Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Oxidative Coupling of Silylated Nonagermanide Clusters

Christoph Wallach, Dr. Wilhelm Klein, Prof. Dr. Thomas F. Fässler

e-mail: thomas.faessler@lrz.tum.de

Supporting information

S1
S5
S7
S12
S13
- -

1. Experimental details

General

All experiments were performed under oxygen-free, dry conditions under argon atmosphere using standard Schlenk or glove box techniques. Glassware was dried prior to usage by repetitively heating it *in vacuo*. The solvents used were obtained from an MBraun Grubbs apparatus. Diethylether was dried prior to usage over Na/benzophenone. Toluene was degassed by three cycles of freeze-pumping after distilling it over Na/benzophenone. The 1M solution of Cy₂BCl in hexane (*Sigma Aldrich*) was degassed by three cycles of freeze-pumping, and anhydrous 1,4-dioxane (stored over molecular sieve) was purchased (*Sigma Aldrich*). All other commercially available chemicals were used without further purification. K₄Ge₉ was prepared by fusion of stoichiometric amounts of the elements in stainless-steel tubes at 650 °C. The bis-silylated [Ge₉] cluster K₂[Ge₉{Si(TMS)₃}] and the NHC^RCu-Cl carbenes were prepared according to modified literature procedures.^[1-3]

Single crystal structure determination

The air- and moisture-sensitive crystal of 2 was transferred from the mother liquor into perfluoroalkyl ether oil in an Ar-filled glove box. A glass capillary was used for fixing the crystal, which was subsequently positioned in a 150 K cold N₂ gas stream for data collection. Data collection was performed with a STOE StadiVari diffractometer ($Mo_{K\alpha}$ radiation) equipped with a DECTRIS PILATUS 300K detector. The structure was solved by Direct Methods (SHELXS-97)^[4] and refined by full-matrix leastsquares calculations against F² (SHELXL-2018).^[5] A riding model was used to calculate and refine the positions of the hydrogen atoms. All non-hydrogen atoms were refined by applying anisotropic displacement parameters. The electron density of the disordered diethyl ether molecules was treated with the Platon Squeeze option.^[6] Further information of the crystal structure investigation may be joint CCDC/FIZ obtained from the Karlsruhe online deposition service: https://www.ccdc.cam.ac.uk/structures/? by quoting the deposition number CCDC-2129082.

NMR spectroscopy

NMR spectra were measured on a Bruker Avance Ultrashield 400 MHz and a Bruker Ultrashield Plus 500 MHz spectrometer. The ¹H NMR and ¹³C NMR spectra were calibrated using the residual signals of the used deuterated solvents. Chemical shifts are reported in parts per million (ppm) relative to TMS, with the solvent peaks serving as internal reference.^[7] Abbreviations for signal multiplicities are: singlet (s), doublet (d), heptet (hept), broad signal (br).

Electrospray ionization (ESI) mass spectrometry

ESI-MS analyses were performed on a Bruker Daltronic HCT mass spectrometer (dry gas temperature: 300 °C; injection speed: 300 μ L/h), and the data evaluation was carried out using the Bruker Compass Data Analysis 4.0 SP 5 program (Bruker). Spectra were plotted using OriginPro2021 (Origin Lab) and Excel (Microsoft Office 365).

Liquid injection field desorption ionization (LIFDI) mass spectrometry

LIFDI-MS measurements were performed using an Exactive[™] PlusOrbitrap system from the Thermo Scientific Company and a Micromass LCT-QTOF-Micro mass spectrometer at the chair of Inorganic and Metal-Organic Chemistry (Prof. Fischer, TUM). The samples were dissolved in toluene and applied on a graphite dendrite-coated tungsten wire. As ionization voltage 10 kV were adjusted. Data were acquired in the positive ion mode (radical cations)^[8] and spectra were plotted using OriginPro2021 (Origin Lab) and Excel (Microsoft Office 365). The theoretical isotope distribution was calculated using the web-tool enviPat Web 2.4 (https://www.envipat.eawag.ch/).

Raman spectroscopy

Raman spectra were acquired using an inVia Raman microscope RE04 (Renishaw) equipped with a CCD detector. Data were plotted using the programs WiRe 4.2 (Renishaw), Excel (Microsoft Office 365), and OriginPro2021 (OriginLab). The cluster NHC^{*i*Pr}Cu[Ge₃{Si(TMS)₃}] (**3**) was prepared for comparison according to literature procedures.^[9] Spectra were recorded with a laser wavelength of 785 nm with a total laser power of 0.5 % (laser power on sample: approximately 1 mW) and an exposure time of 1s/frame. For each measurement 100 frames were accumulated.

Syntheses of compounds 1, 2 and 4

Synthesis of K₂[Ge₉{Si(TMS)₃}₂]₂ (1)

To a solution of $K_2[Ge_9{Si(TMS)_3}_2]$ (92 mg, 75 µmol, 1 equiv.) in dioxane (2 mL) a 1M solution of Cy₂BCl in hexane (75 µl, 75 µmol, 1 equiv.) is added via a Hamilton syringe in the glove box. After five minutes, a color change from milky-brown to deep red is observed. The reaction mixture is stirred at r.t. over night. Subsequently, the solvent is removed under reduced pressure, and the solid residue is redissolved in toluene and filtered using a syringe filter to remove any insoluble salts. After removing the solvent under reduced pressure, the residue (23 mg, 9 µmol, 24 % yield concerning [Ge₉]) is used to acquire ESI-MS and NMR spectra. Due to a repetitively occurring mass gain on the scale (scaling is only possible under a non-inert atmosphere), no reliable elemental analysis could be obtained.

¹H NMR (500 MHz, 298 K, CD₃CN): δ [ppm] = 0.22 (s, 54H, CH_{3 TMS}). ¹³C NMR (126 MHz, 298 K, CD₃CN): δ [ppm] = 3.03 (s, CH_{3 TMS}). ²⁹Si-INEPT NMR (99 MHz, 298 K, CD₃CN): δ [ppm] = -9.51 (s, Si_{TMS}), -107.10 (s, Si_{Ge9}). ESI-MS: m/z 2336.0 ([Ge₉{Si(TMS)₃}₂]₂⁻).

Synthesis of {NHC^{*i*Pr}Cu[Ge₉{Si(TMS)₃}₂]}₂ (2)

To a solution of K₂[Ge₉{Si(TMS)₃}₂] (92 mg, 75 µmol, 1 equiv.) in dioxane (2 mL) a 1M solution of Cy₂BCl in hexane (75 µl, 75 µmol, 1 equiv.) is added via a Hamilton syringe in the glove box. After five minutes, a color change from milky-brown to deep red is observed. The reaction mixture is stirred at r.t. over night. Subsequently, the solvent is removed under reduced pressure, and the solid residue is redissolved in MeCN. The resulting suspension is filtered to remove solids using a syringe filter. A MeCN solution of NHC^{/Pr}Cu-Cl (18.8 mg, 75 µmol, 1 equiv.) is added to the MeCN solution containing **1** at 0 °C, and the formation of a light-brown precipitate is observed. The solvent is removed from the suspension under vacuum, and the residue is washed three times with MeCN (3 mL) at 0 °C. Subsequently, the crude product is dissolved in Et₂O (3 mL), filtered, concentrated, and left at r.t. for crystallization. After three days, the formation of a dark precipitate is observed which contains single crystals of **2** suitable for single crystal diffraction (yield: approximately 10 crystals). Due to the low crystalline yield, the NMR measurements and the elemental analysis were performed with the crude product after washing with MeCN.

¹H NMR (400 MHz, 298 K, thf-*d*₈): δ [ppm] = 7.15 (s, 4H, CH_{NHC}), 5.43 (hept, ${}^{3}J_{H-H}$ = 7.0 Hz, 4H, CH_{*i*Pr}), 1.46 (d, ${}^{3}J_{H-H}$ = 7.0 Hz, 24H, CH₃), 0.32 (s, 108H, CH_{3 TMS}). ¹³C NMR (100 MHz, 298 K, thf-*d*₈): δ [ppm] = 116.07 (s, CH_{NHC}), 52.81 (s, CH_{*i*Pr}), 29.05 (s, CH₃), 28.62 (s, CH₃), 2.97 (s, CH_{3 TMS}). ²⁹Si-INEPT NMR (79 MHz, 298 K, thf-*d*₈): δ [ppm] = -11.07 (s, Si_{TMS}), -107.43 (s, Si_{Ge9}). Elemental analysis for C₅₄H₁₄₀Cu₂Ge₁₈N₄Si₁₆ calcd: C, 23.76; H, 5.17; N, 2.05; found: C, 24.91; H, 5.17; N, 1.84.

Synthesis of {NHC^{Dipp}Cu[Ge₉{Si(TMS)₃}₂]}₂ (4)

The same procedure as for the preparation of **2** is applied using NHC^{Dipp}Cu-Cl (36.4 mg, 75 μ mol, 1 equiv.). After washing the precipitate with MeCN, an analytically pure dark-brown powder is obtained (19 mg, 6 μ mol, 16 % yield concerning [Ge₉]).

¹H NMR (400 MHz, 298 K, thf-*d*₈): δ [ppm] = 7.57 (s, 4H, CH_(*ρ*)), 7.47 (s, 4H, CH_(*m*)), 7.45 (s, 4H, CH_(*m*)), 7.40 (s, 4H, CH_{NHC}), 2.92 (hept, ${}^{3}J_{H-H} = 6.8$ Hz, 8H, CH_(*ρ*), 1.61 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 24H, CH₃), 1.20 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 24H, CH₃), 0.19 (s, 108H, CH₃ TMS). ¹³C NMR (100 MHz, 298 K, thf-*d*₈): δ [ppm] = 146.36 (s, C_(o)), 136.40 (s, C_N), 131.59 (s, CH_(*ρ*)), 125.62 (s, CH_(*m*)), 123.98 (s, CH_{NHC}), 29.92 (s, CH_{*i*Pr}), 26.84 (s, CH₃), 3.44 (s, CH₃ TMS). ²⁹Si-INEPT NMR (79 MHz, 298 K, thf-*d*₈): δ [ppm] = -9.51 (s, SiTMS), -103.36 (s, SiGe9). Elemental analysis for C₉₀H₁₈₀Cu₂Ge₁₈N₄Si₁₆ calcd: C, 33.76; H, 5.67; N, 1.75; found: C, 33.78; H, 5.69; N, 1.75. Proposed unit cell: *a*: 26.1 Å, *b*: 41.2 Å, *c*: 52.1 Å, *α*: 90.7°, *β*: 90.7°, *γ*: 90.1°, V: 55995 Å³.

Formation of Cy₂B-O-BCy₂

Solid K₄Ge₉ (100 mg, 123 µmol, 1 equiv.) is weighed in into a Schlenk flask and dioxane or toluene (1 mL) is added. To the resulting suspension a 1M solution of Cy₂BCl in hexane (123 µl, 123 µmol, 1 equiv.) is added. The reaction mixture is stirred over night, filtered (yellow filtrate), and the solvent is removed under reduced pressure. The remaining oily residue is re-dissolved in hexane (2 mL), and the solution is filtered. Subsequently, the volume is reduced to a third of its original amount, and the flask is stored at -40 °C for crystallization. After two days the formation of colorless to light-yellow crystals of Cy₂B-O-BCy₂ (8 mg, 21.6 µmol, 35 % yield concerning Cy₂BCl) is observed. **Determined unit cell:** *a*: 10.22 Å, *b*: 12.05 Å, *c*: 19.76 Å, *α*: 89.1°, β : 78.3°, γ : 87.3°, V: 2379 Å³ (in analogy to literature values).^[10]

Pure Cy₂BCI: ¹¹**B NMR** (128 MHz, 298 K, C₆D₆): δ [ppm] = 76.7 ppm.

Blind test (no K₄Ge₉): ¹¹**B NMR** (128 MHz, 298 K, C₆D₆): δ [ppm] = 76.4 ppm.

K₄Ge₉: ¹¹**B NMR** (128 MHz, 298 K, C₆D₆): δ [ppm] = 52.3 ppm.

KC⁸ instead of K₄Ge₉: ¹¹B NMR (128 MHz, 298 K, C₆D₆): δ [ppm] = 49.9 ppm.

2. Crystallographic details

compound	2		
formula	$C_{54}H_{144}Cu_2Ge_{18}N_4Si_{16} \cdot 2 C_4H_{10}O$		
fw [g∙mol ⁻¹]	2733.57		
space group	12/c		
<i>a</i> [Å]	16.6540(4)		
b [Å]	27.2393(8)		
<i>c</i> [Å]	27.6288(6)		
α [deg]	90		
β [deg]	103.416(2)		
γ[deg]	90		
V [Å ³]	12191.6(5)		
Z	4		
<i>T</i> [K]	150(2)		
λ [Å]	0.71073		
$ ho_{ m calcd} [{ m g} \cdot { m cm}^{-3}]$	1.487		
μ [mm ⁻¹]	4.887		
collected reflections	122568		
indep. reflections	5 11984		
<i>R</i> _{int} / <i>R</i> _δ 0.0973/0.0354			
parameters / restraints	564/0		
$R_1 [l > 2 \sigma(l) / all data]$	0.0311/ 0.0546		
w R_2 [$l > 2 \sigma(l) / all data]$	0.0689/0.0818		
goodness of fit	1.134		
max./min. diff. el. density	0.626/-0.484		
depository no.	CCDC-2129082		

 Table S1. Crystallographic data of compound 2.

atoms	distance [Å]	atoms	distance [Å]
Ge1-Ge1	2.4259(8)	Ge1-Cu	2.4511(7)
Ge1-Ge2	2.6786(6)	Ge2-Cu	2.5392(6)
Ge1-Ge4	2.6187(6)	Ge3-Cu	2.4790(6)
Ge1-Ge5	2.5570(6)	Ge4-Cu	2.6188(7)
Ge1-Ge6	2.5747(6)		
Ge2-Ge3	2.7100(6)	Cu-C1	1.955(4)
Ge2-Ge6	2.5947(6)		
Ge2-Ge7	2.6168(6)		
Ge3-Ge4	2.6517(6)		
Ge3-Ge7	2.5705(6)		
Ge3-Ge8	2.5769(7)		
Ge4-Ge5	2.6339(6)		
Ge4-Ge8	2.6259(6)		
Ge5-Ge8	2.7867(6)		
Ge5-Ge9	2.5429(6)		
Ge6-Ge7	2.8403(6)		
Ge6-Ge9	2.5192(6)		
Ge8-Ge9	2.5424(6)		
Ge3-Si5	2.417(1)		
Ge9-Si1	2.381(1)		

Table S2. Selected interatomic distances in compound 2.

Figure S1. Representation of one cluster monomer of **2** with emphasis on the split positions of the trimethylsilylgroups at Si5. Major species site occupation factor: 0.543, minor species: 0.466. Color code: Si_{major}: deep green; C_{major}: black; Si_{minor}: light green; C_{minor}: grey. All ellipsoids are presented at a 50 % probability level. The NHC ligand is omitted for clarity. Prism heights are indicated by dashed red lines.

3. NMR spectra

Figure S2. ¹H NMR spectrum (CD₃CN) of K₂[Ge₉{Si(TMS)₃}₂]₂ (1). Asterisked impurities are assigned to the cyclohexyl groups of trace amounts of Cy₂B-O-BCy₂.

Figure S3. ¹³C NMR spectrum (CD₃CN) of K₂[Ge₉{Si(TMS)₃}₂]₂ (1). Asterisked impurities most probably arise from the cyclohexyl groups of trace amounts of Cy₂B-O-BCy₂.

Figure S4. ²⁹Si INEPT spectrum (CD₃CN) of K₂[Ge₉{Si(TMS)₃}₂]₂ (1).

Figure S5. ¹¹B NMR spectrum (CD₃CN) of the reaction solution containing $K_2[Ge_9{Si(TMS)_3}_2]_2$ (1) showing the signal of the molecule Cy₂B-O-BCy₂.

Figure S6. ¹H NMR spectrum (thf- d_8) of {NHC^{*i*Pr}Cu[Ge₉{Si(TMS)₃}₂]}₂ (**2**). Double-asterisked impurities are caused by cyclohexyl groups of trace amounts of Cy₂B-O-BCy₂; asterisked signals are caused by unidentified impurities; signal marked with # is caused by silicon grease.

Figure S7. ¹³C NMR spectrum (thf-*d*₈) of {NHC^{*i*Pr}Cu[Ge₉{Si(TMS)₃}₂]}₂ (**2**). Double-asterisked impurities are caused by cyclohexyl groups of trace amounts of Cy₂B-O-BCy₂; asterisked signal is caused by an unidentified impurity.

Figure S8. ²⁹Si INEPT spectrum (thf- d_8) of {NHC^{*i*Pr}Cu[Ge₉{Si(TMS)₃}₂]}₂ (**2**). Asterisked signal is caused by an unidentified impurity; the signal marked with # is caused by silicon grease.

Figure S9. ¹H NMR spectrum (thf- d_8) of {NHC^{Dipp}Cu[Ge₉{Si(TMS)₃}₂]}₂ (4).

Figure S10. ¹³C NMR spectrum (thf-d₈) of {NHC^{Dipp}Cu[Ge₉{Si(TMS)₃}₂]}₂ (4).

Figure S11. ²⁹Si INEPT spectrum (thf- d_8) of {NHC^{Dipp}Cu[Ge₉{Si(TMS)₃}₂]}₂ (4). Asterisked signal is caused by an unidentified impurity; the signal marked with # is caused by silicon grease.

4. LIFDI-MS spectrum

Figure S12. LIFDI-MS spectrum of the ionization product $[Cy_2B-O-BCy]^+$ at m/z 287.27 formed during the ionization of $Cy_2B-O-BCy_2$. The calculated isotope pattern is presented as red bars.

5. References

- [1] O. Kysliak and A. Schnepf, *Dalton Trans.* 2016, **45**, 2404.
- [2] L. Hintermann, *Beilstein J. Org. Chem.* 2007, **3**, 22.
- [3] O. Santoro, A. Collado, A. M. Slawin, S. P. Nolan and C. S. Cazin, Chem. Commun. 2013, 49, 10483.
- [4] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. A 2008, 64, 112.
- [5] G. M. Sheldrick, Acta Crystallogr., Sec. C: Struct. Chem. 2015, 71, 3.
- [6] A. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148.
- [7] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics* 2010, **29**, 2176.
- [8] M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden and R. A. Fischer, *Dalton Trans.* 2021, **50**, 9031.
- [9] F. S. Geitner and T. F. Fässler, *Inorg. Chem.* 2020, **59**, 15218.
- [10] S. S. Barnes, C. M. Vogels, A. Decken and S. A. Westcott, Dalton Trans. 2011, 40, 4707.