Me*₅), -12.51 (br, Ru*H*).

¹³C{¹H} NMR (101 MHz, 298 K, C₆D₆)

3b: $\delta = 151.1$ (dm, ${}^{1}J_{FC} \sim 251$ Hz, p-F₃C₆H₂), 145.6 (br, i-F₃C₆H₂), 139.1 (dm, ${}^{1}J_{FC} \sim 254$ Hz, m-F₃C₆H₂), 115.2 (m, o-F₃C₆H₂), 96.3 (C₅Me₅), 9.88 (C₅Me₅).

4b: $\delta = 150.7$ (dm, ${}^{1}J_{FC} \sim 253$ Hz, p-F₃C₆H₂), not observed (br, *i*-F₃C₆H₂), 138.0 (dm, ${}^{1}J_{FC} \sim 251$ Hz, m-F₃C₆H₂), 117.5 (br, o-F₃C₆H₂), 94.8 (C₅Me₅), 11.24 (C₅*Me*₅).

¹¹**B NMR** (128 MHz, 298 K, C₆D₆)

3b: $\delta = 124.6 (v_{1/2} \sim 1050 \text{ Hz}).$

4b: $\delta = 114.1 \text{ (v}_{1/2} \sim 840 \text{ Hz}).$

¹⁹F{¹H} NMR (377 MHz, 298 K, C₆D₆)

3b: $\delta = -135.6$ (d, ${}^{3}J_{FF} = 20.4$ Hz, 2F, m-F₃C₆H₂), 160.2 (t, ${}^{3}J_{FF} = 20.4$ Hz, 1F, p-F₃C₆H₂).

4b: $\delta = -136.4$ (d, ${}^{3}J_{FF} = 20.4$ Hz, *m*-F₃C₆H₂), 163.3 (br, *p*-F₃C₆H₂).

Figure S6. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of the mixture of compounds **3b** (*) and **4b** (#).

Figure S7. (1) ¹H NMR and (2) ¹H{¹¹B} NMR (400 MHz, 298 K, C_6D_6) spectra (hydride region) of the mixture of compounds **3b** (*) and **4b** (#).

Figure S8. ¹³C{¹H} NMR (101 MHz, 298 K, C_6D_6) spectrum of the mixture of compounds **3b** (*) and **4b** (#).

Figure S9. ¹¹B NMR (128 MHz, 298 K, C₆D₆) spectrum of the mixture of compounds **3b** (*) and **4b** (#).

-130 -135 -140 -145 -150 -155 -160 -165 Figure S10. ${}^{19}F{}^{1}H{}$ NMR (377 MHz, 298 K, C₆D₆) spectrum of the mixture of compounds 3b (*) and 4b (#).

X-ray crystal structure analysis of compound **3b:** formula $C_{32}H_{38}B_2F_6Ru_2$, M = 760.38 g/mol, yellow crystal, 0.38 x 0.20 x 0.15 mm, a = 11.5126(17), b = 12.3059(16), c = 12.6306(17) Å, $\alpha = 88.819(4)$, $\beta =$ 63.664(4), $\gamma = 88.142(4)^{\circ}$, V = 1602.8(4) Å³, $\rho_{calc} = 1.576$ g·cm⁻³, $\mu = 0.997$ mm⁻¹, empirical absorption correction (0.6158 \leq T \leq 0.7460), Z=2, triclinic, space group $P^{\bar{1}}$ (No. 2), $\lambda = 0.71073$ Å, T = 170 K, ω and φ scans, 38057

reflections collected ($\pm h$, $\pm k$, $\pm l$), 5626 independent ($R_{int} = 0.0637$) and 4744 observed reflections [$I > 2\sigma(I)$], 397 refined parameters, R = 0.0378, $wR^2 = 0.1047$, max. (min.) residual electron density 1.33 (-0.78) e.Å⁻³.

Figure S11. A view of the molecular structure of compound **3b** (thermal ellipsoids are shown at the 30% probability level).

Synthesis of [Cp*Ru(H)₂{B(2-^{*i*}PrC₆H₄)}]₂ (4c)

Scheme S3

Toluene (25 mL) was added to a mixture of $[Cp*RuCl]_4$ (271.8 mg, 0.25 mmol) and Li $[(2-iPrC_6H_4)BH_3]$ ·THF (233.3 mg, 1.10 mmol, 4.4 equiv.). The yellow suspension was stirred at room temperature for 12 h until the color of the solution turned maroon. The mixture was concentrated to *ca*. 5 mL under vacuum and *n*-hexane (10 mL) was added. The obtained suspension was filtered through Celite to remove remaining lithium salt. After removal of the solvent under vacuum, the brown residue was washed with *n*-hexane (2×2 mL) and dried under vacuum to give compound **4c** as a yellow solid. Yield: 244.0 mg, 66%.

[Comment: In situ NMR studies show that this is a very clean reaction. The isolated yield is 66%, due to the partial solubility in n-hexane.]

Crystals suitable for the X-ray crystal structure analysis of 4c were obtained by recrystallization in *n*-hexane at -25 °C.

Elemental analysis: calc. for C₃₈H₅₆B₂Ru₂: C, 61.96; H, 7.66. Found: C, 61.93; H, 7.65.

NMR spectroscopic data for compound 4c:

¹**H NMR** (400 MHz, 298 K, C₆D₆): $\delta = 7.64$ (d, ³*J*_{HH} = 6.8 Hz, 2H, ^{*i*}PrC₆*H*₄), 7.27-7.33 (m, 6H, ^{*i*}PrC₆*H*₄), 3.11 (sept, ³*J*_{HH} = 6.8 Hz, 2H, C*H*^{*i*Pr}), 1.76 (s, 30H, C₅*Me*₅), 1.17 (d, ³*J*_{HH} = 6.8 Hz, 12H, C*H*₃^{*i*Pr}), -12.54 (br, 4H, Ru*H*). ¹³C{¹H} **NMR** (101 MHz, 298 K, C₆D₆): $\delta = 153.8$ (br, *i*-^{*i*}PrC₆H₄), 147.5, 128.9, 127.4, 124.8, 122.7 (^{*i*}PrC₆H₄), 95.1 (C₅Me₅), 31.9 (CH^{*i*Pr}), 23.7 (CH₃^{*i*Pr}), 11.8 (C₅*Me*₅). ¹¹**B NMR** (128 MHz, 298 K, C_6D_6): $\delta = 115.4 (v_{1/2} \sim 960 \text{ Hz}).$

Figure S13. (1) ¹H NMR and (2) ¹H{¹¹B} NMR (400 MHz, 298 K, C_6D_6)

spectra (hydride region) of compound 4c.

Figure S15. ¹¹B NMR (128 MHz, 298 K, C₆D₆) spectrum of compound 4c. X-ray crystal structure analysis of compound 4c: formula C₃₈H₅₆B₂Ru₂, M = 736.58 g/mol, yellow crystal, 0.25 x 0.15 x 0.12 mm, a = 20.8857(12), b = 15.8426(10), c = 22.4748(12) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 7436.5(7) Å³, ρ_{calc} = 1.316 g·cm⁻³, $\mu = 0.835$ mm⁻¹, empirical absorption correction (0.6821 \leq T \leq 0.7456), Z = 8, orthorhombic, space group *Pbca* (No. 61), $\lambda = 0.71073$

Å, T = 293 K, ω and φ scans, 182500 reflections collected ($\pm h$, $\pm k$, $\pm l$), 6547 independent ($R_{int} = 0.0572$) and 5358 observed reflections [$I > 2\sigma(I)$], 410 refined parameters, R = 0.0233, $wR^2 = 0.0567$, max. (min.) residual electron density 0.214 (-0.247) e.Å⁻³.

Figure S16. A view of the molecular structure of compound **4c** (thermal ellipsoids are shown at the 15% probability level, and partial 2-isopropylphenyl group atoms have been omitted for clarity).

25 °C 5°C -15 °C -35 °C -55 °C -75 °C # # 1.7 1.5 1.4 -10 -11 -12 1.8 1.6 1.9 -13

VT ¹H NMR spectroscopy of compounds 3a/4a and 3b/4b

Figure S17. Variable-temperature ¹H NMR spectra of the mixture of compounds **3a** (*) and **4a** (#) showing Cp* (left) and hydride (right) regions in C_7D_8 .

Figure S18. Variable-temperature ¹ H NMR spectra of the mixture of compounds **3b** (*) and **4b** (#) showing Cp* (left) and hydride (right) regions in C_7D_8 .

Stacking ¹H/¹¹B NMR spectra and selected NMR data of 3a/4a, 3b/4b and 4c

Figure S19. ¹H NMR (400 MHz, 298 K, C_6D_6) spectra of (1) the mixture of compounds **3a** and **4a**, (2) the mixture of compounds **3b** and **4b**, (3) compound **4c**.

Figure S20. ¹¹B NMR (128 MHz, 298 K, C_6D_6) spectra of (1) the mixture of compounds **3a** and **4a**, (2) the mixture of compounds **3b** and **4b**, (3) compound **4c**.

Table S1. Selected NMR shifts (δ) for compounds 3a/4a, 3b/4b and 4c

[a]

	¹ H MAS	¹ H		_
Compound	Ru <i>H</i>	Ru <i>H</i>	C_5Me_5	11 B
3 a	-9.9	-10.38	1.49	126.0
3 b	-10.1	-10.67	1.26	124.6
4 a	-12.1	-12.21	1.74	115.6
4 b	-12.9	-12.51	1.54	114.1
4 c	-12.5	-12.54	1.76	115.4

[a] Liquid-state NMR data recorded in C₆D₆ at 298 K.

Solid state ¹H MAS NMR spectroscopy of compounds 3a/4a, 3b/4b and 4c

Solid-state ¹H MAS NMR experiments were recorded on an Agilent DD2 500 (B0 = 11.7 T) spectrometer with resonance frequency of 500 MHz. Spectra were acquired in 4 mm MAS probe with a spinning rate of 10.0 kHz. Pulse width of 2.5 μ s (π /4), and recycle delays of 4 s were used. Chemical shifts were externally referenced to adamantane as secondary standard (δ^{1} H = 1.93 ppm).

Figure S21. ¹H MAS NMR spectrum of isolated compounds **3a** (*) and **4a** (#).

Figure S22. ¹ H MAS NMR spectrum of isolated compounds **3b** (*) and **4b** (#).

Figure S23. ¹ H MAS NMR spectrum of isolated compound 4c.

Compound	Ar	Ru <i>H</i>
3a+4a	6.8	-9.9, -12.1
3b+4b	6.8	-10.1, -12.9
4 c	7.3	-12.5

Table S2. ¹H MAS NMR chemical shifts (δ) for compounds 3a/4a, 3b/4b and 4c

Observation of the intermediate 5 in the reaction of compounds 1 and

2c

Scheme S4

Tol- d_8 (0.6 mL) was added slowly to a mixture of [Cp*RuCl]₄ (10.9 mg, 0.01 mmol) and Li[(2-*i*PrC₆H₄)BH₃]·THF (10.2 mg, 0.048 mmol, 4.8 equiv.) in a J. Young NMR tube at -20 °C. The NMR sample was sealed and kept at -20 °C for 30 min, resulting in a deep yellow mixture. Then ¹H and ¹¹B NMR experiments were conducted, the *in-situ* NMR studies showed that compound **5** had been formed exclusively with 95% conversion. Subsequently, the reaction was warmed to room temperature, and the NMR tube was monitored again after 5 h at room temperature. NMR spectroscopy studies showed the formation of **5** and **4c** in a *ca*. 3:7

ratio. After 24 h, 90% conversion to compound **4c** was reached, detected by 1 H and 11 B NMR.

NMR spectroscopic data for compound 5:

¹**H NMR** (400 MHz, 253 K, C₇D₈) [selected signals]: $\delta = 1.93$ (s, 15H, C₅*Me*₅), -9.09 (br, 3H, Ru*H*B).

¹¹**B** NMR (128 MHz, 253 K, C_7D_8): $\delta = 25.7 (v_{1/2} \sim 365 \text{ Hz}).$

Figure S24. In-situ ¹H NMR (400 MHz, 253 K, C_7D_8) spectrum of compound 5.

Figure S25. *In-situ* ¹¹B NMR (128 MHz, 253 K, C_7D_8) spectrum of compound 5 (*) [admixed with the excessive 2c (+)].

h.

Figure S27. ¹¹B NMR (128 MHz, 298 K, C_7D_8) spectra of *in-situ* generated compounds **5** (*) and **4c** (#) at room temperature [admixed with the excessive **2c** (+)]: (1) after 5 h; (2) after 24 h.

Trapping experiment of the intermediate 5 with PPh₃

Scheme S5

Pre-cooled (-20 °C) toluene (20 mL) was added to a mixture of [Cp*RuCl]₄ (217.4 mg, 0.20 mmol) and Li[(2-^{*i*}PrC₆H₄)BH₃]·THF (186.6 mg, 0.88 mmol, 4.4 equiv.). The mixture was stirred at -20 °C for 2 h to completely *in-situ* generate compound **5**. Then a pre-cooled (-20 °C) solution of PPh₃ (209.8 mg, 0.80 mmol) in toluene (5 mL) was added to the above reaction mixture via cannula, in small portions over 10 min. The suspension was stirred for an additional 3 h at -20 °C before it was warmed slowly to room temperature. After removal of the solvent under vacuum, the residue was extracted with *n*-hexane (3×5 mL) followed by filtration through Celite. Concentration of the extract to *ca*. 5 mL and storage at -25 °C to afford compound **6** as yellow crystals, some of the crystals were suitable for X-ray crystal structure analysis. Yield: 414.0 mg, 82%.

Elemental analysis: calc. for C₃₇H₄₄BPRu: C, 70.36; H, 7.02. Found: C, 70.34; H, 7.04.

NMR spectroscopic data for compound 6:

¹**H NMR** (400 MHz, 298K, C₆D₆): $\delta = 7.02-7.80$ (m, 19H, Ph), 6.76 (br, 1H, B*H*), 3.05 (sept, ³*J*_{HH} = 6.8 Hz, 1H, C*H*^{iPr}), 1.38 (s, 15H, C₅*Me*₅), 1.28

(d, ${}^{3}J_{\text{HH}} = 6.8 \text{ Hz}$, 6H, CH_{3}^{iPr}), -11.20 (s, 2H, Ru*H*B).

¹³C{¹H} NMR (101 MHz, 298 K, C₆D₆): $\delta = 153.0$ (br, *i*-*i*PrC₆H₄), 148.8, 131.2, 126.2, 124.7, 123.4 (*i*PrC₆H₄), 137.7 (d, ¹J_{PC} = 37.4 Hz, *i*-Ph), 135.1 (d, ²J_{PC} = 11.1 Hz, *o*-Ph), 129.0 (d, ⁴J_{PC} = 2.0 Hz, *p*-Ph), 127.7 (d, ³J_{PC} = 10.1 Hz, *m*-Ph), 87.9 (C₅Me₅), 32.2 (CH^{iPr}), 23.9 (CH₃^{iPr}), 10.8 (C₅Me₅). ¹¹B NMR (128 MHz, 298 K, C₆D₆): $\delta = 47.1$ (v_{1/2} ~ 620 Hz). ³¹P{¹H} NMR (162 MHz, 298 K, C₆D₆): $\delta = 59.9$.

Figure S28. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of compound 6.

X-ray crystal structure analysis of compound 6: formula $C_{37}H_{44}BPRu$, M = 631.57 g/mol, yellow crystal, 0.35 x 0.24 x 0.15 mm, a = 8.8795(5), b = 12.1593(7), c = 16.4427(10) Å, $\alpha = 72.368(2)^{\circ}$, $\beta = 83.187(2)^{\circ}$, $\gamma = 73.943(2)^{\circ}$, V = 1624.71(17) Å³, $\rho_{calc} = 1.291$ g·cm⁻³, $\mu = 0.555$ mm⁻¹, empirical absorption correction (0.7104 \leq T \leq 0.7461), Z = 2, triclinic, space group $P^{\bar{1}}$ (No. 2), $\lambda = 0.71073$ Å, T = 200 K, ω and φ scans, 24800 reflections collected ($\pm h$, $\pm k$, $\pm l$), 5675 independent ($R_{int} = 0.0462$) and 4884 observed reflections [$I > 2\sigma(I)$], 380 refined parameters, R = 0.0312, $wR^2 = 0.0705$, max. (min.) residual electron density 0.41 (-0.36) e.Å⁻³.

Figure S32. A view of the molecular structure of compound **6** (thermal ellipsoids are shown at the 30% probability level).