SUPPORTING INFORMATION

A fluorogenic probe targeting two spatially separated enzymes for selective imaging of cancer cells

Sang-Hyun Park,⁺ Hyoje Jung,⁺ Yujun Kim, and Injae Shin*

Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.

CONTENTS

1. Synthesis	S2
2. Cell Studies	S9
3. Supplementary References	S10
4. Supplementary Figures	S11
5. NMR spectra	S24

Experimental details

Synthesis

General. Analytical thin-layer chromatography (TLC) was performed on silica gel 60 F254 glass plates (Merck Millipore). Compound spots were visualized by UV light (254 nm) and/or by staining with 10 wt% phosphomolybdic acid in ethanol. Flash column chromatography was conducted using silica gel 60 (230–400 mesh, Merck Millipore). NMR spectra were recorded on Bruker Avance III HD 400 and Avance II 400 instruments. Mass spectra were obtained using a Waters 3100 LC/MS System. High resolution mass spectra were obtained using an Ultimate 3000 RS-Q-Exactive Orbitrap Plus. Chemical reagents used in this study were purchased from Sigma-Aldrich, TCI and Acrose, and human cathepsin L from Sino Biological.

Scheme S1. Synthesis of BocLys(Ac)-AB-FC.

Compound 1. To a stirred solution of BocLys(Ac) (1 g, 3.5 mmol), 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU, 1.97 g, 5.2 mmol) and hydroxybenzotriazole (HOBt, 703 mg, 5.2 mmol) in DMF (12 mL) was added DIEA (1.5 mL, 1.12 g, 8.7 mmol) at room temperature. After stirring for 10 min, 4-(TBS-O-methyl)aniline (823 mg, 3.5 mmol) was added to the mixture. After stirring for 3 h, the mixture was diluted with EtOAc, washed with brine and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂ : EtOAc = 30:1) to give **1** as a white solid in 63% yield (1.11 g): ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1 H), 7.52 (d, 2 H, *J* = 8.4 Hz), 7.24 (d, 2 H, *J* = 8.4 Hz), 6.37 (s, 1 H), 5.53 (s, 1H), 4.69 (s, 2H), 4.27 (br s, 1 H), 3.23-3.28 (m, 2 H), 2.00 (s, 3 H), 1.89-1.96 (m, 1 H), 1.67-1.74 (m, 1 H), 1.53-1.60 (m, 2 H), 1.42-1.48 (m, 11 H), 0.93 (s, 9 H), 0.09 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.9, 156.3, 137.4, 136.8, 126.7, 120.0, 80.1, 64.7, 55.0, 39.1, 32.1, 28.9, 28.4, 26.0, 23.1, 22.8, 18.5, -5.2; ESI-MS calcd for C₂₆H₄₅N₃O₅Si [M + H]⁺ = 508.3, found 508.9.

Compound 2. To a stirred solution of **1** (800 mg, 1.58 mmol) in THF (4 mL) was added 1 M *n*-tetrabutylammonium fluoride (TBAF, 1.73 mL, 1.73 mmol) in THF at 0 °C. The mixture was warmed to room temperature. After stirring for 45 min, the reaction mixture was diluted with EtOAc and washed with NH₄Cl. The aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂ : EtOAc = 20:1) to afford **2** as a white solid in 72% yield (448 mg): ¹H NMR (400 MHz, CD₃OD) δ 7.54 (d, 2 H, *J* = 8.3 Hz), 7.30 (d, 2 H, *J* = 8.3 Hz), 4.56 (s, 2 H), 4.13-4.17 (m, 1 H), 3.16 (t, 2 H, *J* = 6.7 Hz), 1.90 (s, 3 H), 1.66-1.81 (m, 2 H), 1.50-1.55 (m, 2 H), 1.35-1.48 (m, 11 H); ¹³C NMR (100 MHz, CD₃OD) δ 173.6, 173.2, 157.9, 138.7, 138.6, 128.6, 121.3, 80.6, 64.8, 56.6, 40.2, 33.2, 30.0, 28.7, 24.3, 22.6; ESI-MS calcd for C₂₀H₃₁N₃O₅ [M + H]⁺ 394.2, found 394.7.

BocLys(Ac)-AB-FC. To a stirred solution of **2** (400 mg, 1.02 mmol) in anhydrous CH₂Cl₂ (3 mL) was added dropwise PBr₃ (360 μ L of 1 M solution in CH₂Cl₂) at 0 °C for 10 min under N₂ atmosphere. After stirring for 30 min at the same temperature, the reaction mixture was quenched by addition of 5% NaHCO₃. The mixture was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give **3**. This compound was used for the next reaction without further purification.: ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1 H), 7.52 (d, 2 H, *J* = 7.8 Hz), 7.28 (d, 2 H, *J* = 7.8 Hz), 6.38 (s, 1 H), 5.59 (s, 1 H), 4.46 (s, 2 H), 4.28 (s, 1 H), 3.16-3.31 (m, 2 H), 1.97 (s, 3 H), 1.85-1.93 (m, 1 H), 1.66-1.75 (m, 1 H), 1.50-1.59 (m, 1 H), 1.36-1.49 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 171.0, 156.4, 138.3, 133.5, 129.8, 120.2, 80.4, 55.1, 39.1, 33.6, 31.8, 28.9, 28.5, 23.2, 22.8; ESI-MS calcd for C₂₀H₃₀BrN₃O₄ [M + H]⁺ 456.1, 458.1, found 456.5, 458.5.

To a stirred solution of FC (269 mg, 0.59 mmol) and K₂CO₃ (136.9 mg, 0.99 mmol) in anhydrous DMF (4 mL) was added 18-crown-6 (262 mg, 0.99 mmol) in anhydrous DMF (1 mL) at room temperature under N_2 atmosphere. After stirring for 30 min, compound 3 (300 mg, 0.66 mmol) was added to the mixture. After stirring for 4 h, the reaction mixture was diluted with EtOAc and washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane : EtOAc = 5:1) to afford BocLys(Ac)-AB-FC as a pale yellow solid in 51% yield (280 mg): ¹H NMR (400 MHz, CDCl₃) δ 9.13 (s, 1 H), 9.01 (s, 1 H), 8.05 (d, 1 H, J = 7.0 Hz), 7.67-6.73 (m, 2 H), 7.61 (d, 2 H, J = 8.2 Hz), 7.35 (d, 2 H, J = 8.2 Hz), 7.15 (d, 1 H, J = 7.5 Hz), 7.00-7.06 (m, 2 H), 6.99 (s, 1 H), 6.71-6.77 (m, 2 H), 6.56 (s, 1 H), 5.51 (s, 1 H), 5.07 (s, 2 H), 4.48 (q, 2 H, J = 7.1 Hz), 4.27 (s, 1 H), 3.20-3.30 (m, 2 H), 2.01 (s, 3 H), 1.91-1.97 (m, 1 H), 1.69-1.75 (m, 1 H), 1.54-1.59 (m, 2 H), 1.40-1.49 (m, 14 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 171.0, 168.9, 163.1, 160.7, 156.2, 156.1, 152.5, 151.3, 148.3, 142.8, 138.1, 135.5, 133.8, 131.6, 130.3, 129.2, 128.2, 126.4, 125.4, 123.9, 120.1, 117.8, 114.7, 113.7, 112.3, 110.9, 107.8, 102.1, 81.6, 80.3, 70.7, 62.3, 55.0, 44.0, 39.0, 31.6, 29.7, 28.6, 28.3, 22.9, 22.6, 14.3; HR ESI-MS calcd for C₄₆H₄₅N₃O₁₂ [M + H]⁺ 832.3082, found 832.3078.

Compound 4 (ref 1). To a stirred solution of fluorescein (2 g, 6.2 mmol) in MeOH (7 mL) was added dropwise a mixture of 50% NaOH in water (12 mL) and 15-crown-5 (68.4 mg, 0.31 mmol) at 0 °C. After stirring for 10 min, the mixture was warmed to 55 °C in a bath. To the mixture was added dropwise CHCl₃ (5 mL) while the reaction temperature was maintained at 55 °C. After stirring for 15 h at the same temperature, the mixture was cooled to room temperature. The mixture was acidified with 5 M HCl to precipitate the product. The solid was

filtered and dried. The crude product was purified by flash column chromatography (CH₂Cl₂ : EtOAc = 17:3) to afford **4** as a yellow solid in 16% yield (357 mg): ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.9 (s, 1 H), 10.6 (s, 1 H), 10.3 (s, 1 H), 8.01 (d, 1 H, *J* = 7.5 Hz), 7.80 (td, 1 H, *J* = 7.6, 1.1 Hz), 7.72 (td, 1 H, *J* = 7.5, 0.8 Hz), 7.30 (d, 1 H, *J* = 7.6 Hz), 6.94 (d, 1 H, *J* = 8.9 Hz), 6.86 (d, 1 H, *J* = 1.8 Hz), 6.70 (d, 1 H, *J* = 8.9 Hz), 6.65-6.57 (m, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 193.0, 168.7, 163.1, 159.7, 152.5, 152.3, 151.0, 136.6, 135.9, 130.4, 129.1, 126.0, 124.9, 124.1, 113.6, 113.5, 109.8, 109.3, 109.2, 102.8, 81.9; ESI-MS calcd for C₂₁H₁₂O₆ [M + H]⁺ 361.1, found 361.4.

FC (ref 1). To a stirred solution of **4** (500 mg, 1.39 mmol) and diethyl malonate (267 mg, 1.67 mmol) in EtOH (5 mL) were added piperidine (11.8 mg, 0.14 mmol) at room temperature. The resulting mixture was heated at reflux with vigorous stirring for 9 h. The mixture was cooled to room temperature to precipitate the product. The solid was filtered to obtain a product as a light yellow solid in 78% yield (494 mg): ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.3 (s, 1 H), 9.01 (s, 1 H), 8.05 (d, 1 H, *J* = 7.4 Hz), 7.81 (t, 1 H, *J* = 7.2 Hz), 7.75 (t, 1 H, *J* = 7.4 Hz), 7.32 (d, 1 H, *J* = 7.5 Hz), 7.16-7.11 (m, 2 H), 6.95 (s, 1 H), 6.65 (s, 2 H), 4.36 (q, 2 H, *J* = 7.1 Hz), 1.36 (t, 3 H, *J* = 7.1 Hz); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5, 162.5, 159.8, 155.6, 155.4, 152.3, 150.8, 147.6, 141.7, 135.9, 133.8, 130.5, 129.1, 125.6, 124.9, 124.0, 117.7, 114.3, 113.8, 112.2, 109.0, 107.4, 102.7, 81.4, 61.5, 14.0; ESI-MS calcd for C₂₆H₁₆O₈ [M + H]⁺ 457.1, found 457.6.

Scheme S2. Synthesis of BocLys-AB-FC.

BocLys(Alloc). To a stirred solution of allyl chloroformate (979 mg, 8.12 mmol) in a mixture of dioxane and water (21 mL, 2:1) was added BocLys (2 g, 8.12 mmol) and DIEA (2.62 g, 20.3 mmol) at room temperature. After stirring for 4 h, the reaction mixture was diluted with CH_2Cl_2 and isopropanol (2:1), and washed with water and brine. The organic layer was dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified

by flash column chromatography (CH₂Cl₂ : EtOAc : MeOH = 10:2:1) to afford BocLys(Alloc) in 66% yield (1.77 g): ¹H NMR (400 MHz, CD₃OD) δ 5.84-6.00 (m, 1 H), 5.29 (dd, 1 H, *J* = 17.2, 1.5 Hz), 5.17 (dd, 1 H, *J* = 10.5, 1.1 Hz), 4.51 (d, 2 H, *J* = 5.4 Hz), 4.01-4.11 (m, 1 H), 3.10 (t, 2 H, *J* = 6.5 Hz), 1.75-1.86 (m, 1 H), 1.60-1.71 (m, 1 H), 1.48-1.55 (m, 2 H), 1.39-1.47 (m, 11 H); ¹³C NMR (100 MHz, CD₃OD) δ 176.2, 158.7, 158.0, 134.5, 117.4, 80.4, 66.2, 54.7, 41.3, 32.3, 30.4, 28.7, 24.0; ESI-MS calcd for C₁₅H₂₆N₂O₆ [M + H]⁺ 331.2, found 331.5.

Compound 5. To a stirred solution of BocLys(Alloc) (1 g, 3.03 mmol), HBTU (1.72 g, 4.55 mmol) and HOBt (615 mg, 4.55 mmol) in DMF (10 mL) was added DIEA (1.32 mL, 979 mg, 7.58 mmol) at room temperature. After stirring for 10 min, 4-(TBS-O-methyl)aniline (719 mg, 3.03 mmol) was added to the mixture. After stirring for 3 h, the mixture was diluted with EtOAc and washed with brine and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂ : EtOAc = 30:1) to give **5** as a white solid in 51% yield (850 mg): ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1 H), 7.48 (d, 2 H, *J* = 8.2 Hz), 7.21 (d, 2 H, *J* = 7.6 Hz), 5.83-6.00 (m, 1 H), 5.61 (s, 1 H), 5.28 (d, 1 H, *J* = 17.1 Hz), 5.18 (d, 1 H, *J* = 10.3 Hz), 5.10 (s, 1 H), 4.67 (s, 2H), 4.55 (s, 2 H), 4.30 (s, 1 H), 3.16 (s, 2 H), 1.85-1.95 (m, 1 H), 1.65-1.78 (m, 1 H), 1.42-1.48 (m, 13 H); ¹³C NMR 100 MHz, CDCl₃) δ 171.2, 156.6, 156.3, 137.2, 136.7, 132.9, 126.5, 119.8, 117.5, 80.1, 65.4, 64.6, 64.2, 55.1, 40.3, 40.1, 32.0, 29.4, 28.3, 25.9, 22.7, 18.4, -5.2; ESI-MS calcd for C₂₈H₄₇N₃O₆Si [M + H]⁺ 550.3, found 550.9.

Compound 6. To a stirred solution of **5** (800 mg, 1.46 mmol) in THF (4 mL) was added 1 M *n*-tetrabutylammonium fluoride (1.60 mL, 1.60 mmol) in THF at 0 °C. The mixture was warmed to room temperature. After stirring for 45 min, the reaction mixture was diluted with EtOAc and washed with NH₄Cl. The aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂ : EtOAc = 20:1) to afford **6** as a white solid in 71% yield (452 mg): ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1 H), 7.43 (d, 2 H, *J* = 7.6 Hz), 7.17 (d, 2 H, *J* = 7.6 Hz), 5.85-5.97 (m, 1 H), 5.65 (s, 1 H), 5.29 (dd, 1 H, *J* = 17.2, 1.4 Hz), 5.20 (dd, 1 H, *J* = 10.4, 1.0 Hz), 4.58 (s, 2 H), 4.55 (d, 2 H, *J* = 5.4 Hz), 4.31 (s, 1 H), 3.16 (t, 2 H, *J* = 6.3 Hz), 1.82-1.93 (m, 1 H), 1.66-1.78 (m, 1 H), 1.50-1.56 (m, 2 H), 1.40-1.48 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 156.7, 156.6, 137.2, 136.8, 133.0, 127.7, 120.0, 117.7, 80.4, 65.6, 64.6, 55.2, 40.5, 32.2, 29.6, 28.4, 22.8; ESI-MS calcd for C₂₂H₃₃N₃O₆ [M + H]⁺ 436.2, found 436.7.

BocLys(Alloc)-AB-FC. To a stirred solution of **6** (400 mg, 0.92 mmol) in anhydrous CH₂Cl₂ (3 mL) was added dropwise PBr₃ (320 µL of 1 M solution in CH₂Cl₂) at 0 °C for 10 min under N₂ atmosphere. After stirring for 30 min at the same temperature, the reaction mixture was quenched by addition of 5% NaHCO₃. The mixture was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give **7**. This compound was used for the next reaction without further purification: ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1 H), 7.49 (d, 2 H, *J* = 7.5 Hz), 7.23 (d, 2 H, *J* = 7.5 Hz), 5.84-5.98 (m, 1 H), 5.63 (s, 1 H), 5.29 (dd, 1 H, *J* = 17.2, 1.4 Hz), 5.20 (dd, 1 H, *J* = 10.4, 1.0 Hz), 5.05 (s, 1 H), 4.43-4.63 (m, 4 H), 4.32 (s, 1 H), 3.17 (t, 2 H, *J* = 6.3 Hz), 1.82-1.97 (m, 1 H), 1.64-1.80 (m, 1 H), 1.49-1.60 (m, 2 H), 1.36-1.49 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 156.7, 156.5, 138.1, 132.9, 129.8, 129.3, 120.0, 117.7, 80.5, 65.6, 55.2, 40.3, 33.6, 31.8, 29.6, 28.4, 22.7; ESI-MS calcd for C₂₂H₃₂BrN₃O₅ [M + H]⁺ 498.2, 500.2, found 498.7, 500.7.

To a stirred solution of FC (247 mg, 0.54 mmol) and K_2CO_3 (125 mg, 0.90 mmol) in anhydrous DMF (2 mL) was added 18-crown-6 (238 mg, 0.90 mmol) in anhydrous DMF (1 mL) at room temperature under N₂ atmosphere. After stirring for 30 min, compound 7 (300 mg, 0.60 mmol) was added to the mixture. After stirring for 4 h, the reaction mixture was diluted with EtOAc and washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane : EtOAc = 5:1) to afford BocLys(Alloc)-AB-FC as a pale yellow solid in 43% yield (226 mg): ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1 H), 8.67 (s, 1 H), 8.07 (d, 1 H, J = 7.6 Hz), 7.64-6.75 (m, 2 H), 7.59 (d, 2 H, J = 8.3 Hz), 7.38 (d, 2 H, J = 8.3 Hz), 7.16 (d, 1 H, J = 7.1 Hz), 7.02-7.07 (m, 2 H), 7.00 (s, 1 H), 6.72-6.80 (m, 2 H), 5.86-5.98 (m, 1 H), 5.30 (dd, 1 H, J = 17.3, 1.5 Hz), 5.21 (dd, 1 H, J = 10.4, 1.2 Hz), 5.09 (s, 2 H), 4.93 (s, 1 H), 4.57 (d, 2 H, J = 5.1 Hz), 4.50 (q, 2 H, J = 7.1 Hz), 4.22 (s, 1 H), 3.21 (t, 2 H, J = 5.7 Hz), 1.90-2.02 (m, 1 H), 1.67-1.78 (m, 1 H), 1.54-1.60 (m, 2 H), 1.43-1.50 (m, 14 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 169.0, 163.2, 160.8, 156.8, 156.4, 156.3, 156.2, 152.6, 151.4, 148.4, 142.9, 138.1, 135.6, 134.0, 132.9, 131.7, 130.4, 129.3, 128.4, 126.4, 125.5, 123.9, 120.1, 117.9, 117.8, 114.8, 113.8, 112.4, 111.0, 107.9, 102.1, 81.7, 80.6, 70.1, 65.7, 62.4, 55.1, 40.2, 31.4, 29.5, 28.4, 22.6, 14.4; ESI-MS calcd for C₄₈H₄₇N₃O₁₃ [M + H]⁺ 874.3, found 875.2.

BocLys-AB-FC. To a stirred solution of BocLys(Alloc)-AB-FC (100 mg, 0.11 mmol) and Pd(PPh₃)₄ (6.4 mg, 0.0055 mmol) in a mixture of CH₂Cl₂ and MeOH (2 mL, 7:3) was added N-methylaniline (62 μ L, 61.3 mg, 0.57 mmol) in a mixture of CH₂Cl₂ and MeOH (1 mL, 7:3) at room temperature under argon atmosphere. After stirring for 2 h, the volatile material was removed under reduced pressure. The residue was purified by preparative HPLC to afford BocLys-AB-FC as a light orange solid in 48% yield (41.7 mg): ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.1 (s, 1 H), 9.04 (s, 1 H), 8.06 (d, 1 H, *J* = 7.4 Hz), 7.73-7.84 (m, 2 H), 7.65 (d, 2 H, *J* = 8.3 Hz), 7.42 (d, 2 H, *J* = 8.3 Hz), 7.36 (d, 1 H, *J* = 1.7 Hz), 7.33 (d, 1 H, *J* = 7.5 Hz), 7.17 (s, 2 H), 7.06 (d, 1 H, *J* = 7.6 Hz), 6.86 (dd, 1 H, *J* = 8.8, 1.7 Hz), 6.76 (d, 1 H, *J* = 8.8 Hz), 5.15 (s, 2 H), 4.36 (q, 2 H, *J* = 7.0 Hz), 3.99-4.11 (m, 1 H), 2.75 (t, 2 H, *J* = 7.2 Hz), 1.48-1.73 (m, 4 H), 1.15-1.47 (m, 14 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.5, 168.6, 162.6, 160.4, 155.8, 155.6, 155.5, 152.3, 150.9, 147.6, 141.9, 139.0, 136.1, 133.9, 131.0, 130.7, 129.1, 128.7, 125.6, 125.1, 124.1, 119.2, 117.8, 114.2, 113.9, 112.4, 110.6, 107.6, 102.2, 81.2, 78.2, 79.7, 61.7, 55.1, 38.6, 31.2, 28.3, 26.7, 22.6, 14.3; HR ESI-MS calcd for C₄₄H₄₃N₃O₁₁ [M + H]⁺ 790.2975, found 790.2965.

Scheme S3. Synthesis of (a) BocLys(Ac)-AMC and (b) BocLys-AMC.

BocLys(Ac)-AMC. To a solution of 1-[bis(dimethylamino)methylene]-1*H*-1,2,3-triazolo[4,5*b*]pyridinium 3-oxide hexafluorophosphate (HATU, 79 mg, 0.21 mmol) and 1-hydroxy-7azabenzotriazole (HOAt, 28 mg, 0.21 mmol) in DMF (1.7 mL) were added DIEA (67 mg, 0.52 mmol) and BocLys(Ac) (50 mg, 0.17 mmol) at room temperature. After stirring for 15 min, 7amino-4-methylcoumarin (30 mg, 0.17 mmol) was added to the mixture. After stirring for 6 h, the volatile material was removed under reduced pressure. The residue was dissolved into EtOAc and the organic layer was washed with 1 M HCl, aqueous saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂ : MeOH = 39:1) to give BocLys(Ac)-AMC as a white solid in 43% yield (33 mg): ¹H NMR (400 MHz, CDCl₃) δ 9.72 (br s, 1 H), 7.72 (s, 1 H), 7.41-7.43 (m, 2 H), 7.10 (br s, 1 H), 6.13 (s, 1 H), 5.67 (br s, 1 H), 4.36 (br s, 1 H), 3.28 (br s, 2 H), 2.37 (s, 3 H), 2.07 (s, 3 H), 1.94 (br s, 1 H), 1.74 (br s, 1 H), 1.61 (br s, 2 H), 1.48 (br s, 2 H), 1.43 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.1, 161.5, 156.5, 154.0, 152.9, 141.8, 125.1, 115.8, 113.1, 107.2, 80.5, 55.2, 39.1, 32.0, 28.9, 28.4, 23.2, 22.9, 18.6; HR ESI-MS calcd for C₂₃H₃₁N₃O₆ [M + H]⁺ 446.2291, found 446.2282.

BocLys(Cbz)-AMC. To a solution of HATU (1.20 g, 3.15 mmol) and HOAt (429 mg, 3.15 mmol) in DMF (12 mL) were added DIEA (1.37 mL, 1.02 g, 7.89 mmol) and BocLys(Cbz) (1.00 g, 2.63 mmol) at room temperature. After stirring for 15 min, 7-amino-4-methylcoumarin (461 mg, 2.63 mmol) was added to the mixture. After stirring for 6 h, the volatile material was removed under reduced pressure. The residue was dissolved into EtOAc and the organic layer was washed with 1 M HCl, aqueous saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂ : EtOAc = 3:1) to give BocLys(Cbz)-AMC as a white solid in 33% yield (462 mg): ¹H NMR (400 MHz, CDCl₃) δ 9.40 (br s, 1 H), 7.70 (d, 1 H, *J* = 1.4 Hz), 7.38 (d, 1 H, *J* = 8.5 Hz), 7.30-7.33 (m, 5 H), 7.17 (d, 1 H, *J* = 7.5 Hz), 6.09 (br s, 1 H), 5.54 (d, 1 H, *J* = 7.5 Hz), 5.07 (br s, 2 H), 5.04 (br s, 1 H), 4.32-4.33 (m, 1 H), 3.18-3.19 (m, 2 H), 2.34 (s, 3 H), 1.87-1.89 (m, 1 H), 1.71-1.73 (m, 1 H), 1.50-1.54 (m, 4 H), 1.45 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 161.3, 156.8, 154.0, 152.7, 141.5, 136.6, 128.6, 128.2,

128.1, 125.0, 115.8, 115.6, 113.2, 107.2, 80.8, 66.8, 55.4, 40.3, 31.6, 29.6, 28.5, 22.8, 18.6; ESI-MS calcd for $C_{29}H_{35}N_3O_7$ [M + H]⁺ 538.2, found 538.8.

BocLys-AMC. A solution of BocLys(Z)-AMC (212 mg, 0.394 mmol), 10% Pd/C (21 mg, 10 wt % of the substrate) in MeOH (16 mL) was stirred for 3 h under H₂ atmosphere at room temperature. The reaction mixture was filtered through Celite 545, and the solution was concentrated under reduced pressure to obtain a white solid in 93% yield (148 mg). The product was used for the next reaction without further purification.: ¹H NMR (400 MHz, CDCl₃) δ 9.81 (br s, 1 H), 7.67 (s, 1 H), 7.37 (d, 1 H, *J* = 8.4 Hz), 7.22 (d, 1 H, *J* = 7.7 Hz), 6.06 (s, 1 H), 5.66 (br s, 1 H), 4.36 (s, 1 H), 2.81 (br s, 2 H), 2.74 (s, 2 H), 2.32 (s, 3 H), 1.86-1.87 (m, 1 H), 1.69-1.71 (m, 1 H), 1.53 (br s, 4 H), 1.43 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 161.2, 156.6, 153.9, 152.7, 141.5, 124.9, 115.6, 115.5, 113.0, 107.1, 80.6, 55.5, 41.5, 32.5, 32.4, 28.4, 23.1, 18.5; HR ESI-MS calcd for C₂₁H₂₉N₃O₅ [M+H]⁺ 404.2180, found 404.2176.

HPLC profiles of synthesized fluorogenic probes

Analytic RP-HPLC (C18 column, 250 x 4.6 mm; pore size, 5 μ M) with a gradient of 5-100% CH₃CN in water (0.1% TFA) over 45 min (a flow rate; 1 mL/min, detection at 350 nm).

Measurements of cathepsin L activity. Human cathepsin L (Sino Biological) was dissolved in 120 μ L of 400 mM sodium acetate containing 4 mM EDTA and 8 mM DTT (pH 5.5) and then activated at 37 °C for 1 min. After activation, a solution of 1.2 μ L of 1 mM BocLys(Ac)-AB-FC in DMSO was added to above solution. Release of FC was detected using a fluorometer (JASCO, FT-8500) with 488 nm excitation filter and 520 nm emission filter. The reaction was run for 1 h with readings taken every 30 sec.

Cell Study

Cell culture. HeLa (cervical cancer cells), A549 (lung carcinoma epithelial cells), HT29 (colon cancer cells), MDA-MB-231 (breast cancer cells), HepG2 (liver cancer cells), As-Pc-1 (pancreatic cancer cells), DU145 (prostate cancer cells), AGS (gastric cancer cells), MRC-5 (fibroblast cell line derived from normal lung tissue), MEF (mouse embryonic fibroblasts), C2C12 (mouse myoblasts), and NRK (derived from normal rat kidney) cells were cultured in RPMI 1640 (Invitrogen), DMEM (Invitrogen) or MEM (Invitrogen) supplemented with 10% fetal bovine serum (FBS), 50 units/mL penicillin and 50 units/mL streptomycin at 37 °C with 5% CO₂ atmosphere.

Imaging of cancer and normal cells using BocLys(Ac)-AB-FC. Cancer or normal cells in culture media were incubated with 25 μ M BocLys(Ac)-AB-FC for 9 h. In addition, they were pre-incubated with 5 μ M TSA, 50 μ M SAHA or 20 μ M Z-FF-FMK for 2 h followed by treatment with 25 μ M BocLys(Ac)-AB-FC for 9 h. The nucleus of treated cells was stained with either Hoechst 33342 or NucRed 647. Cell images were obtained by using confocal fluorescence microscopy (Hoechst 33342: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 410-480$ nm: FC; $\lambda_{ex} = 488$ nm, $\lambda_{em} = 500-610$ nm: NucRed 647; $\lambda_{ex} = 640$ nm, $\lambda_{em} = 650-730$ nm).

Detection of activities of HDACs and cathepsin L in cell lysates. Cancer and normal cells were lysed with Proprep lysis buffer (Intron). Cell lysates were placed into a 96-well plate. The lysates were incubated with 25 μ M BocLys(Ac)-AB-FC or 10 μ M BocLys(Ac)-AMC for 2 h. In addition, they were pre-incubated with 5 μ M TSA, 50 μ M SAHA or 20 μ M Z-FF-FMK for 2 h followed by treatment with 25 μ M BocLys(Ac)-AB-FC or 10 μ M BocLys(Ac)-AMC for 2 h. The enzyme-catalyzed release of FC was monitored by using an Infinite® 200 PRO multimode microplate reader (BocLys(Ac)-AB-FC; $\lambda_{ex} = 488$ nm, $\lambda_{em} = 530$ nm; BocLys(Ac)-AMC; $\lambda_{ex} = 405$ nm, $\lambda_{em} = 480$ nm).

HPLC analysis of cell lysates treated with a probe. HeLa cells were incubated with 30 μ M BocLys(Ac)-AB-FC for 16 h. After washing cells with Dulbecco's phosphate-buffered saline (DPBS) three times, they were detached from the surface with a cell scrapper using 500 μ L of the lysis buffer (5% DMSO/95% 50 mM Tris buffer at pH 7.5 (v/v)). Cell suspensions were lysed with a sonicator (BANDELIN) with a pulse sequence of 20 sec on and 40 sec off with an amplitude of 20% on ice. The lysed samples were centrifuged at 15,000 g at 4 °C for 15 min and the supernatant was collected. The supernatant was diluted with MeOH and centrifuged at 10,000 g for 5 min. After removal of volatile solvent under reduced pressure, the residue was analyzed by using analytical RP-HPLC with a gradient of 30-100% acetonitrile (0.1% TFA) in water (0.1% TFA) over 30 min.

Supplementary References

1. L. Hu, J. Liu, J. Zhang, H. Zhang, P. Xu, Z. Chen and E. Xiao, RSC. Adv., 2019, 9, 39532-39535.

Fig. S1 HeLa cells were incubated with 10 μ M of CM, CM(OAc), FI, FI(OAc)₂, NIR or FC dye for indicated times. The nucleus of treated cells was stained with either Hoechst 33342 or NucRed 647. Cell images were obtained by using confocal fluorescence microscopy (scale bar = 10 μ m). CM, CM(OAc) and Hoechst 33342; $\lambda_{ex} = 405$ nm, $\lambda_{em} = 410-480$ nm: Fl, Fl(OAc)₂ and FC; $\lambda_{ex} = 488$ nm, $\lambda_{em} = 500-610$ nm: NucRed 647; $\lambda_{ex} = 640$ nm, $\lambda_{em} = 650-730$ nm: NIR: $\lambda_{ex} = 640$ nm, $\lambda_{em} = 650-820$ nm.

Fig. S2 HeLa cells were incubated with 10 μ M FC for 9 h followed by treatment with LysoTracker Red for staining lysosomes or NucRed 647 for staining nuclei. Cell images were obtained by using confocal fluorescence microscopy (scale bar = 10 μ m).

Fig. S3 UV spectra of FC, BocLys-AB-FC and BocLys(Ac)-AB-FC (10 μ M) in 10 mM phosphate buffer (pH 7.4) containing 1% DMSO.

Fig. S4 (a) UV and (b) fluorescence spectra of AMC, BocLys-AMC and BocLys(Ac)-AMC (10 μ M) in 400 mM sodium acetate buffer (pH 5.5) containing 1% DMSO. Fluorescence excitation wavelength is 360 nm. (c) The time course of the fluorescence intensity arising from BocLys(Ac)-AMC and BocLys-AMC in absence or presence of Z-FF-FMK by cathepsin L (λ_{ex} = 360 nm/ λ_{em} = 450 nm).

Figure S5. HeLa cells were incubated with indicated concentrations of (a) BocLys(Ac)-AB-FC, (b) BocLys-AB-FC, and (c) BocLys(Ac)-AMC for 24 h. Cell death was measured by means of a MTT assay (mean \pm s.d., n = 3).

Figure S6. Time- and concentration-dependent detection of cancer cells using BocLys(Ac)-AB-FC. (a) HeLa cells were incubated with 25 μ M BocLys(Ac)-AB-FC for indicated times followed by staining with Hoechst 33342. (b) HeLa cells were exposed to several concentrations of BocLys(Ac)-AB-FC followed by staining with Hoechst 33342. Images of treated cells were obtained by using confocal fluorescence microscopy (scale bar = 10 μ m).

Figure S7. HeLa cells pre-incubated with 5 μ M TSA, 50 μ M SAHA or 20 μ M Z-FF-FMK for 2 h were treated with 25 μ M BocLys(Ac)-AB-FC for 9 h. In addition, MRC5 cells were exposed to 25 μ M BocLys(Ac)-AB-FC for 9. After washing treated cells with DPBS, the fluorescence intensity was measured by using a microplate reader (mean \pm s.d., n = 3).

Figure S8. MRC-5 cells were incubated with 25 μ M BocLys(Ac)-AB-FC for indicated times followed by staining with Hoechst 33342. Images of treated cells were obtained by using confocal fluorescence microscopy (scale bar = 10 μ m).

Figure S9. HeLa cells were incubated with 25 μ M BocLys(Ac)-AMC for 9 h and then stained with NucRed 647. Cell images were obtained by using confocal fluorescence microscopy (scale bar = 10 μ m).

а	HeLa				A549			
	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe
FC								
FC + Hoechst		0 0 0				ۍ <mark>ه م</mark> ې ک <mark>ه م</mark> ې ک		
	HT29				HepG2			
	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe
EC	i Est							
FC + Hoechst	0.00					6 ⁹⁰	00 00	
	As-Pc-1				DU145			
	Probe only	TSA + probe	SAHA + probe	Probe + Z-FF-FMK	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe
FC								
FC + Hoechst			~} &					
	MDA-MB-231					AC	SS	
	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe	Probe only	TSA + probe	SAHA + probe	Z-FF-FMK + probe
FC	<u>`</u> ``							
FC + Hoechst	8 8 9 9 9 9 9 9 9	8 °, ° 9						

Figure S10. Detection of cancer and normal cells using BocLys(Ac)-AB-FC. (a) Cancer and (b) normal cells were incubated with 25 μ M BocLys(Ac)-AB-FC for 9 h. In addition, they were pre-incubated with 5 μ M TSA, 50 μ M SAHA or 20 μ M Z-FF-FMK for 2 h followed by treatment with 25 μ M BocLys(Ac)-AB-FC for 9 h. Cell images were obtained by using confocal fluorescence microscopy (scale bar = 10 μ m). (c) Graph shows the fluorescence intensity (FI) of FC in (a) and (b) (mean \pm s.d., n = 3).

Figure S11. Indicated cell lysates were incubated with (a) 25 μ M BocLys(Ac)-AB-FC and (b) 10 μ M BocLys(Ac)-AMC for 2 h. In addition, they were pre-incubated with 5 μ M TSA, 50 μ M SAHA or 20 μ M Z-FF-FMK for 2 h and then treated with (a) 25 μ M BocLys(Ac)-AB-FC and (b) 10 μ M BocLys(Ac)-AMC for 2 h. The fluorescence intensities of FC and AMC were determined by using a microplate reader (mean \pm s.d., n = 3).

<NMR spectra> Compound 1 (CDCl₃, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

Compound 2 (CD₃OD, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

Compound 4 (DMSO-*d*₆, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

FC (DMSO-*d*₆, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

BocLys(Ac)-AB-FC (CDCl₃, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

BocLys(Alloc) (CD₃OD, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

Compound 6 (CDCl₃, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

BocLys(Alloc)-AB-FC (CDCl₃, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

BocLys(Ac)-AMC (CDCl₃, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

BocLys-AMC (CDCl₃, 400 MHz ¹H NMR, 100 MHz ¹³C NMR)

S35