Supporting Information

Catalytic asymmetric transformation of nitrones and allenes

to dihydropyridoindoles via chiral *N*,*N*'-dioxide/cobalt(II)

catalysis

Mohuizi Liu, Lihua Xie, Houliuzhen, Lili Lin* and Xiaoming Feng*

Key Laboratory of Green Chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

E-mail: lililin@scu.edu.cn; xmfeng@scu.edu.cn.

CONTENT

1. General information	3
2. Procedures for the catalytic reaction	4
3. Optimization of reaction conditions	5
4. Limited substrates	8
5. Analysis of 2D NMR spectra of the product 3z	8
6. Nonlinear effect	9
7. Mechanism study	10
8. X-ray crystallography	13
9. Transformation of products	14
10. Characterization of products	15
11. References	39
12. Copies of NMR spectra for products	40
13. Copies of CD spectra for products	78

1. General information

¹H NMR spectra were recorded on commercial instruments (400 MHz or 600 MHz). Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz), integration. ¹³C{¹H} NMR data were collected on commercial instruments (101 MHz, 600MHz) with complete proton decoupling. ¹⁹F{¹H} NMR spectra were collected on commercial instruments (376 MHz) with complete proton decoupling. Melting points (M.p.) were determined using OptiMelt automated melting point system. High resolution mass spectra (HRMS) analyses were recorded on Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (ESI Source) and methanol were used to dissolve the sample. Enantiomeric excesses (ee) were determined by UPC² analysis by using the corresponding commercial chiralpak column as stated in the experimental procedures at 25 °C with UV detector at 254 nm. Optical rotations were measured on a Rudolph Autopol V automatic polarimeter and are reported as follows: [α]^T_D = (*c* = g/100 mL, in solvent). IR spectra were recorded on Bruker TENSOR II IR spectrophotometer. Circular dichroism spectrum (CD) were recorded on Applied Photophysics Chirascan.

Unless otherwise indicated, reagents obtained from commercial sources were used without further purification. Solvents were dried and distilled prior to use according to the standard methods. Metal salts obtained from commercial sources were used without further purification. The chiral *N*,*N'*-dioxide ligands were synthesized by the same procedure in the literature.^[1] The nitrones were prepared according to literature procedure.^[2] The allenes were synthesized by following the literature procedure.^[3]

2. Procedures for the catalytic reaction

2.1 General procedure for the preparation of the racemic products

A dry reaction tube was charged with *N*-aryl nitrone **1** (0.10 mmol), $Co(OTf)_2$ (3.6 mg, 0.01 mmol, 10 mol%), allene **2** (0.10 mmol) in EtOAc (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 30 °C for 24 h. The desired product was purified directly by silica gel column chromatograph (ethyl acetate/petroleum ether, 50:1) to afford the corresponding product **3**.

2.2 General procedure for the catalytic asymmetric reaction

A dry reaction tube was charged with *N*-aryl nitrone **1** (0.10 mmol), $Co(OTf)_2/L_3$ -**PrEt**₂**Me** (10 mol%, 1.2:1), allene **2** (0.10 mmol), Na₂SO₄ (20 mg) in EtOAc (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 30 °C for 24 h. The desired product was purified directly by silica gel column chromatograph (ethyl acetate/petroleum ether, 50:1) to afford the corresponding product **3**.

2.3 Experimental procedure for the scale-up synthesis of 3o

A dry reaction tube was charged with *N*-aryl nitrone **1h** (3.5 mmol, 1.42 g), Co(OTf)₂/L₃-**PrEt₂Me** (10 mol%, 1.2:1), allene **2a** (3.5 mmol, 0.39 mL), Na₂SO₄ (0.70 g) in EtOAc (35.0 mL) under argon atmosphere. The reaction mixture was stirred at 30 °C for 24 h. The desired product was purified directly by silica gel column chromatograph (ethyl acetate/petroleum ether, 50:1) to afford the corresponding product **3o** (1.15 g, 65% yield, 98:2 dr, 98% ee).

3. Optimization of reaction conditions

3.1 Screening of metal salts

entry ^[a]	metal salt	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	Sc(OTf)₃	24	95:5	race
2	Mg(OTf) ₂	51	92:8	76/9
3	Co(OTf) ₂	61	90:10	87/33
4	Ni(OTf) ₂	50	86:14	90/50
5	Cu(OTf) ₂	25	74:26	37/12
6	Zn(OTf) ₂	31	94:6	86/35
7	Fe(OTf) ₂	28	90:10	2/3
8	La(OTf)₃	60	95:5	-30
9	Co(NTf ₂) ₂	51	88:12	89/47
10	Co(ClO ₄) ₂ ·6H ₂ O	58	86:14	61/53
11	Co(BF ₄) ₂ ·6H ₂ O	56	89:11	81/37
[2] I Inless otherw	ise noted all reactions we	re carried out with 1	(0 10 mmol) 2a (0.10 mmol) and

[a] Unless otherwise noted, all reactions were carried out with 1a (0.10 mmol), 2a (0.10 mmol), and metal salt/L₃-PrPr₂ (1:1, 10 mol%) in EtOAc (1.0 mL) under argon atmosphere at 30 °C for 24 h. [b] Isolated yield of 3a. [c] Determined by UPC² analysis on a chiral stationary.

3.2 Screening of ligands

entry ^[a]	ligand	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	L ₃ -PiPr ₂	59	83:17	92/83
2	L ₃ -RaPr ₂	53	84:16	91/56
3	L ₃ -PrPr ₂	61	90:10	87/41
4	L ₃ -PrMe ₂	59	93:7	90/77
5	L ₃ -PrMe ₃	61	92:8	98/89
6	L ₃ -PrEt ₂	55	95:5	99
7	L ₃ -PrEt ₂ Me	67	95:5	97
8	L ₃ -PrEt ₃	60	97:3	99
9	L ₃ -PrEt ₂ Ad	61	96:4	99
10	L₃-PrAd	58	95:5	30/40

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), and $Co(OTf)_2$ /ligand (1:1, 10 mol%) in EtOAc (1.0 mL) under argon atmosphere at 30 °C for 24 h. [b] Isolated yield of **3a**. [c] Determined by UPC² analysis on a chiral stationary.

3.3 Screening of solvents

entry ^[a]	solvent	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	Et ₂ O	62	88:12	91/79
2	CH ₂ Cl ₂	65	85:15	96/49
3	THF	70	96:4	83
4	PhCH₃	57	88:12	92/77
5	HCOOCH ₂ CH ₃	52	95:5	45/31
6	CH ₃ COOCH ₃	53	94:6	97/69
7	EtOAc	67	95:5	97
8	HCOOCH ₃	62	91:9	89/53

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), and $Co(OTf)_2/L_3$ -**PrEt_2Me** (1:1, 10 mol%) in solvent (1.0 mL) under argon atmosphere at 30 °C for 24 h. [b] Isolated yield of **3a**. [c] Determined by UPC² analysis on a chiral stationary.

3.4 Screening of temperature

entry ^[a]	T (°C)	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	0	27	97	95:5

2	20	53	98	95:5
3	30	67	97	95:5
4	40	69	97/70	93:7
5	60	67	96/79	91:9

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), and $Co(OTf)_2/L_3$ -**PrEt_2Me** (1:1, 10 mol%) in EtOAc (1.0 mL) under argon atmosphere at T °C for 24 h. [b] Isolated yield of **3a**. [c] Determined by UPC² analysis on a chiral stationary.

3.5 Screening of the ratio of metal to ligand

entry ^[a]	L:M	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]	
1	1:1	67	95:5	97	
2	1.2:1	47	97:3	99	
3	1.5:1	44	98:2	99	
4	1:1.2	72	95:5	97	
5	1:1.5	74	90:10	67/30	
6	1:2	74	86:14	35/12	

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **L**₃-**PrEt₂Me**/Co(OTf)₂ (L:M, 10 mol%) in EtOAc (1 mL) under argon atmosphere at 30 °C for 24 h. [b] Isolated yield **3a**. [c] Determined by UPC² analysis on a chiral stationary.

3.6 Screening of additives

entry ^[a]	Additive	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]	
1	3 Å MS (20 mg)	31	95:5	97	
2	4 Å MS (20 mg)	31	95:5	97	
3	5 Å MS (20 mg)	32	95:5	97	
4	Na ₂ SO ₄ (20 mg)	79	95:5	97	
5	Na ₂ SO ₄ (40 mg)	79	95:5	97	
6	Na ₂ SO ₄ (60 mg)	79	95:5	97	

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), Co(OTf)₂/L₃-**PrEt₂Me** (1.2:1, 10 mol%) and additive in EtOAc (1 mL) under argon atmosphere at 30 °C for 24 h. [b] Isolated yield **3a**. [c] Determined by UPC² analysis on a chiral stationary.

4. Limited substrates

5. Analysis of 2D NMR spectra of the product 3z

Number	Н	С	Number	Н	С
of Atom			of Atom		
1	6.71	123.3	13	-	169.4
2	-	129.7	14	4.05	60.8
3	7.33	120.5	15	1.14	14.0
4	6.69	104.2	16	2.38	21.3
5			17	-	135.9
6	-	139.4	18-20	7.42-7.50	128.1
7	5.58	112.3			128.5
8	4.18	41.7			128.8
9	4.37	46.6	21	-	138.7
10	-		22	6.88-6.96	129.9
11	6.13	112.7	23	7.31-7.38	131.5
12	-		24	-	

6. Nonlinear effect

A dry reaction tube was charged with *N*-aryl nitrone **1a** (0.10 mmol), $Co(OTf)_2/L$ (10 mol%, 1.2:1), allene **2a** (0.10 mmol), Na_2SO_4 (20 mg) in EtOAc (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 30 °C for 24 h. The desired product was purified directly by silica gel column chromatograph (ethyl acetate/petroleum ether, 50:1) to afford the corresponding product **3a**.

Entry ^[a]	ee of catalyst L (%)	ee of product ^[b]
1	0	0
2	20	27
3	40	41
4	60	66
5	80	79
6	100	97

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), $Co(OTf)_2/L$ (1.2:1, 10 mol%) and Na_2SO_4 (20 mg) in EtOAc (1 mL) under argon atmosphere at 30 °C for 24 h. [b] Determined by UPC² analysis on a chiral stationary.

7. Mechanism study

7.1 Trace the reaction by ¹H NMR analysis

A dry reaction tube was charged with *N*-aryl nitrone **1a** (0.10 mmol), $Co(OTf)_2/L$ (10 mol%, 1.2:1), allene **2a** (0.10 mmol), Na₂SO₄ (20 mg) in EtOAc (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 30 °C for x h, and filtered with suction. The yield was deteimined by ¹H NMR. (¹H NMR see SI control experiment ¹H NMR, CH₂Br₂ as the internal standard solvent)

Entry ^[a]	T/h	Yield ^[b]
1	0	0
2	1	1
3	2	1
4	3	1
5	4	9
6	5	14

[a] Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), $Co(OTf)_2/L$ (1.2:1, 10 mol%) and Na_2SO_4 (20 mg) in EtOAc (1 mL) under argon atmosphere at 30 °C for T h. [b] Determined by ¹H NMR.

7.2 Operando IR experiments

Initially, the infrared absorption spectra of each reactant (**1a**, **2a**) and product **3a** in EtOAc were collected. The following figure shows the absorption of each participant minus the absorption of solvent.

Spectrum Name	Color	Units
3a minus EA		A.U.
1a-2 minus 1a EA		A.U.
2a-2 minus 1a EA		A.U.

Figure1. The IR spectra of each component.

Trend	Color	Units
Peak at 1446 cm-1		Height
Peak at 1413 cm-1		Height
Peak at 1504 cm-1		Height

Figure 2. 3D ATR-FTIR profile of the catalytic asymmetric cascade reaction of each component.

The Operando IR experiments is consistent with the ¹H NMR experiment. There is basically no product formed in 3 hours. A newly absorption peak increased first and then decreased before and after adding the substrate **1a**. These implied that this newly generated species could be the intermediate.

8. X-ray crystallography of 3z

The colourless crystal in block-shape, with approximate dimensions of $0.136 \times 0.165 \times 0.511 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Mo radiation source ($K_{\alpha} = 0.71073$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a, b, c, d}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^e.

Crystallographic	Data for	C ₅₆ H ₄₈ I	Br ₂ N ₂ O ₄
------------------	----------	-----------------------------------	---

Formula	$C_{56}H_{48}Br_2N_2O_4$
Formula mass (amu)	972.78
Space group	P 21
a (Å)	11.505(3)
b (Å)	8.2528(15)
<i>c</i> (Å)	24.175(5)
α (deg)	90
β (deg)	92.468(6)
γ(deg)	90
<i>V</i> (Å ³)	2293.3(8)
Z	2
λ (Å)	0.71073
Т (К)	173 K
$ ho_{calcd}$ (g cm ⁻³)	1.409
μ (mm ⁻¹)	1.818
Transmission factors	0.605,0.985
$\theta_{\max}(\deg)$	26.414
No. of unique data, including $F_o^2 < 0$	9150
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	7256
No. of variables	581

$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.0428
$R_{w}(F_{o}^{2})^{b}$	0.1093
Goodness of fit	1.006

^a $R(F) = \sum ||F_{\circ}| - |F_{c}|| / \sum |F_{\circ}|.$

 ${}^{b} R_{\rm w}(F_{\rm o}{}^2) = [\sum [w(F_{\rm o}{}^2 - F_{\rm c}{}^2)^2] / \sum w F_{\rm o}{}^4]^{1/2}; \ w^{-1} = [\sigma^2(F_{\rm o}{}^2) + (Ap)^2 + Bp], \ \text{where} \ p = [\max(F_{\rm o}{}^2, 0) + 2F_{\rm c}{}^2] / 3.$

References:

^a Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.

^b Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

[°] Sheldrick, G. M. Acta Cryst. 2015, C71, 3–8.

^d Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J. A. K., Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

^e Spek, A. L. J. Appl. Cryst. 2003, 36, 7–13.

9. Transformation of products

9.1 Reduction of 3a

Synthesis of 4a: A dry reaction tube was charged with 3a (42.3 mg, 0.1 mmol, 97% ee, 95:5 dr) in anhydrous THF (1.0 mL). The mixture was stirred at 0 °C for 10 min. Then LiAlH₄ (8.4 mg, 0.22 mmol, 2.2 equiv) was added at 0 °C and stirred at 0 °C for 12 hours. After the reaction was completed, the mixture was extracted with ethyl acetate. The combined organics were dried and concentrated in vacuo. The residue was subjected to column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (50/1 and 2/1, v/v) to afford the product 4a (2.63 mg, 69% yield, 97% ee, 95:5 dr).

89% yield, 97:3 dr, 91% ee

A dry reaction tube was charged with *syn*-dihydropyridoindole **3b** (0.05 mmol, 0.204 g), and then a 0.1 M solution of NaOH in MeOH (0.11 mL, 0.010 mmol) was added to the reaction tube. The reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was then diluted with CH_2Cl_2 (10.0 mL), washed with brine (3 x 5.0 mL), and dried with Na_2SO_4 . The CH_2Cl_2 solution was then concentrated under vacuum and purified directly by silica gel column chromatograph (ethyl acetate/petroleum ether, 50:1) to afford the corresponding product **5b** (0.0182 g, 89% yield, 97:3 dr, 91% ee).

10. Characterization of Typical Products

Ethyl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3a

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 79% yield, 97% ee, 95:5 dr. $[\alpha]^{25}_{D}$ = +32.6 (c = 0.60, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJ-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 2.94 min, t₂ = 4.18 min, t₃= 5.93 min, t₄ = 9.02 min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.50 – 7.42 (m, 5H), 7.31 – 7.19 (m, 3H), 7.10 – 7.06 (m, 2H), 7.01 (d, J = 2.6 Hz, 1H), 6.65 (s, 1H), 6.52 (dd, J = 9.1, 2.6 Hz,

1H), 6.14 (d, J = 9.1 Hz, 1H), 5.62 (d, J = 4.8 Hz, 1H), 4.35 (d, J = 6.0 Hz, 1H), 4.27 - 4.18 (m, 1H), 4.04 - 3.95 (m, 2H), 3.79 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 169.5, 154.3, 139.6, 139.0, 136.1, 133.6, 129.9, 129.6, 128.7, 128.5, 128.5, 128.2, 128.1, 127.3, 113.7, 112.7, 111.2, 103.9, 102.7, 60.7, 55.7, 47.0, 42.3, 14.0 ppm. **IR** (neat): 3066, 3034, 2983, 2933, 2838, 1730, 1646, 1615, 1476, 1446, 1399, 1265, 1171, 1032, 843, 735 *v*

(cm⁻¹)

HRMS (ESI-FT) calcd for $C_{28}H_{26}NO_3^+$ ([M]+H⁺) = 424.1907, found 424.1902.

Methyl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3b

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 74% yield, 90% ee, 95:5 dr. $[\alpha]^{25}_D = +34.5$ (c = 0.56, in CH₂Cl₂, $\lambda = 589$ nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJ-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.81 min, t₂ = 5.92 min, t₃= 9.14 min, t₄ = 14.07 min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.53 – 7.37 (m, 5H), 7.27 – 7.19 (m, 3H), 7.09 – 7.04 (m, 2H), 7.01 (d, J = 2.6 Hz, 1H), 6.65 (s, 1H), 6.52 (dd, J = 9.0, 2.6

Hz, 1H), 6.14 (d, J = 9.0 Hz, 1H), 5.61 (d, J = 4.9 Hz, 1H), 4.37 (d, J = 6.0 Hz, 1H), 4.25 – 4.18 (m, 1H), 3.79 (s, 3H), 3.54 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.9, 154.3, 139.5, 139.1, 136.0, 133.4, 129.9, 129.6, 128.8, 128.5, 128.2, 128.1, 127.4, 113.7, 112.7, 111.3, 103.9, 102.7, 55.6, 51.6, 46.9, 42.4 ppm.

IR (neat): 3060, 3028, 3002, 2946, 2835, 1736, 1647, 1612, 1476, 1443, 1398, 1341, 1247, 1165, 1032, 842, 737 *v* (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{27}H_{24}NO_3^+$ ([M]+H⁺) = 410.1751, found 410.1749.

Butyl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3c

dr. $[\alpha]^{24}_{D}$ = +25.2 (c = 0.58, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK AYH, CO₂/CH₃OH= 90/10, flow rate = 1.0 mL/min, λ = 254 nm) retention time: t₁= 24.32 min, t₂ = 27.56 min, t₃= 32.75 min, t₄ = 38.48 min. dr = 95:5 determined by ¹H NMR.

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 63% yield, 95% ee, 95:5

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.48 – 7.40 (m, 5H), 7.24 – 7.20 (m, 3H), 7.12 – 7.06 (m, 2H), 7.01 (d, J = 2.5 Hz, 1H), 6.64 (s, 1H), 6.52 (dd, J = 9.1, 2.6 Hz, 1H), 6.14 (d, J = 9.0 Hz, 1H), 5.62 (d, J = 4.7 Hz, 1H), 4.36 (d, J = 5.2 Hz, 1H), 4.26 – 4.18 (m, 1H), 4.00 – 3.87 (m, 2H), 3.79 (s, 3H), 1.47 – 1.37 (m, 2H), 1.23 – 1.13 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 169.7, 154.3, 139.6, 139.0, 136.0, 133.6, 129.9, 129.6, 128.7, 128.5, 128.5, 128.1, 127.3, 113.7, 112.8, 111.2, 103.9, 102.7, 64.6, 55.7, 47.1, 42.3, 30.4, 19.0, 13.6 ppm. **IR** (neat): 3063, 3034, 2956, 2931, 2874, 2835, 1730, 1646, 1615, 1475, 1446, 1399, 1339, 1279, 1169, 1035,843,761 *v* (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{30}H_{30}NO_3^+$ ([M]+H⁺) = 452.2220, found 452.2211.

	Retention Time	Area	% Area
1	24.324	1344648	4.30
2	27.559	789171	2.52
3	32.749	156290	0.50
4	38.481	29011987	92.68

Prop-2-yn-1-yl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3d

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 59% yield, 99% ee, 98:2 dr. [α]²⁵_D = +42.3 (c = 0.35, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK AD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.85 min, t₂ = 5.04 min, t₃= 5.71 min, t₄ = 15.97 min. dr = 98:2 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.52 – 7.39 (m, 5H), 7.24 – 7.20 (m, 3H), 7.10 – 7.05 (m, 2H), 7.01 (d, J = 2.6 Hz, 1H), 6.68 (s, 1H), 6.53 (dd, J = 9.1, 2.6 Hz, 1H), 6.68 (s, 1H), 6.53 (dd, J = 9.1, 2.6 Hz, 1H), 6.54 (dd, J = 9.1, 2.6 Hz, 1H), 6.55 (dd, J = 9.1, 2.6 Hz, 1

1H), 6.14 (d, J = 9.0 Hz, 1H), 5.62 (d, J = 5.0 Hz, 1H), 4.63 – 4.46 (m, 2H), 4.41 (d, J = 6.0 Hz, 1H), 4.25 (t, J = 5.5 Hz, 1H), 3.79 (s, 3H), 2.41 (t, J = 2.5 Hz, 1H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 168.6, 154.3, 139.2, 139.2, 136.0, 132.8, 129.9, 129.6, 128.8, 128.6, 128.5, 128.2, 128.2, 127.5, 113.7, 112.6, 111.4, 104.3, 104.2, 102.8, 75.2, 75.1, 55.6, 52.1, 46.7, 42.3 ppm.

IR (neat): 3265, 3059, 3028, 3002, 2930, 2832, 1740, 1644, 1612, 1475, 1446, 1400, 1273, 1146, 1033, 844, 762 *v* (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{29}H_{24}NO_3^+$ ([M]+H⁺) = 434.1751, found 434.1745.

	Retention	Area	70 Area
	Time		
1	3.846	86911	0.66
2	5.043	284934	2.16
3	5.709	58141	0.44
4	15.973	12733391	96.73

Phenyl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3e

ee, 93:7 dr. [α]²⁶_D = +33.2 (c = 0.59, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK AD-3, CO₂/CH₃OH=

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 66% yield, 97% ee/82%

80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 7.01 min, t₂ = 8.43 min, t₃= 11.30 min, t₄ = 25.64 min. dr= 93:7 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.50 – 7.38 (m, 5H), 7.31 – 7.25 (m, 5H), 7.22 – 7.12 (m, 3H), 7.04 (d, J = 2.6 Hz, 1H), 6.81 – 6.75 (m, 3H), 6.54 (dd, J = 9.1,

2.6 Hz, 1H), 6.15 (d, J = 9.0 Hz, 1H), 5.67 (d, J = 4.9 Hz, 1H), 4.62 (d, J = 6.1 Hz, 1H), 4.41 – 4.34 (m, 1H), 3.80 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 168.0, 154.4, 150.3, 139.4, 139.1, 135.9, 132.8, 130.0, 129.6, 129.3, 128.8, 128.7, 128.5, 128.4, 128.2, 127.6, 125.8, 121.4, 113.8, 112.4, 111.5, 104.4, 102.8, 55.6, 46.8, 42.4 ppm.

IR (neat): 3060, 3031, 2999, 2929, 2832, 1757, 1646, 1594, 1478, 1446, 1401, 1167, 1034, 834, 739 ν (cm⁻¹) **HRMS** (ESI-FT) calcd for C₃₂H₂₆NO₃ + ([M]+H⁺) = 472.1907, found 472.1899.

	Time		
1	7.016	4663551	16.58
2	8.449	4656015	16.55
3	11.108	9465537	33.65
4	25.155	9340223	33.21

	Retention	Area	% Area
	Time		
1	7.010	77065	0.47
2	8.430	938276	5.77
3	11.296	199383	1.23
4	25.642	15055054	92.53

Benzyl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3f

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 62% yield, 98% ee, 95:5 dr. $[\alpha]^{25}_D = +18.5$ (c = 0.55, in CH₂Cl₂, $\lambda = 589$ nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJ-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 7.44 min, t₂ = 13.84 min, t₃= 16.89 min, t₄ = 22.71 min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.47 – 7.38 (m, 5H), 7.31 – 7.25 (m, 3H), 7.21 – 7.18 (m, 3H), 7.13 – 7.08 (m, 2H), 7.05 – 6.98 (m, 3H), 6.65 (s, 1H), 6.52

(dd, J = 9.1, 2.6 Hz, 1H), 6.13 (d, J = 9.1 Hz, 1H), 5.59 (d, J = 4.8 Hz, 1H), 4.96 (q, J = 12.3 Hz, 2H), 4.41 (d, J = 6.1 Hz, 1H), 4.27 - 4.19 (m, 1H), 3.79 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.3, 154.3, 139.5, 139.1, 136.0, 135.3, 133.4, 129.9, 129.6, 128.7, 128.6, 128.5, 128.4, 128.4, 128.2, 128.2, 127.3, 113.7, 112.6, 111.3, 104.0, 102.7, 66.6, 55.7, 47.1, 42.4 ppm.

IR (neat): 3056, 3031, 2999, 2930, 2838, 1732, 1645, 1612, 1475, 1446, 1400, 1268, 1158, 1035, 843, 737 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{32}H_{26}NO_3^+$ ([M]+H⁺) = 472.1907, found 472.1899.

	Retention Time	Area	% Area
1	7.377	275336	4.32
2	13.672	283294	4.44
3	16.645	2908860	45.61
4	23.042	2909604	45.63

	Retention Time	Area	% Area
1	7.441	126195	0.49
2	13.844	1153321	4.48
3	16.894	159046	0.62
4	22.708	24318927	94.41

Isopropyl (8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3g

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 61% yield, 91% ee/94% ee, 80:20 dr. $[\alpha]^{24}_D = +18.9$ (c = 0.62, in CH₂Cl₂ λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 90/10, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 5.79 min, t₂ = 7.24min, t₃= 8.28 min, t₄ = 8.88 min. dr = 80:20 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.50 – 7.35 (m, 5H), 7.24 – 7.17 (m, 3H), 7.14 – 7.06 (m, 2H), 7.02 (d, J = 2.6 Hz, 1H), 6.66 (s, 1H), 6.52 (dd, J = 9.1, 2.6 Hz,

1H), 6.14 (d, J = 9.1 Hz, 1H), 5.63 (d, J = 4.9 Hz, 1H), 4.86 (p, J = 6.3 Hz, 1H), 4.32 (d, J = 6.1 Hz, 1H), 4.24 – 4.16 (m, 1H), 3.80 (s, 3H), 1.10 (d, J = 6.4 Hz, 3H), 1.01 (d, J = 6.2 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.1, 154.3, 139.6, 138.9, 136.1, 133.8, 129.9, 129.6, 128.7, 128.5, 128.4, 128.3, 128.2, 127.3, 113.7, 112.9, 111.1, 103.9, 102.7, 68.3, 55.7, 47.0, 42.2, 21.7, 21.6 ppm. **IR** (neat): 3066, 3034, 2980, 2935, 1727, 1645, 1615, 1475, 1460, 1400, 1275, 1171, 1036, 843, 760 *v* (cm⁻¹) **HRMS** (ESI-FT) calcd for C₂₉H₂₈NO₃⁺ ([M]+H⁺) = 438.2064, found 438.2057.

	Retention Time	Area	% Area
1	5.788	2563691	24.22
2	7.235	7611775	71.91
3	8.272	78007	0.74

<u> </u>			
1	0 0 7 /	222106	2 1 1
4	0.0/4	332190	3.14

((8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indol-9-yl)(phenyl)methanone 3h

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 71% yield, 96% ee/57% ee, 67:33 dr. $[\alpha]^{22}_D = +39.8$ (c = 0.64, in CH₂Cl₂ λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 7.25 min, t₂ = 12.55 min, t₃= 15.17 min, t₄ = 41.58 min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.74 (d, *J* = 7.7 Hz, 2H), 7.61 – 7.40 (m, 7H), 7.34 (m, 2H), 7.27 – 7.20 (m, 2H), 7.12 – 7.05 (m, 2H), 7.00 – 6.91 (m, 2H),

6.55 – 6.52 (m, 1H), 6.23 – 6.12 (m, 1H), 5.64 (d, *J* = 4.8 Hz, 1H), 5.38 (d, *J* = 5.8 Hz, 1H), 4.30 (d, *J* = 5.5 Hz, 1H), 3.76 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 196.2, 154.3, 139.3, 139.2, 137.4, 136.1, 134.8, 132.8, 129.9, 129.6, 128.8, 128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 127.2, 113.7, 113.0, 111.1, 103.8, 102.7, 55.7, 47.2, 43.6 ppm.

IR (neat): 3060, 3037, 3002, 2941, 2835, 1683, 1646, 1606, 1476, 1442, 1399, 1206, 1169, 837, 760 ν (cm⁻¹) **HRMS** (ESI-FT) calcd for C₃₂H₂₆NO₂ ⁺ ([M]+H⁺) = 456.1959, found 456.1953.

	rtotontaon	7	707 ti OCi
	Time		
1	7.245	2393980	26.09
2	12.550	6015096	65.55
3	15.168	645594	7.04
4	41.578	121761	1.33

Ethyl (8S,9S)-2-methyl-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3i

dr. $[\alpha]^{26}_{D}$ = +29.5 (c = 0.26, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJ-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 2.18 min, t₂ = 3.44 min, t₃=

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 51% yield, 96% ee, 95:5

3.97 min, t_4 = 7.18 min. dr = 95:5 determined by ¹H NMR.

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.50 – 7.39 (m, 5H), 7.33 (s, 1H), 7.24 –

7.20 (m, 3H), 7.16 – 7.03 (m, 2H), 6.69 (dd, J = 8.6, 1.7 Hz, 1H), 6.64 (s, 1H), 6.14 (d, J = 8.5 Hz, 1H), 5.62 (d, J = 4.8 Hz, 1H), 4.35 (d, J = 6.0 Hz, 1H), 4.26 – 4.18 (m, 1H), 3.99 (m, 2H), 2.36 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.6, 139.7, 139.1, 136.2, 133.1, 129.6, 129.3, 128.7, 128.5, 128.2, 128.2, 127.3, 123.2, 120.4, 112.9, 112.7, 103.8, 60.7, 47.0, 42.4, 21.2, 14.0 ppm.

IR (neat): 3063, 3028,2983, 2928, 2854, 1734, 1647, 1600, 1493, 1449, 1254, 1176, 1072, 872, 759 v (cm⁻¹) HRMS (ESI-FT) calcd for $C_{28}H_{26}NO_2^+$ ([M]+H⁺) = 408.1958, found 408.1950.

	Retention	Area	% Area
	Time		
1	2.146	1723619	12.13
2	3.396	1762165	12.40
3	3.932	5383442	37.88
4	7.068	5343918	37.60

6197125

174446

Ethyl (8S,93	S)-2-(tert-butyl)-6,8	B-diphenyl-8,9-dih	ydropyrido[1,2-a]	indole-9-carboxy	late 3j

3.971

7.184

3

4

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 63% yield, 95% ee, 96:4 dr. $[\alpha]^{26}_{D}$ = +39.6 (c = 0.48, in CH₂Cl₂, λ = 589 nm).

92.62

2.61

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK ODH, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 11.68 min, t₂ = 12.76 min, t₃= 14.72 min, t₄ = 15.51 min. dr = 96:4 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.54 (d, J = 2.0 Hz, 1H), 7.52 – 7.40 (m, 5H), 7.23 (d, J = 4.1 Hz, 3H), 7.14 – 7.08 (m, 2H), 6.95 (dd, J = 8.8, 2.0 Hz, 1H), 6.67 (s,

1H), 6.17 (d, J = 8.8 Hz, 1H), 5.59 (d, J = 4.6 Hz, 1H), 4.35 (d, J = 6.1 Hz, 1H), 4.24 – 4.17 (m, 1H), 3.98 (m, 2H), 1.32 (s, 9H), 1.06 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.6, 143.2, 139.8, 139.2, 136.3, 133.0, 128.8, 128.7, 128.5, 128.3, 128.2, 127.3, 119.9, 116.6, 112.5, 112.5, 104.3, 60.7, 47.0, 42.5, 34.4, 31.8, 14.0 ppm.

IR (neat): 3066, 3031, 2958,2933, 2832, 1730, 1646. 1602, 1474, 1450, 1397, 1290, 1174, 1030, 878, 759 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{31}H_{32}NO_2^+$ ([M]+H⁺) = 450.2428, found 450.2422.

	Retention Time	Area	% Area
1	11.682	120216	0.64
2	12.761	664646	3.54
3	14.724	415491	2.21
4	15.510	17589562	93.61

Ethyl (8S,9S)-2-chloro-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3k

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 63% yield, 99% ee, 95:5 dr. $[\alpha]^{26}_{D}$ = +37.3 (c = 0.43, in CH₂Cl₂, λ = 589 nm).

C

flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.05 min, t₂ = 3.65 min, t₃= 6.93 min, $t_4 = 10.65$ min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.50 (d, J = 2.1 Hz, 1H), 7.49 – 7.40 (m, 5H), 7.23 (d, J = 2.2 Hz, 3H), 7.10 - 7.02 (m, 2H), 6.81 (dd, J = 8.9, 2.2 Hz, 1H), 6.68 (s,

1H), 6.15 (d, J = 8.9 Hz, 1H), 5.69 (d, J = 4.9 Hz, 1H), 4.35 (d, J = 6.0 Hz, 1H), 4.28 - 4.19 (m, 1H), 4.00 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-d) δ = 169.3, 139.2, 138.8, 135.7, 134.5, 133.0, 130.1, 129.0, 128.6, 128.5, 128.1, 128.1, 127.4, 126.0, 121.9, 120.0, 113.9, 113.8, 103.7, 60.8, 46.8, 42.2, 14.0 ppm.

IR (neat): 3063, 3031, 2983, 2928, 2854, 1734, 1647, 1600, 1493, 1449, 1397, 1254, 1176, 1072, 868, 760 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{27}H_{23}NO_2CI^+$ ([M]+H⁺) = 428.1412, found 428.1418.

	Time	Area	% Area
1	3.045	45945	0.53
2	3.650	355228	4.11
3	6.927	8217266	95.02
4	10.652	29106	0.34

Ethyl (8S,9S)-2-bromo-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3I

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 70% yield, 93% ee/ 50% ee, 93:7 dr. [α]²⁵_D = +35.2 (c = 0.47, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJ-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.77 min, t₂ = 4.50 min, t₃= 9.12 min, t₄ = 14.00 min. dr = 93:7 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.66 (d, J = 2.0 Hz, 1H), 7.48 – 7.40 (m, 5H), 7.23 (dd, J = 5.1, 1.8 Hz, 3H), 7.06 (dd, J = 6.7, 2.9 Hz, 2H), 6.94 (dd, J = 8.9, 2.1

Hz, 1H), 6.68 (s, 1H), 6.11 (d, J = 8.9 Hz, 1H), 5.70 (d, J = 4.9 Hz, 1H), 4.35 (d, J = 6.1 Hz, 1H), 4.28 – 4.19 (m, 1H), 4.00 (m, 2H), 1.08 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.2, 139.2, 138.7, 135.7, 134.3, 133.3, 130.7, 129.0, 128.6, 128.5, 128.1, 128.1, 127.4, 124.5, 123.1, 114.4, 113.9, 113.7, 103.6, 60.8, 46.8, 42.2, 14.0 ppm.

IR (neat): 3060, 3031, 2986, 2826, 2851, 1733, 1647, 1599, 1493, 1450, 1396, 1256, 1176, 1029, 868, 759 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{27}H_{23}NO_2Br^+$ ([M]+H⁺) = 472.0907, found 472.0909.

	Retention Time	Area	% Area
1	3.730	1753267	11.08
2	4.446	1737505	10.98
3	9.024	6153464	38.89
4	13.720	6178646	39.05

	Retention Time	Area	% Area
1	3.768	190471	1.73
2	4.499	608459	5.53
3	9.116	9749106	88.53
4	14.000	464148	4.21

Ethyl (8S,9S)-8-(4-fluorophenyl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3m

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 66% yield, 97% ee, 97:3 dr. [α]²⁶_D = +40.0 (c = 0.57, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.16 min, t₂ = 3.78 min, t₃= 4.62 min, t₄ = 5.34 min. dr = 97:3 determined by ¹H NMR. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.48 – 7.41 (m, 5H), 7.05 – 6.98 (m, 3H),

3m 6.95 – 6.88 (m, 2H), 6.67 (s, 1H), 6.52 (dd, J = 9.1, 2.6 Hz, 1H), 6.13 (d, J = 9.1 Hz, 1H), 5.58 (d, J = 5.1 Hz, 1H), 4.34 (d, J = 6.0 Hz, 1H), 4.20 (t, J = 5.6 Hz, 1H), 4.08 – 3.98 (m, 2H), 3.79 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.4, 162.0 (J = 246.6 Hz), 154.4, 139.2, 135.9, 135.3(J = 2.9 Hz), 133.2, 129.8(J = 4.0 Hz), 129.7, 129.7, 128.9, 128.5, 128.2, 115.4, 115.2, 113.7, 112.6, 111.3, 104.3, 102.8, 60.8, 55.7, 46.9, 41.5, 14.0 ppm.

IR (neat): 3063, 2989, 2933, 2832, 1730, 1646, 1606, 1507, 1475, 1444, 1398, 1206, 1163, 1032, 841, 761 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{28}H_{25}NO_3F^+$ ([M]+H⁺) = 442.1813, found 442.1811.

	Retention Time	Area	% Area
1	3.161	216289	3.12
2	3.785	6576564	94.85
3	4.623	94282	1.36
4	5.343	46871	0.68

Ethyl (8S,9S)-8-(4-chlorophenyl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3n

96:4 dr. $[α]^{24}_D$ = +44.1 (c = 0.53, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJ-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 4.36 min, t₂ = 5.34 min, t₃= 6.52 min, t₄ = 8.16 min. dr = 96:4 determined by ¹H NMR. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.49 – 7.42 (m, 5H), 7.22 – 7.15 (m,

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 65% yield, 97% ee,

2H), 7.01 (d, J = 2.6 Hz, 1H), 7.00 – 6.93 (m, 2H), 6.68 (s, 1H), 6.52 (dd, J =

9.1, 2.6 Hz, 1H), 6.13 (d, J = 9.1 Hz, 1H), 5.57 (d, J = 5.1 Hz, 1H), 4.35 (d, J = 6.0 Hz, 1H), 4.18 (t, J = 5.6 Hz, 1H), 4.07 - 3.99 (m, 2H), 3.79 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\delta}$ = 169.3, 154.4, 139.3, 138.1, 135.8, 133.1, 129.8, 129.6, 129.6, 128.9, 128.6, 128.5, 128.1, 113.7, 112.2, 111.3, 104.3, 102.7, 60.8, 55.7, 46.7, 41.6, 14.0 ppm. **IR** (neat): 3056, 2983, 2934, 2835, 1731, 1646, 1616, 1477, 1444, 1400, 1205, 1171, 1094, 760 *ν* (cm⁻¹) **HRMS** (ESI-FT) calcd for C₂₈H₂₅NO₃Cl⁺ ([M]+H⁺) = 458.1517, found 458.1517.

	Retention	Area	% Area
	Time		
1	4.359	499610	2.94
2	5.338	16007058	94.26
3	6.523	315663	1.86
4	8.163	160009	0.94

Ethyl (8S,9S)-8-(4-bromophenyl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 30

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 69% yield, 99% ee, 97:3 dr. $[\alpha]^{26}_{D}$ = +47.0 (c = 0.47, in CH₂Cl₂ λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 5.26 min, t₂ = 6.44 min, t_3 = 7.78 min, t_4 = 9.55 min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.49 – 7.41 (m, 5H), 7.37 – 7.30 (m, 2H), 7.01 (d, J = 2.6 Hz, 1H), 6.91 (d, J = 8.5 Hz, 2H), 6.68 (s, 1H), 6.52 (dd,

J = 9.1, 2.6 Hz, 1H), 6.12 (d, J = 9.1 Hz, 1H), 5.56 (d, J = 5.2 Hz, 1H), 4.35 (d, J = 4.9 Hz, 1H), 4.17 (t, J = 5.6 Hz, 1H), 4.09 – 3.99 (m, 2H), 3.80 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 169.3, 154.4, 139.3, 138.6, 135.8, 133.1, 131.5, 130.0, 129.8, 129.7, 128.9, 128.5, 128.1, 121.2, 113.7, 112.2, 111.4, 104.4, 102.8, 60.9, 55.7, 46.6, 41.7, 14.1 ppm.

IR (neat): 3063, 2986, 2931, 2854, 2832, 1731, 1647, 1617, 1479, 1447, 1400, 1205, 1172, 1074, 841, 759 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{28}H_{25}NO_3Br^+$ ([M]+H⁺) = 502.1012, found 502.1009.

	Retention Time	Area	% Area
1	5.263	105436	2.35
2	6.441	4320725	96.41
3	7.775	21722	0.48
4	9.546	33729	0.75

Ethyl (8S,9S)-2-methoxy-8-(4-nitrophenyl)-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3p

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 70% yield, 97% ee, 98:2 dr. $[\alpha]^{26}_{D}$ = +86.5 (c = 0.51, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3 $CO_2/CH_3OH= 80/20$, flow rate = 1.5 mL/min, $\lambda = 254$ nm) retention time: t₁= 6.43 min, t₂ = 7.07 min, t₃= 10.34 min, t₄ = 13.64 min. dr = 98:2 determined by ¹H NMR.

¹H NMR (400 MHz, Chloroform-*d*) δ = 8.10 – 8.02 (m, 2H), 7.51 – 7.43 (m,

5H), 7.20 – 7.13 (m, 2H), 7.02 (d, J = 2.6 Hz, 1H), 6.72 (s, 1H), 6.54 (dd, J = 9.1, 2.6 Hz, 1H), 6.13 (d, J = 9.1 Hz, 1H), 5.59 (d, J = 5.5 Hz, 1H), 4.43 (d, J = 4.6 Hz, 1H), 4.30 (t, J = 5.7 Hz, 1H), 4.11 – 4.02 (m, 2H), 3.80 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.0, 154.6, 147.3, 147.1, 140.0, 135.5, 132.4, 129.8, 129.7, 129.2, 129.2, 128.6, 128.1, 123.6, 113.7, 111.6, 111.1, 104.9, 102.9, 61.1, 55.7, 46.4, 41.8, 14.1 ppm. **IR** (neat): 3066, 2986, 2932, 2854, 2835, 1731, 1646, 1601, 1519, 1476, 1445, 1399, 1205, 1173, 1032, 855, 760 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{28}H_{25}N_2O_5^+$ ([M]+H⁺) = 469.1758, found 469.1757.

	Retention	Area	% Area
	Time		
1	6.433	257767	1.87
2	7.067	13335283	96.52
3	10.339	201310	1.46
4	13.639	21632	0.16

Ethyl (8S,9S)-2-methoxy-6-phenyl-8-(p-tolyl)-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3q

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 75% yield, 96% ee/62% ee, 94:6 dr. [α]²⁶_D = +36.9 (c = 0.54, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.81 min, t₂ = 4.25 min, t₃= 5.14 min, t₄ = 5.71 min. dr = 94:6 determined by ¹H NMR. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.51 – 7.39 (m, 5H), 7.10 – 6.99 (m, 3H),

6.97 - 6.85 (m, 2H), 6.65 (s, 1H), 6.51 (dd, J = 9.1, 2.6 Hz, 1H), 6.14 (d, J =

9.0 Hz, 1H), 5.61 (d, J = 5.0 Hz, 1H), 4.33 (d, J = 6.1 Hz, 1H), 4.18 (t, J = 5.5 Hz, 1H), 4.06 – 3.97 (m, 2H), 3.79 (s, 3H), 2.28 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.6, 154.3, 138.9, 136.9, 136.4, 136.1, 133.7, 129.9, 129.6, 129.2, 128.7, 128.5, 128.2, 128.0, 113.7, 113.1, 111.1, 103.9, 102.8, 60.7, 55.7, 47.0, 42.0, 21.0, 14.0 ppm. **IR** (neat): 3056, 2979, 2924, 2854, 2835, 1730, 1644, 1615, 1475, 1444, 1398, 1206, 1169, 1031, 841, 734 *v* (cm⁻¹)

	Retention Time	Area	% Area
1	3.807	612304	5.60
2	4.246	10025184	91.77
3	5.141	192471	1.76
4	5.710	94724	0.87

 $\label{eq:stars} Ethyl~(8S,9S)-2-methoxy-8-(4-methoxyphenyl)-6-phenyl-8,9-dihydropyrido [1,2-a] indole-9-carboxylate~{\bf 3r} and {\bf 3r} and {\bf$

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 74% yield, 94% ee/49% ee, 88:12 dr. [α]²⁶_D = +34.7 (c = 0.44, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH=80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 4.81 min, t₂ = 5.42 min, t₃= 6.87 min, t₄ = 7.28 min. dr = 88:12 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.52 – 7.39 (m, 5H), 7.01 (d, J = 2.6 Hz, 1H), 7.00 – 6.92 (m, 2H), 6.80 – 6.71 (m, 2H), 6.67 (s, 1H), 6.52 (dd, J = 9.1, 2.6 Hz, 1H), 6.14 (d, J = 9.0 Hz, 1H), 5.60 (d, J = 5.1 Hz, 1H), 4.32 (d, J = 5.0 Hz, 1H), 4.17 (t, J = 5.6 Hz, 1H), 4.03 (qd, J = 7.1, 3.7 Hz, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.6, 158.8, 154.3, 138.8, 136.1, 133.6, 131.5, 129.9, 129.7, 129.2, 128.7, 128.5, 128.2, 113.8, 113.7, 113.3, 111.1, 104.0, 102.7, 60.7, 55.7, 55.2, 47.0, 41.5, 14.1 ppm. **IR** (neat): 3066, 2995, 2932, 2835, 1732, 1646, 1612, 1583, 1511, 1476, 1446, 1399, 1250, 1175, 1034, 762 *v* (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{29}H_{28}NO_4^+$ ([M]+H⁺) = 454.2013, found 454.2009.

HRMS (ESI-FT) calcd for $C_{29}H_{28}NO_3^+$ ([M]+H⁺) = 438.2064, found 438.2059.

Ethyl (8S,9S)-8-(2-bromophenyl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3s

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 61% yield, 97% ee, 98:2 dr. $[\alpha]^{24}_{D}$ = +40.2 (c = 0.47, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 4.30 min, t₂ = 5.32 min, t₃= 6.50 min, t₄ = 8.52 min. dr = 98:2 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.49 – 7.42 (m, 5H), 7.21 – 7.16 (m, 2H), 7.01 (d, J = 2.6 Hz, 1H), 7.00 – 6.93 (m, 2H), 6.68 (s, 1H), 6.52 (dd, J = 9.1, 2.6

Hz, 1H), 6.13 (d, J = 9.1 Hz, 1H), 5.57 (d, J = 5.2 Hz, 1H), 4.34 (d, J = 7.1 Hz, 1H), 4.18 (t, J = 5.6 Hz, 1H), 4.08 – 3.96 (m, 2H), 3.80 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.3, 154.4, 139.3, 138.1, 135.8, 133.1, 129.8, 129.6, 129.6, 128.9, 128.6, 128.5, 128.1, 113.7, 112.2, 111.3, 104.3, 102.7, 60.8, 55.7, 46.7, 41.6, 14.1 ppm. IR (neat): 3060, 2983, 2935, 2832, 1730, 1647, 1616, 1477, 1444, 1399, 1205, 1171, 1033, 760 *v* (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{28}H_{25}NO_3Br^+$ ([M]+H⁺) = 502.1012, found 502.1012.

	Retention Time	Area	% Area
1	4.303	65502	3.74

	Recontion	71100	70 / li Ca
	Time		
1	4.303	142777	1.84
2	5.325	7506504	96.62
3	6.501	99073	1.28
4	8.521	20397	0.26

 $\label{eq:constraint} Ethyl~(8S,9S)-2-methoxy-6-phenyl-8-(o-tolyl)-8,9-dihydropyrido[1,2-a]indole-9-carboxylate~{\bf 3t}$

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 70% yield, 95% ee, 99:1 dr. $[\alpha]^{24}_D = -16.5$ (c = 0.58, in CH₂Cl₂ λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.31 min, t₂ = 4.09 min, t₃ = 4.61 min, t₄ = 5.50 min. dr = 99:1 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.49 – 7.42 (m, 5H), 7.21 – 7.12 (m, 2H), 7.10 – 7.07 (m, 2H), 7.02 (d, J = 2.6 Hz, 1H), 6.56 (s, 1H), 6.52 (dd, J = 9.1, 2.6

Hz, 1H), 6.14 (d, J = 9.1 Hz, 1H), 5.56 (d, J = 3.8 Hz, 1H), 4.50 (dd, J = 6.3, 3.7 Hz, 1H), 4.30 (dt, J = 6.3, 0.9 Hz, 1H), 4.00 – 3.83 (m, 2H), 3.80 (s, 3H), 2.43 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 169.6, 154.3, 138.9, 138.3, 136.2, 135.8, 134.0, 130.4, 130.0, 129.4, 128.6, 128.5, 127.7, 127.2, 126.3, 113.7, 113.0, 111.3, 103.1, 102.6, 60.6, 55.7, 45.3, 38.1, 19.4, 13.8 ppm.

IR (neat): 3060, 3031, 2983, 2935, 2835, 1732, 1646, 1616, 1477, 1445, 1400, 1207, 1172, 1033, 843, 759 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{29}H_{28}NO_3^+$ ([M]+H⁺) = 438.2064, found 438.2064.

	Retention Time	Area	% Area
1	3.336	35734	1.46
2	4.126	1199409	48.99
3	4.672	1180552	48.22
4	5.570	32727	1.34

	Retention Time	Area	% Area
1	3.306	36981	0.25
2	4.087	14110550	97.21
3	4.611	208243	1.43
4	5.499	159890	1.10

Ethyl (8S,9S)-8-(3-bromophenyl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3u

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 63% yield, 97% ee, 95:5 dr. [α]²⁵_D = +20.2 (c = 0.51, in CH₂Cl₂, λ = 589 nm).

Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJH, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 10.99 min, t₂ = 20.63 min, t₃= 23.85 min, t₄ = 28.59 min. dr = 95:5 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.49 – 7.43 (m, 5H), 7.39 – 7.28 (m, 2H), Br 7.10 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 2.6 Hz, 1H), 6.98 – 6.92 (m, 1H), 6.64 (s, 1H), 6.52 (dd, J = 9.1, 2.6 Hz, 1H), 6.13 (d, J = 9.1 Hz, 1H), 5.54 (d, J = 4.6 Hz, 1H),

4.32 (d, J = 6.4 Hz, 1H), 4.22 – 4.15 (m, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 169.3, 154.4, 142.1, 139.5, 135.8, 133.2, 131.4, 130.4, 130.1, 129.9, 129.5, 128.9, 128.5, 128.1, 126.7, 122.4, 113.7, 111.6, 111.4, 104.1, 102.7, 60.9, 55.7, 46.9, 41.9, 14.0 ppm.

IR (neat): 3060, 2986, 2934, 2829, 1732, 1644, 1616, 1476, 1445, 1399, 1266, 1172, 1033, 843, 763 ν (cm⁻¹) HRMS (ESI-FT) calcd for C₂₈H₂₅NO₃Br⁺ ([M]+H⁺) = 502.1012, found 502.1017.

	Retention	Area	% Area
	lime		
1	10.999	76556	0.72
2	20.627	154421	1.45
3	23.847	394539	3.71
4	28.595	10018259	94.12

Ethyl (8S,9S)-2-methoxy-6-phenyl-8-(m-tolyl)-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3v

ee, 94:6 dr. $[\alpha]^{24}_{D}$ = +13.2 (c = 0.56, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.57 min, t₂ = 4.19 min, t₃= 5.25 min, t₄ = 8.95 min. dr = 94:6 determined by ¹H NMR.

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 68% yield, 92% ee/57%

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.55 – 7.37 (m, 5H), 7.13 (t, J = 7.6 Hz, 1H), 7.06 – 7.00 (m, 2H), 6.97 (s, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.61 (s, 1H), 6.52

(dd, J = 9.1, 2.6 Hz, 1H), 6.14 (d, J = 9.0 Hz, 1H), 5.60 (d, J = 4.4 Hz, 1H), 4.31 (d, J = 6.1 Hz, 1H), 4.23 - 4.16 (m, 1H), 4.04 - 3.94 (m, 2H), 3.79 (s, 3H), 2.27 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.6, 154.3, 139.6, 139.0, 137.9, 136.1, 133.8, 129.9, 129.5, 129.0, 128.7, 128.5, 128.4, 128.1, 128.0, 125.1, 113.7, 112.8, 111.2, 103.6, 102.7, 60.6, 55.7, 47.2, 42.3, 21.4, 14.0 ppm.

IR (neat): 3053, 3028, 2983, 2930, 2835, 1730, 1646, 1611, 1475, 1444, 1396, 1205, 1169, 1032, 842,763 v (cm⁻¹)

0.60 ₹ 0.40-3.60 878 0.20 0.00-1.50 2.50 3.00 4.00 5.00 6.00 6.50 8.50 9.00 9.50 2.00 3.50 4.50 5.50 7.00 7.50 8.00 0.50 1.00 0.00 Minutes Retention Area % Area Time 914596 1 3.601 7.18 2 3 4.226 5443032 42.74 5.280 5472098 42.97 4 8.878 904782 7.10 1.60 1.40 1.20 1.00 Q 0.80 0.60 .574 0.40 5.250 3.954 0.20 0.00 1.00 2.00 3.00 6.00 7.00 8.00 9.00 4.00 10.00 0.00 5.00 Minutes Retention Area % Area Time

HRMS (ESI-FT) calcd for $C_{29}H_{28}NO_3^+$ ([M]+H⁺) = 438.2064, found 438.2057.

Retention
TimeArea% Area13.57410327907.2724.1981290371990.8535.2502090921.4748.954581220.41

Ethyl (8S,9S)-8-(furan-2-yl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3w

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 60% yield, 90% ee/ 70% ee, 80:20 dr. $[\alpha]^{26}_{D}$ = +15.7 (c = 0.41, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OD-3, CO₂/CH₃OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 6.39 min, t₂ = 8.63 min, t_3 = 11.69 min, t_4 = 12.84 min. dr = 80:20 determined by ¹H NMR.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.46 – 7.40 (m, 5H), 7.36 – 7.34 (m, 1H), 7.01 (d, J = 2.6 Hz, 1H), 6.62 (s, 1H), 6.51 (dd, J = 9.1, 2.6 Hz, 1H), 6.28 (dd, J

= 3.3, 1.8 Hz, 1H), 6.12 (d, J = 9.1 Hz, 1H), 6.06 (d, J = 3.9 Hz, 1H), 5.55 (d, J = 4.3 Hz, 1H), 4.41 (d, J = 5.8 Hz, 1H), 4.35 – 4.31 (m, 1H), 4.03 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-d) δ = 169.4, 154.3, 153.3, 141.8, 139.4, 135.8, 133.7, 129.9, 129.4, 128.9, 128.5, 128.2, 113.6, 111.3, 110.4, 109.4, 106.5, 103.6, 102.7, 60.9, 55.7, 45.1, 36.2, 14.0 ppm. IR (neat): 3117, 3063, 2983, 2832, 2832, 1733, 1651, 1616, 1477, 1446, 1400, 1207, 1172, 1033, 843, 737 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{26}H_{24}NO_4^+$ ([M]+H⁺) = 414.1700, found 414.1703.

	Retention Time	Area	% Area
1	6.392	421147	2.87
2	8.634	2557167	17.44
3	11.690	11095438	75.65
4	12.835	592898	4.04

Ethyl (8S,9S)-2-methoxy-6-phenyl-8-(thiophen-2-yl)-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3x

ee, 78:22 dr. [α]²⁶_D = +47.8 (c = 0.31, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC2; UPC2 (Daicel CHIRALPAK OD-3, CO2/CH3OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.91 min, t₂ = 5.05 min, t_3 = 5.58 min, t_4 = 6.19 min. dr= 95:5 determined by ¹H NMR.

Yellow oil; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 41% yield, 97% ee/64%

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.48 – 7.41 (m, 5H), 7.11 – 7.07 (m, 1H),

7.02 (d, J = 2.6 Hz, 1H), 6.87 – 6.84 (m, 1H), 6.78 (s, 1H), 6.75 (d, J = 3.5 Hz, 1H), 6.51 (dd, J = 9.1, 2.6 Hz, 1H), 6.12 (d, J = 9.1 Hz, 1H), 5.68 (d, J = 5.5 Hz, 1H), 4.51 (t, J = 5.5 Hz, 1H), 4.37 (d, J = 4.4 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ = 169.2, 154.3, 142.1, 138.9, 135.8, 133.0, 129.8, 129.7, 128.9, 128.5, 128.2, 126.6, 125.5, 124.5, 113.6, 112.9, 111.3, 104.8, 102.7, 60.9, 55.6, 47.1, 37.3, 14.1 ppm.

IR (neat): 3072, 2886, 2929, 2857, 2835, 1734, 1644, 1616, 1476, 1446, 1400, 1206, 1173, 1034, 846, 762 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{26}H_{24}NO_3S^+$ ([M]+H⁺) = 430.1471, found 430.1474.

Ethyl (8S,9S)-8-(benzo[d][1,3]dioxol-5-yl)-2-methoxy-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3y

1811104

30185

5.579

6.191

3

4

ee/70% ee, 80:20 dr. $[\alpha]^{27}_{D}$ = +40.0 (c = 0.45, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK ODH, CO₂/CH₃OH= 80/20, flow rate = 1 mL/min, λ = 254 nm) retention time: t₁= 20.44 min, t₂ = 23.49 min, t₃= 28.28 min, t₄ = 30.46 min. dr = 80:20 determined by ¹H NMR.

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 52% yield, 90%

77.26

1.29

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.47 – 7.43 (m, 5H), 7.01 (d, J = 2.5

Hz, 1H), 6.69 – 6.65 (m, 2H), 6.58 (d, J = 1.8 Hz, 1H), 6.54 – 6.48 (m, 2H), 6.12 (d, J = 9.0 Hz, 1H), 5.89 – 5.85 (m, 2H), 5.56 (d, J = 5.0 Hz, 1H), 4.31 (d, J = 5.0 Hz, 1H), 4.14 (t, J = 5.6 Hz, 1H), 4.09 – 4.03 (m, 2H), 3.79 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) $\bar{\sigma}$ = 169.6, 154.3, 147.6, 146.7, 139.0, 136.0, 133.4, 133.3, 129.8, 129.6, 128.8, 128.5, 128.2, 121.4, 113.7, 112.9, 111.2, 108.6, 108.1, 104.1, 102.8, 100.9, 60.8, 55.7, 47.1, 42.0, 14.1 ppm.

IR (neat): 3066, 2989, 2927, 2861, 2835, 1733, 1646, 1615, 1482, 1444, 1400, 1247, 1172, 1037, 805, 763 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{29}H_{26}NO_5^+$ ([M]+H⁺) = 468.1805, found 468.1798.

	Retention	Area	% Area
	Time		
1	20.440	5961412	15.95
2	23.486	29529948	78.99
З	28.276	493001	1.32
4	30.457	1398476	3.74

ethyl (8S,9S)-8-(4-bromophenyl)-2-methyl-6-phenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 3z

Yellow soild, m.p: 145-149 °C; $R_f = 0.6$ (petroleum ether/ethyl acetate = 6/1), 61% yield, 97% ee, 98:2 dr. $[\alpha]^{22}_{D}$ = +40.8 (c = 1.05, in CH₂Cl₂, λ = 589 nm). Dissolved in iPrOH for UPC²; UPC² (Daicel CHIRALPAK OJH, CO₂/CH₃OH= 80/20, flow rate = 1 mL/min, λ = 254 nm) retention time: t₁= 9.78 min, t₂ = 16.48 min, t₃= 17.80 min, t₄ = 20.25 min. dr = 98:2 determined by ¹H NMR. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.50 – 7.42 (m, 5H), 7.38 – 7.31 (m,

3H), 6.96 – 6.88 (m, 2H), 6.71 (dd, J = 8.6, 1.8 Hz, 1H), 6.69 (s, 1H), 6.14 (d,

J = 8.5 Hz, 1H), 5.58 (d, J = 5.2 Hz, 1H), 4.37 (d, J = 5.9 Hz, 1H), 4.18 (t, J = 5.6 Hz, 1H), 4.05 (m, 2H), 2.38 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H) ppm.

¹³**C NMR** (101 MHz, Chloroform-*d*) δ = 169.4, 139.4, 138.7, 135.9, 132.5, 131.5, 129.9, 129.7, 129.3, 128.8, 128.5, 128.1, 123.3, 121.2, 120.5, 112.7, 112.3, 104.2, 60.8, 46.6, 41.7, 21.1, 14.0 ppm.

IR (neat): 3056, 3024, 2979, 2925, 2861, 1731, 1645, 1595, 1480, 1449, 1398, 1262, 1074, 871, 736 v (cm⁻¹) HRMS (ESI-FT) calcd for $C_{28}H_{24}NO_2Br^+$ ([M]+H⁺) = 486.1064, found 486.1069.

Minutes

	Retention	Area	% Area
	Time		
1	9.780	202592	0.54
2	16.483	432811	1.14
3	17.797	36616380	96.74
4	20.248	600454	1.59

((8S,9S)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indol-9-yl)methanol 4a

min, t_3 = 49.57 min, t_4 = 51.24 min. dr = 95:5 determined by ¹H NMR.

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.58 – 7.40 (m, 5H), 7.24 – 7.17 (m, 3H),

7.00 (d, J = 2.5 Hz, 1H), 6.98 – 6.90 (m, 2H), 6.53 (dd, J = 9.0, 2.6 Hz, 1H), 6.34

(s, 1H), 6.19 (d, *J* = 9.1 Hz, 1H), 5.71 (d, *J* = 6.0 Hz, 1H), 4.08 – 4.01 (m, 1H), 3.98 (dd, *J* = 9.9, 6.3 Hz, 1H), 3.81 (s, 3H)3.67 – 3.49 (m, 2H), 1.55 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ = 154.2, 139.2, 139.0, 137.3, 136.0, 129.9, 128.8, 128.5, 128.5, 128.1, 127.0, 114.5, 113.6, 110.7, 102.5, 101.9, 61.2, 55.7, 42.1, 40.5 ppm.

IR (neat): 3061, 3026, 2958, 2925, 2854, 1733, 1647, 1600, 1565, 1513, 1476, 1447, 1400, 1329, 1246, 1114, 1032, 844, 761 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{26}H_{24}NO_2^+$ ([M]+H⁺) = 382.1802, found 382.1800.

Retention	Area	% Area
Time		

4a

1	35.142	15719915	38.58
2	45.395	15710113	38.55
3	49.591	4657463	11.43
4	51.264	4659985	11.44

0.20 ₹ 0.10 0.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 Minutes

35.133

	Retention	Area	% Area
	Time		
1	35.133	6938560	93.97
2	45.536	97778	1.32
3	49.577	80505	1.09
4	51.243	267337	3.62

Methyl (8S,9R)-2-methoxy-6,8-diphenyl-8,9-dihydropyrido[1,2-a]indole-9-carboxylate 5b

dr. $[\alpha]^{15}_{D}$ = +46.7 (c = 0.80, in CH₂Cl₂, λ = 436 nm). Dissolved in iPrOH for UPC2; UPC2 (Daicel CHIRALPAK OJ-3, CO2/CH3OH= 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t₁= 3.74 min, t₂ = 5.80 min, t_3 = 9.00min, t_4 = 13.72 min. dr = 97:3 determined by ¹H NMR.

Yellow oil; R_f = 0.6 (petroleum ether/ethyl acetate = 6/1), 89% yield, 91% ee, 97:3

¹H NMR (600 MHz, Chloroform-*d*) δ = 7.41 – 7.47 (m, 5H), 7.26 – 7.21 (m, 3H),

7.16 (d, J = 7.7 Hz, 2H), 6.98 (d, J = 2.4 Hz, 1H), 6.52 (dd, J = 9.2, 2.4 Hz, 1H),

6.33 (s, 1H), 6.17 (d, J = 9.1 Hz, 1H), 5.50 (d, J = 4.8 Hz, 1H), 4.24 - 4.18 (m, 1H), 4.14 (d, J = 7.0 Hz, 1H), 3.78 (s, 3H), 3.69 (s, 3H) ppm.

¹³C{¹H} NMR (151 MHz, Chloroform-d) δ = 171.8, 154.4, 141.4, 139.2, 135.8, 133.7, 129.5, 129.0, 128.8, 128.8128.6, 128.2, 127.9, 127.3, 113.7, 113.3, 111.2, 103.4, 102.7, 55.7, 52.5, 49.0, 42.3 ppm.

IR (neat): 3056, 3036, 2998, 2954, 2835, 1736, 1641, 1617, 1602, 1585, 1477, 1445, 1400, 1246, 1167, 1034, 915, 844, 732 v (cm⁻¹)

HRMS (ESI-FT) calcd for $C_{27}H_{24}NO_3^+$ ([M]+H⁺) = 410.1751, found 410.1750.

	Retention Time	Area	% Area
1	3.833	917915	9.44
2	5.991	884089	9.09
3	9.262	3941590	40.53
4	14.193	3981201	40.94

	Retention Time	Area	% Area
1	3.740	574638	4.16
2	5.802	12799467	92.64
3	9.007	432248	3.13
4	13.720	10225	0.07

Ethyl 6-methoxy-2,4-diphenyl-4,9-dihydro-3H-carbazole-1-carboxylate 6a

111.4, 100.8, 60.7, 55.4, 43.3, 38.5, 13.3 ppm.

11. References

[1] a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, *Synlett.* 2005, 2445; b) K. Zheng, B. Qin,
X. H. Liu, X. M. Feng, *J. Org. Chem.* 2007, 72, 8478; c) X. Zhang, D. H. Chen, X. H. Liu, X. M. Feng, *J. Org. Chem.* 2007, 72, 5227; d) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng, *Angew. Chem. Int. Ed.* 2008, 47, 1308; *Angew. Chem.* 2008, 120, 1328; e) X. Zhou, D. J. Shang, Q. Zhang, L. L. Lin, X. H. Liu, X. M. Feng, *Org. Lett.* 2009, *11*, 1401.

[2] a) D.-L. Mo, D. A. Wink, L. L. Anderson, *Chem. Eur. J.* 2014, *20*, 13217; b) W. H. Pace, D.-L. Mo, T. W. Reidl, D. J. Wink, L. L. Anderson, *Angew. Chem., Int. Ed.* 2016, *55*, 9183; c) M. A. Kroc, A. Prajapati, D. J. Wink, L. L. Anderson, *J. Org. Chem.* 2018, *83*, 1085; d) M. A. Kroc, M. Markiewicz, W. H. Pace, D. J. Wink, L. L. Anderson, *Chem.* 2019, *55*, 2309

[3] a) R. W. Lang, H. J. Hansen, *Helvetica Chimica Acta*, **1980**, 63, 438; b) Z. Huang, X. Yang, F. Yang, T. Lu,
Q. Zhou, Org. Lett., 2017, 19, 3524. c) L. Rout, A. M. Harned, *Chem. Eur. J.* **2009**, *15*, 12926. d) P. Maity, S. D.
Lepore, *J. Org. Chem.* **2009**, *74*, 158. e) D.-L. Mo, D. A. Wink, L. L. Anderson, *Chem. Eur. J.* **2014**, *20*, 13217;
d) G. Wang, X. Liu, Y. Chen, J. Yang, J. Li, L. Lin, X. Feng, *ACS Catal.* **2016**, *6*, 2482-2486.

12. Copies of NMR spectra for products

$\begin{array}{c} 7.49\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.72\\ 7.72\\ 7.70\\$

$\begin{array}{c} 7.46\\$

o.

$\begin{array}{c} 7.7\\ 7.49\\$

 $\dot{70}$ $\dot{40}$

-1 $\dot{70}$ $\dot{40}$ $\dot{20}$. O

$\begin{array}{c} 8.8.0 \\ 7.758 \\$

 $\dot{70}$

$\begin{array}{c} 7.55\\ 7.56\\$

 $\dot{70}$ -10 $\dot{40}$

 $\dot{70}$ $\dot{40}$

$\begin{array}{c} 7.48\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.47\\ 7.46\\$

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210

-10

 $\dot{70}$ $\dot{20}$

 $\dot{70}$ $\dot{20}$

$\begin{array}{c} 7.7\\ 7.7\\ 7.48\\ 7$

 $\dot{70}$ $\dot{40}$ $\dot{20}$

$\begin{array}{c} 7.49\\$

 $\dot{70}$ $\dot{40}$ $\dot{20}$

-90 $\dot{40}$ $\dot{20}$

 $\dot{40}$

Ċ $\dot{70}$ $\dot{40}$ $\dot{20}$

$\begin{array}{c} 7.49\\ 7.48\\$

GCOSY:

GHSQC

GHMBC

GHMBC(Partial magnification)

f1 (ppm)

$\begin{array}{c} 7.47\\ 7.46\\ 7.46\\ 7.46\\ 7.42\\$

Control experiment NMR:

1h:1% yield

2h:1% yield

4h:9% yield

13. Copies of CD spectra for products

