Supporting Information

Transition-Metal-Free Approaches to 2,3-Diarylated Indenones

from 2-Alkynylbenzaldehydes and Phenols with Tunable

Selectivity

CONTENTS

1. General Information	S2
2. General Procedure for the Synthesis of 2-Alkynylbenzaldehydes	S2
3. Optimization of Reaction Conditions	-S13
4. General Procedure for Synthesis of Indenones	- S16
5. Scale-up Reactions and Synthetic Transformation	-S43
6. Control Experiments	- S45
7. Proposed Mechanism for Oxidation of Dihydroindenone and Inden-1-ol	·S48
8. References	-S49
9. Single Crystal X-ray Structures of 20c', 21c', 22c, 25c,	-S49
33c , 34c and 35c	
10. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectral	- S64

1. General Information.

NMR spectra were recorded on a Bruker AM 400 MHz or 600 MHz spectrometer and calibrated using residual undeuterated solvent as an internal reference (CDCl₃ (¹H): δ = 7.26 ppm; CDCl₃ (¹³C): δ = 77.23 ppm. High-resolution mass analysis was performed using a Thermo ScientificTM Q ExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer. Melting points were determined on a Stanford Research Systems OptiMelt apparatus. The infrared (IR) spectra were acquired as thin films using a universal ATR sampling accessory on a Bruker Vertex 80 FT-IR spectrometer and the absorption frequencies are reported in cm⁻¹. Flash chromatography separations were carried out using silica gel columns. All new compounds were characterized by ¹H NMR, ¹³C NMR, HRMS, and IR. The structure of known compounds was confirmed by comparing their ¹H NMR data with those of literature. All reagents and solvents were used as received from commercial sources without further purification. Compounds 1a,¹ 2a,² 3a,² 4a,³ 5a,⁴ 6a,⁵ 7a,⁶ 22a',⁷ 26a,⁸ 29a,⁹ 30a,¹⁰ 31a,¹¹ 32a,¹² 33a,¹² 33a',¹² 34a,¹² 35a,¹² and 35a'¹² were prepared by following the literature procedure.

2. General Procedure for the Synthesis of 2-Alkynylbenzaldehydes.

2.1 Typical Procedure A for the Synthesis of 2-Alkynylbenzaldehydes.

To a solution of aryl halide (1.0 mmol, 1.0 equiv.) and $PdCl_2(PPh_3)_2$ (0.02 mmol, 0.02 equiv.) in Et₃N/MeCN (3:1, 4.0 mL) were added 2-ethynylbenzaldehyde (1.5 mmol, 1.5 equiv.) and CuI (0.01 mmol, 0.01 equiv.). The reaction mixture was heated in an oil bath at 50 °C under argon. The progress of the reaction was monitored by TLC analysis to establish its completion. After cooling to room temperature, the reaction was diluted

with ethyl acetate (30 mL), washed with water (20 mL) and brine (20 mL), dried (MgSO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate).

2.2 Typical Procedure B for the Synthesis of 2-Alkynylbenzaldehydes.

To a solution of *o*-halobenzaldehydes (1.0 mmol, 1.0 equiv.) and PdCl₂(PPh₃)₂ (0.02 mmol, 0.02 equiv.) in Et₃N/MeCN (3:1, 4.0 mL) were added terminal alkyne (1.5 mmol, 1.5 equiv.) and CuI (0.01 mmol, 0.01 equiv.). The reaction mixture was heated in an oil bath at 50 °C under argon. The progress of the reaction was monitored by TLC analysis to establish its completion. After cooling to room temperature, the reaction was diluted with ethyl acetate (30 mL), washed with water (20 mL) and brine (20 mL), dried (MgSO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate).

Synthesis of methyl 4-((2-formylphenyl)ethynyl)-3-(trifluoromethyl)benzoate (8a).

This compound was prepared according to typical procedure A at 50 °C for 12 h by using methyl 4-bromo-3-(trifluoromethyl)benzoate (0.283 g, 1.0 mmol) and 2-ethynylbenzaldehyde (0.195 g, 1.5 mmol). After flash column chromatography (PE/EtOAc = 10:1), **8a** was obtained as an amorphous yellow solid (0.226 g, 68%). R_f = 0.28 (PE/EtOAc = 10:1); m.p. 101-103°C; ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.38 (s, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.63 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.53 (dd, *J* = 7.5, 7.5 Hz, 1H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 165.4, 136.5, 134.4, 134.1, 133.9, 132.7, 132.0 (q, *J* = 31.3 Hz), 130.4, 130.0, 127.8, 127.5 (q, *J* = 5.0 Hz), 125.5,

125.1, 123.3 (q, J = 274.7 Hz), 93.6, 91.2, 52.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.40; IR (neat): 1726, 1606, 1436, 1259, 1127, 739 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₂F₃O₃ 333.07331; found 333.07336.

Synthesis of 4-((2-formylphenyl)ethynyl)-2-(trifluoromethyl)benzonitrile (9a).

This compound was prepared according to typical procedure A at 50 °C for 12 h by using 4-iodo-2-(trifluoromethyl)benzonitrile (0.297 g, 1.0 mmol) and 2-ethynylbenzaldehyde (0.195 g, 1.5 mmol). After flash column chromatography (PE/EtOAc = 20:1), **9a** was obtained as an amorphous yellow solid (0.288 g, 96 %). R_f =0.42 (PE/EtOAc = 5:1); m.p. 132-133°C; ¹H NMR (400 MHz, CDCl₃) δ 10.55 (s, 1H), 8.01 – 7.92 (m, 2H), 7.89 – 7.81 (m, 2H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.65 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.57 (dd, *J* = 7.3, 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 136.4, 135.04, 135.02, 134.1, 133.9, 133.5 (q, *J* = 32.3 Hz), 130.2, 129.8 (q, *J* = 4.0 Hz), 128.5, 128.0, 124.6, 122.1 (q, *J* = 275.7 Hz), 115.2, 109.8, 92.7, 91.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.17; IR (neat): 1697, 1603, 1332, 1292, 1127, 760 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₇H₉F₃NO 300.06307; found 300.06305.

Synthesis of 2-((4-nitro-3-(trifluoromethyl)phenyl)ethynyl)benzaldehyde (10a).

This compound was prepared according to typical procedure A at 50 °C for 5 h by using 4-bromo-1-nitro-2-(trifluoromethyl)benzene (0.270 g, 1.0 mmol) and 2-ethynylbenzaldehyde (0.195 g, 1.5 mmol). After flash column chromatography (PE/EtOAc = 20:1), **10a** was obtained as an amorphous yellow solid (0.280 g, 88%). R_f =0.28 (PE/EtOAc = 10:1); m.p. 105-107°C; ¹H NMR (400 MHz, CDCl₃) δ 10.56 (s, 1H), 8.02 –7.97 (m, 2H), 7.95 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.3 Hz, 1H), 7.70 (d, J

= 7.5 Hz, 1H), 7.65 (dd, J = 7.4, 7.4 Hz, 1H), 7.57 (dd, J = 7.4, 7.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 147.3, 136.4, 135.9, 134.2, 133.9, 131.2 (q, J = 4.0 Hz), 130.2, 128.6, 128.1, 125.8, 124.7 (q, J = 34.3 Hz), 124.6, 121.7 (q, J = 274.7 Hz), 92.3, 90.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -60.09; IR (neat): 1779, 1535, 1402, 1266, 1043, 908 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₆H₉F₃NO₃ 320.05290; found 320.05380.

Synthesis of 2-((4,5-dimethoxy-2-nitrophenyl)ethynyl)benzaldehyde (11a).

This compound was prepared according to typical procedure A at 50 °C for 6 h by using 1-iodo-4,5-dimethoxy-2-nitrobenzene (0.309 g, 1.0 mmol) and 2-ethynylbenzaldehyde (0.195 g, 1.5 mmol). After a flash column chromatography (PE / EtOAc = 10:1), **11a** was obtained as an amorphous yellow solid (0.221 g, 71%). R_f =0.22 (PE/EtOAc = 5:1); m.p. 185-187°C; ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.74 –7.67 (m, 2H), 7.60 (dd, J = 7.4, 7.4 Hz, 1H), 7.49 (dd, J = 7.5, 7.5 Hz, 1H), 7.09 (s, 1H), 4.01 (s, 3H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 153.1, 149.6, 142.8, 136.5, 134.0, 133.9, 129.5, 127.7, 126.2, 115.3, 112.1, 107.9, 92.2, 91.5, 56.9, 56.7; IR (neat): 1729, 1574, 1395, 1254, 1052, 764 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₇H₁₄NO₅ 312.08665; found 312.08630.

Synthesis of 5-chloro-2-((4-nitrophenyl)ethynyl)benzaldehyde (20a).

This compound was prepared according to typical procedure B at 50 °C for 4 h by using 2-bromo-5-chlorobenzaldehyde (0.219 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **20a** was obtained as an amorphous yellow solid (0.241 g, 84%). R_f =0.45

(PE/EtOAc = 10:1); m.p. 172-173°C; ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 1H), 8.26 (d, *J* = 8.2 Hz, 2H), 7.94 (s, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.65 – 7.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 147.8, 137.3, 136.5, 134.9, 134.2, 132.7, 129.0, 128.1, 124.1, 123.7, 94.9, 89.0; IR (neat) :1691, 1509, 1182, 1104, 897 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₅H₉ClNO₃ 286.02655; found 286.02649.

Synthesis of 2-((4-nitrophenyl)ethynyl)-5-(trifluoromethyl)benzaldehyde (21a).

This compound was prepared according to typical procedure B at 50 °C for 4 h by using 2-bromo-5-(trifluoromethyl)benzaldehyde (0.253 g, 1.0 mmol) and 1-ethynyl-4nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **21a** was obtained as an amorphous yellow solid (0.146 g, 46%). R_f =0.38 (PE/EtOAc = 10:1); m.p. 123-124°C; ¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 8.27 (d, J = 8.5 Hz, 2H), 8.22 (s, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 189.7, 148.1, 136.5, 134.3, 132.9, 131.8 (q, J = 34.3 Hz), 130.3 (q, J = 3.0 Hz), 128.6, 128.5, 125.2 (q, J = 3.0 Hz), 124.1, 123.3 (q, J = 273.7 Hz), 96.2, 88.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.14; IR (neat) : 1697, 1518, 1402, 1263, 1177, 854 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₆H₉F₃NO₃ 320.05290; found 320.05292.

Synthesis of 5-fluoro-2-((4-nitrophenyl)ethynyl)benzaldehyde (22a).

This compound was prepared according to typical procedure B at 50 °C for 11 h by using 2-bromo-5-fluorobenzaldehyde (0.203 g, 1.0 mmol) and 1-ethynyl-4nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **22a** was obtained as an amorphous yellow solid (0.166 g, 62%). R_f =0.37 (PE/EtOAc = 10:1); m.p. 156-157°C; ¹H NMR (600 MHz, CDCl₃) δ 10.53 (d, J = 2.9 Hz, 1H), 8.24 (d, J = 8.7 Hz, 2H), 7.71 – 7.66 (m, 3H), 7.63 (dd, J = 8.4, 2.7 Hz, 1H), 7.33 (td, J = 8.2, 2.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 189.9, 163.2 (d, J = 253.7 Hz), 147.8, 138.4 (d, J = 6.0 Hz), 135.8 (d, J = 7.6 Hz), 132.6, 129.1, 124.0, 121.7 (d, J = 22.7 Hz), 121.6 (d, J = 4.5 Hz), 114.6 (d, J = 19.6 Hz), 93.8, 89.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -106.91; IR (neat) :1691, 1506, 1339, 1145, 1097, 745 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₅H₉FNO₃ 270.05610; found 270.05612 .

Synthesis of 4-chloro-2-((4-nitrophenyl)ethynyl)benzaldehyde (20a').

This compound was prepared according to typical procedure B at 50 °C for 4 h by using 2-bromo-4-chlorobenzaldehyde (0.219 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 20:1), **20a'** was obtained as an amorphous yellow solid (274.0 mg, 96%). $R_f = 0.22$ (PE/EtOAc = 20:1); m.p. 166-167°C; ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 8.27 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.67 (s, 1H), 7.50 (d, J = 8.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 189.1, 147.1, 139.8, 133.8, 132.6, 132.0, 129.5, 128.7, 128.0, 126.0, 123.3, 94.2, 87.8; IR (neat) : 1692, 1515, 1400, 1271, 1105, 891 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₅H₉ClNO₃ 286.02655; found 286.02612.

This compound was prepared according to typical procedure B at 50 °C for 12 h by using 2-iodo-4-(trifluoromethyl)benzaldehyde (0.300 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = $\frac{1}{2}$

10:1), **21a'** was obtained as an amorphous yellow solid (0.248 g, 78%). $R_f = 0.38$ (PE/EtOAc = 10:1); m.p. 173-174°C; ¹H NMR (400 MHz, CDCl₃) δ 10.63 (s, 1H), 8.28 (d, J = 8.3 Hz, 2H), 8.09 (d, J = 8.1 Hz, 1H), 7.96 (s, 1H), 7.80 – 7.72 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.0, 148.1, 138.3, 135.7 (q, J = 33.3 Hz), 132.9, 130.8 (q, J = 3.0 Hz), 128.8, 128.6, 126.4 (q, J = 3.0 Hz), 126.0, 124.1, 123.2 (q, J = 274.7 Hz), 95.4, 88.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.39; IR (neat) :1697, 1587, 1338, 1280, 1123, 904 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₆H₉F₃NO₃ 320.05290; found 320.05292.

Synthesis of 4-fluoro-2-((4-nitrophenyl)ethynyl)benzaldehyde (22a').

This compound was prepared according to typical procedure B at 50 °C for 12 h by using 2-bromo-4-fluorobenzaldehyde (0.203 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **22a'** was obtained as an amorphous yellow solid (0.172 g, 64%). R_f =0.35 (PE/EtOAc = 10:1); m.p. 155-156°C; ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H), 8.27 (d, J = 8.6 Hz, 2H), 8.01 (dd, J = 8.6, 5.9 Hz, 1H), 7.73 (d, J = 8.6 Hz, 2H), 7.36 (dd, J = 8.7, 2.2 Hz, 1H), 7.27 – 7.20 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 189.4, 165.8 (d, J = 258.6 Hz), 148.0, 133.1 (d, J = 3.0 Hz), 132.8, 131.0 (d, J = 10.1 Hz), 128.8, 127.9 (d, J = 11.1 Hz), 124.1, 120.3 (d, J = 23.2 Hz), 117.7 (d, J = 22.2 Hz), 94.9, 88.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -102.53; IR (neat) :1691, 1597, 1513, 1343, 1214, 856 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₅H₉FNO₃ 270.05610; found 270.05609.

Synthesis of 4-methyl-2-((4-nitrophenyl)ethynyl)benzaldehyde (23a).

This compound was prepared according to typical procedure B at 50 °C for 10 h by using 2-bromo-4-methylbenzaldehyde (0.199 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **23a** was obtained as an amorphous yellow solid (0.136 g, 51%). R_f =0.33 (PE/EtOAc = 10:1); m.p. 151-153°C; ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 8.25 (d, *J* = 8.1 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.50 (s, 1H), 7.34 (d, *J* = 7.9 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 147.7, 145.3, 134.2, 134.1, 132.6, 130.9, 129.5, 128.3, 125.4, 124.0, 93.5, 90.5, 21.8; IR (neat) :1688, 1595, 1510, 1341, 1264, 743 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₆H₁₂NO₃ 266.08117; found 266.08054.

This compound was prepared according to typical procedure B at 50 °C for 8 h by using 2-bromo-4-methoxybenzaldehyde (0.215 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **24a** was obtained as an amorphous yellow solid (0.145 g, 52%). R_f =0.20 (PE/EtOAc = 10:1); m.p. 140-141°C; ¹H NMR (400 MHz, CDCl₃) δ 10.44 (s, 1H), 8.25 (d, J = 7.9 Hz, 2H), 7.94 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 7.8 Hz, 2H), 7.12 (s, 1H), 7.03 (d, J = 8.2 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 164.0, 147.7, 132.7, 130.4, 130.0, 129.3, 127.4, 124.0, 117.8, 116.5, 93.7, 90.1, 56.0; IR (neat): 1687, 1515, 1395, 1236, 1093, 745 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₂NO4 282.07608; found 282.07620.

Synthesis of 3-methyl-2-((4-nitrophenyl)ethynyl)benzaldehyde (25a).

This compound was prepared according to typical procedure B at 50 °C for 4 h by using 2-iodo-3-methylbenzaldehyde (0.246 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 10:1), **25a** was obtained as an amorphous yellow solid (0.240 g, 90%). $R_f = 0.42$ (PE/EtOAc = 10:1); m.p. 140-142°C; ¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 1H), 8.26 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 147.7, 142.3, 136.6, 135.3, 132.5, 129.6, 129.4, 125.6, 125.1, 124.0, 98.5, 89.0, 20.7; IR (neat): 1690, 1514, 1387, 1242, 1170, 853 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₂NO₃ 266.08117; found 266.08118.

This compound was prepared according to typical procedure B at 50 °C for 3 h by using 2-bromonicotinaldehyde (0.186 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 2:1), **27a** was obtained as an amorphous yellow solid (0.241 g, 95%). R_f = 0.38 (PE/EtOAc = 2:1); m.p. 194-195°C; ¹H NMR (400 MHz, CDCl₃) δ 10.63 (s, 1H), 8.86 (dd, *J* = 4.7, 1.5 Hz, 1H), 8.30 – 8.23 (m, 3H), 7.80 (d, *J* = 8.8 Hz, 2H), 7.49 (dd, *J* = 7.7, 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.2, 154.8, 148.2, 145.0, 135.4, 133.2, 132.5, 128.2, 124.3, 124.1, 93.2, 89.1; IR (neat) : 1694, 1511, 1397, 1346, 1260, 751 cm⁻¹; HRMS(ESI) m/z : [M+H]⁺ calculated for C₁₄H₉N₂O₃ 253.06077; found 253.06105.

Synthesis of 3-((4-nitrophenyl)ethynyl)isonicotinaldehyde (28a).

This compound was prepared according to typical procedure B at 50 °C for 3 h by

using 3-bromoisonicotinaldehyde (0.186 g, 1.0 mmol) and 1-ethynyl-4-nitrobenzene (0.221 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 2:1), **28a** was obtained as an amorphous yellow solid (0.217 g, 86%). R_f = 0.40 (PE/EtOAc = 2:1); m.p. 204-205°C; ¹H NMR (400 MHz, CDCl₃) δ 10.57 (s, 1H), 9.00 (s, 1H), 8.81 (d, J = 4.3 Hz, 1H), 8.28 (d, J = 8.3 Hz, 2H), 7.79 – 7.72 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.2, 154.9, 150.6, 148.1, 141.0, 132.9, 128.6, 124.1, 120.1, 112.0, 96.6, 86.9; IR (neat): 1693, 1588, 1512, 1341, 1209, 846 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₄H₉N₂O₃ 253.06077; found 253.06144.

Synthesis of ethyl 4-((5-chloro-2-formylphenyl)ethynyl)benzoate (34a').

This compound was prepared according to typical procedure B at 50 °C for 3 h by using 2-bromo-4-chlorobenzaldehyde (0.219 g, 1.0 mmol) and ethyl 4-ethynylbenzoate (0.261 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 20:1), **34a'** was obtained as an amorphous white solid (0.207 g, 66%). R_f = 0.47 (PE/EtOAc = 10:1); m.p. 139-141°C; ¹H NMR (400 MHz, CDCl₃) δ 10.54 (s, 1H), 8.06 (d, *J* = 8.1 Hz, 2H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.64 (s, 1H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.1, 166.0, 140.5, 134.5, 133.2, 131.9, 131.2, 129.9, 129.8, 129.1, 127.7, 126.4, 96.6, 86.4, 61.5, 14.5; IR (neat): 1713, 1588,1467, 1396, 1190, 1111, 758 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₄ClO₃ 313.06260; found 313.06317.

Synthesis of methyl 4-((4-formylpyridin-3-yl)ethynyl)benzoate (36a').

This compound was prepared according to typical procedure B at 50 °C for 4 h by using 3-bromoisonicotinaldehyde (0.186 g, 1.0 mmol) and methyl 4-ethynylbenzoate

(0.240 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 5:1), **36a'** was obtained as an amorphous white solid (0.237 g, 89%). R_f = 0.23 (PE/EtOAc = 3:1); m.p. 141-142°C; ¹H NMR (400 MHz, CDCl₃) δ 10.59 (s, 1H), 8.97 (s, 1H), 8.75 (d, *J* = 4.6 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 4.6 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.6, 166.4, 154.8, 150.1, 140.8, 132.0, 130.9, 129.9, 126.3, 120.8, 119.7, 98.0, 84.7, 52.6; IR (neat): 1778, 1400, 1273, 1205, 1103, 841 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₂NO₃ 266.08117; found 266.08151.

Synthesis of methyl 4-((3-formylpyridin-2-yl)ethynyl)benzoate (37a').

This compound was prepared according to typical procedure B at 50 °C for 4 h by using 2-bromonicotinaldehyde (0.186 g, 1.0 mmol) and methyl 4-ethynylbenzoate (0.240 g, 1.5 mmol). After a flash column chromatography (PE/EtOAc = 5:1), **37a'** was obtained as an amorphous white solid (0.238 g, 90%). R_f = 0.20 (PE/EtOAc = 3:1); m.p. 146-148°C; ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 8.86 – 8.80 (m, 1H), 8.22 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.47 – 7.41 (m, 1H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.6, 166.4, 154.8, 145.7, 135.2, 132.3, 132.2, 131.2, 129.9, 126.0, 123.9, 94.9, 87.2, 52.6; IR (neat): 1714, 1565, 1432, 1279, 1182, 761 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₂NO₃ 266.08117; found 266.08145.

3. Optimization of Reaction Conditions

3.1 Optimization of annulation of 2-alkynylbenzaldehydes with phenols

1	Cs_2CO_3 (1.0)	dioxane	-	50 °C	46 h	n.r.
2	Cs_2CO_3 (1.0)	DMF	-	50 °C	46 h	40 + 27
3	Cs ₂ CO ₃ (1.0)	DMSO	-	50 °C	46 h	42 + 38
4 ^{<i>c</i>}	Cs ₂ CO ₃ (1.0)	DMSO	-	50 °C	46 h	38 + 38
5	Cs_2CO_3 (1.0)	DMSO	-	70 °C	23 h	25 + 26
6	Cs_2CO_3 (1.0)	DMSO	-	rt	46 h	45 + 0
7	Cs ₂ CO ₃ (1.0)	DMSO	TEMPO (3.0)	50 °C	23 h	95 + 0
8	Cs ₂ CO ₃ (1.0)	DMSO	TEMPO (2.0)	50 °C	23 h	97 + 0
9	Cs_2CO_3 (1.0)	DMSO	TEMPO (1.5)	50 °C	23 h	96 + 0
10	Cs ₂ CO ₃ (1.0)	DMSO	TEMPO (1.0)	50 °C	46 h	72 + 0
11	Cs ₂ CO ₃ (1.0)	DMSO	air	50 °C	46 h	54 + 0
12	Cs ₂ CO ₃ (1.0)	DMSO	O ₂	50 °C	23 h	51 + 0
13	Cs ₂ CO ₃ (1.0)	DMSO	MnO ₂ (1.5)	50 °C	23 h	86 + 0
14	KOH (1.0)	DMSO	TEMPO (1.5)	50 °C	23 h	77 + 0
15	Na ₂ CO ₃ (1.0)	DMSO	TEMPO (1.5)	50 °C	46 h	14 + 0
16	NaHCO ₃ (1.0)	DMSO	TEMPO (1.5)	50 °C	46 h	19 + 0
17^d	K ₂ CO ₃ (1.0)	DMSO	TEMPO (1.5)	50 °C	46 h	54 + 0
18	DBU (1.0)	DMSO	TEMPO (1.5)	50 °C	46 h	36 + 0
19	$Cs_2CO_3(0.5)$	DMSO	TEMPO (1.5)	50 °C	27 h	79 + 0
20^e	Cs ₂ CO ₃ (1.0)	DMSO	TEMPO (1.5)	50 °C	27 h	79 + 0

^{*a*}Reactions were performed with **1a** (0.15 mmol), **1b** (3.0 equiv.), additive and base in solvent (3.0 mL) under Ar. ^{*b*}Yield of isolated product. ^{*c*}Reaction was set up in a glove box. ^{*d*}24% of **1a** recovered. ^{*e*}**1b** (2.0 equiv.) was used.

3.2 Optimization of selectivity in synthesis of "non-rearranged" indenones

^{*a*}Reaction conditions: **20a** (0.15 mmol), **1b** (5.0 equiv.), TEMPO (1.5 equiv.) and Cs_2CO_3 (1.0 equiv.) in DMF (3.0 mL) at temperature indicated under Ar for 12 h. All yields are isolated yields. Ratios of **c:c'** were determined by HPLC analysis at 254 nm.

3.3 Optimization of generation benzhydryl alcohol intermediate

^{*a*}Reactions were performed with **4a** (0.15 mmol), **1b** (3.0 equiv.), *t*-BuNH₂ and KOH (1.5 equiv.) in MeCN (3.0 mL) at room temperature under Ar. ^{*b*}Yield of isolated product.

3.4 Optimization of conversion benzhydryl alcohol intermediate to indenones

^{*a*}Reactions were performed with **6** (0.10 mmol), base (1.0 equiv.) and oxidant in solvent (3.0 mL) under Ar. ^{*b*}Yield of isolated product. ^{*c*}The reaction mixture was stirred at 50 °C under Argon for 5 h, before addition of TEMPO (1.5 equiv.) and heating for another 2 h. ^{*d*}The reaction mixture was stirred at RT under Ar for 15 h, before heating under air for 2 h. ^{*e*}The reaction mixture was stirred at 50 °C under Ar for 9 h, before heating under air for 2 h.

3.5 Optimization for one-pot, two-step synthesis of indenones

	CO2Et	+ CH t-Bu	1) t-BuNH2 (3.0 Solvent (0.05) 2) base, air,	equiv.), base M), Ar, 25 °C ➤	
4a		1b			он 4 с
	Entry	Base	Solvent	Temp.	% Yield
	1	KOH(1.5)	MeCN	50 °C	79
	1	KOH(1.5)	MeCN	25 °C	trace
	2	KOH(1.5)	DMF	50 °C	70
	3	KOH(1.5)	DMSO	50 °C	74
	4	KOH(1.5)	dioxane	50 °C	Trace ^b
	5	$Cs_2CO_3(1.5)$	MeCN	50 °C	trace ^b
	6	$K_2CO_3(1.5)$	MeCN	50 °C	$trace^b$
	$8^{c,d}$	-	MeCN	50 °C	25

^{*a*}Reaction conditions: 4**a** (0.15 mmol), 1**b** (3.0 equiv.), *t*-BuNH₂ (3.0 equiv.) and base (1.5 equiv.) in solvent (3.0 mL) 25 °C under Ar for 23 h, then at 50 °C under air (balloon) with an additional base (1.5 equiv.) for 5h. All yields are isolated yields. ^{*b*}4**a** was recovered. ^{*c*}Heated at 50 °C under air (balloon) without additional KOH. ^{*d*}52% of benzhydryl alcohol intermediate was isolated.

4 General Procedure for the Synthesis of Indenones.

4.1 Typical Procedure A for the Synthesis of Indenones.

To a Schlenk tube was added 2-alkynylbenzaldehyde **a** (0.15 mmol), phenol **b** (0.45 mmol, 3.0 equiv.), Cs_2CO_3 (0.15 mmol, 1.0 equiv.) and TEMPO (0.225 mmol, 1.5 equiv.). The tube was evacuated and refilled with argon. Then the degassed DMSO (3.0 mL) was added to the tube, and the mixture was heated in an oil bath at 50 °C for 22 h (unless other noted). The progress of the reaction was monitored by TLC analysis to establish its completion. After cooling to room temperature, the reaction was diluted with ethyl acetate (15 mL) and washed with brine (15 mL x 2). The aqueous layer was back-extracted with EtOAc (15 mL x 2). The combined organic layers were dried over

MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate).

4.2 Typical Procedure B for the Synthesis of "Non-Rearranged" Indenones.

To a Schlenk tube was added 2-alkynylbenzaldehyde **a** (0.15 mmol), **1b** (0.75 mmol, 5.0 equiv.), Cs_2CO_3 (0.15 mmol, 1.0 equiv.) and TEMPO (0.225 mmol, 1.5 equiv.). The tube was evacuated and refilled with argon. The degassed DMF (3.0 mL) was added to the tube, and the mixture was stirred at 0 °C for 12 h (unless other noted). The progress of the reaction was monitored by TLC analysis to establish its completion. After cooling to room temperature, the reaction was diluted with ethyl acetate (15 mL) and washed with water (15 mL x 3). The aqueous layer was back-extracted with EtOAc (15 mL x 2). The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate).

4.3 Typical Procedure C for the Synthesis of "Rearranged" Indenones.

To a solution of 2-alkynylbenzaldehyde **a** (0.15 mmol) and **1b** (0.45 mmol, 3.0 equiv.) in degassed MeCN (3.0 mL) were added KOH (0.225 mmol, 1.5 equiv.) and *t*-BuNH₂ (0.45 mmol, 3.0 equiv.) under argon at 0 °C. The resulting solution was stirred at 0 °C for 7 h (unless other noted). KOH (0.225 mmol, 1.5 equiv.) was added and the reaction mixture was heated in an oil bath at 50 °C under air (balloon) for 4 h. The progress of

the reaction was monitored by TLC analysis to establish its completion. After cooling to room temperature, the reaction was diluted with ethyl acetate (15 mL) and washed with water (15 mL x 2). The aqueous layer was back-extracted with EtOAc (15 mL x 2). The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate).

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (1c).

This compound was prepared according to typical procedure A at 50 °C for 22 h by using 2-((4-nitro-phenyl)ethynyl)benzaldehyde (37. 6 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol). After a flash column chromatography (PE/EtOAc = 20:1), the product **1c** was obtained as an amorphous red solid (66.1 mg, 97%). R_f = 0.42 (PE/EtOAc = 10:1); m.p. 241-243°C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 7.0 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.37 – 7.29 (m, 2H), 7.20 (s, 2H), 5.53 (s, 1H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.5, 159.6, 156.1, 146.8, 144.6, 139.3, 136.8, 133.7, 131.6, 131.1, 129.9, 129.1, 126.3, 123.3, 122.8, 122.4, 34.7, 30.4 (one carbon missing due to overlap); IR (neat): 3619, 2960, 1696, 1513, 1245, 745 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₃₀NO₄ 456.21693; found 456.21683.

Synthesis of 4-(3-(3,5-di*-tert*-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2yl)benzonitrile (2c).

This compound was prepared according to typical procedure A at 23 °C for 25 h by using 4-((2-formyl-phenyl)ethynyl)benzonitrile (34.7 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol). After a flash column chromatography (PE/EtOAc = 20:1), the product **2c** was obtained as an amorphous red solid (46.7 mg, 71%). R_f = 0.28 (PE/EtOAc = 10:1); m.p. 242-244; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.44 – 7.40 (m, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.35 – 7.29 (m, 2H), 7.18 (s, 2H), 5.54 (s, 1H), 1.33 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.7, 159.0, 156.0, 144.5, 137.2, 136.5, 133.6, 131.9, 131.5, 131.0, 129.7, 129.3, 126.4, 123.3, 122.6, 122.2, 119.3, 110.7, 34.6, 30.3; IR (neat): 3620, 2956, 1601, 1353, 1119, 737 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₀NO₂ 436.22711; found 436.22711.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-(trifluoromethyl)phenyl)-1*H*-inden-1-one (3c).

This compound was prepared according to typical procedure C from 2-((4-(trifluoromethyl)phenyl)ethynyl) -benzaldehyde (41.1 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 23 °C for 24 h and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **3c** was obtained as an amorphous red solid (49.3 mg, 69%). $R_f = 0.38$ (PE/EtOAc = 20:1); m.p. 219-220°C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 6.6 Hz, 1H), 7.55 (d, J = 7.8 Hz, 2H), 7.47 – 7.30 (m, 5H), 7.20 (s, 2H), 5.53 (s, 1H), 1.34 (s, 18H); ¹³C NMR (101 MHz,

CDCl₃) δ 196.0, 158.4, 155.8, 144.7, 136.4, 136.0, 133.5, 131.6, 130.6, 130.2, 129.5, 129.4 (q, J = 32.3 Hz), 126.5, 125.1 (q, J = 3.0 Hz), 124.4 (q, J = 273.7 Hz), 123.1, 122.8, 122.0, 34.5, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.66; IR (neat): 3624, 2956, 1696, 1321, 1115, 842 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₀F₃O₂ 479.21924; found 479.21887.

Synthesis of ethyl 4-(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2-yl)benzoate (4c).

This compound was prepared according to typical procedure C from ethyl 4-((2-formylphenyl)ethynyl)-benzoate (41.8 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 23 °C for 24 h and at 50 °C for 5 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **4c** was obtained as an amorphous red solid (57.4 mg, 79%). $R_f = 0.17$ (PE/EtOAc = 20:1); m.p. 237-239°C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 6.7 Hz, 1H), 7.42 (t, J = 7.1 Hz, 1H), 7.38-7.29 (m, 4H), 7.22 (s, 2H), 5.51 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 166.7, 158.1, 155.7, 144.9, 136.8, 136.4, 133.4, 131.7, 130.5, 130.2, 129.4, 129.3, 129.2, 126.4, 123.1, 122.0, 61.1, 34.6, 30.3, 14.5 (one carbon missing due to overlap); IR (neat): 3739, 2956, 1701, 1273, 1107, 703 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₅O₄

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(3-nitrophenyl)-1*H*-inden-1-one (5c).

This compound was prepared according to typical procedure A from 2-((3-nitrophenyl)ethynyl)benzal-dehyde (37.7 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 23 °C for 40 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **5c** was obtained as an amorphous red solid (42.0 mg, 61%). $R_f = 0.37$ (PE/EtOAc = 10:1); m.p. 200-202°C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.09 – 8.06 (m, 1H), 7.64 – 7.58 (m, 2H), 7.47 – 7.40 (m, 2H), 7.36 – 7.29 (m, 2H), 7.20 (s, 2H), 5.53 (s, 1H), 1.32 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 195.7, 158.9, 156.0, 148.3, 144.6, 136.7, 136.3, 133.9, 133.6, 131.4, 129.7, 129.1, 128.9, 126.2, 125.2, 123.3, 122.6, 122.3, 122.2, 34.6, 30.3; IR (neat): 3619, 2960, 1701, 1528, 1249, 739 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₃₀NO₄ 456.21693; found 456.21646.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(2-nitrophenyl)-1*H*-inden-1-one (6c).

This compound was prepared according to typical procedure A from 2-((2-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 23 °C for 24 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **6c** was obtained as an amorphous red solid (34.8 mg, 51%). $R_f = 0.28$ (PE/EtOAc = 10:1); m.p. 143-144°C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 6.9 Hz, 1H), 7.51 – 7.36 (m, 4H), 7.32 (t, J = 7.2 Hz, 1H), 7.23 (s, 2H), 7.12 (d, J = 7.3 Hz, 1H), 5.49 (s, 1H), 1.31 (s,

18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 156.7, 155.8, 149.9, 144.9, 136.3, 133.4, 133.0, 132.9, 131.9, 130.1, 129.3, 128.6, 128.5, 126.5, 124.8, 123.5, 122.6, 122.1, 34.5, 30.3; IR (neat): 3617, 2960, 1703, 1526, 1352, 739 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₃₀NO₄ 456.21693; found 456.21683.

Synthesis of 2-(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2-yl)benzonitrile (7c).

This compound was prepared according to typical procedure A from 2-((2-formylphenyl)ethynyl)benzonitrile (34.7 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 23 °C for 24 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **7c** was obtained as an amorphous red solid (39.9 mg, 61%). $R_f = 0.27$ (PE/EtOAc = 10:1); m.p. 201-202°C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.7 Hz, 1H), 7.47 – 7.33 (m, 5H), 7.17 (s, 2H), 5.53 (s, 1H), 1.31 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.9, 160.2, 156.0, 144.2, 136.9, 136.3, 133.4, 133.3, 132.6, 131.9, 131.8, 129.7, 129.2, 128.0, 126.7, 123.4, 122.8, 122.4, 118.0, 113.9, 34.5, 30.2; IR (neat): 3619, 2959, 1710, 1354, 1249, 737 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₀NO₂ 436.22711; found 436.22717.

Synthesis of methyl 4-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2-yl)-3-(trifluoromethyl)benzoate (8c).

This compound was prepared according to typical procedure A from methyl 4-((2-

formylphenyl)ethynyl)-3-(trifluoromethyl)benzoate (49.8 mg, 0.15 mmol) and 2,6-di*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 50 °C for 22 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **8c** was obtained as an amorphous red solid (60.5 mg, 75%). $R_f = 0.23$ (PE/EtOAc = 10:1); m.p. 207-208°C; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 6.9 Hz, 1H), 7.49 – 7.39 (m, 2H), 7.35 (t, J = 7.1 Hz, 1H), 7.27 (d, J = 6.7 Hz, 1H), 7.18 (s, 2H), 5.48 (s, 1H), 3.96 (s, 3H), 1.29 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 165.9, 158.4, 155.8, 144.5, 137.3, 136.2, 133.3, 133.2, 132.6, 131.9, 131.2 (q, J = 30.3 Hz), 130.6, 130.1, 129.5, 128.2 (q, J = 5.1 Hz), 126.4, 123.7 (q, J = 275.7 Hz), 123.4, 122.8, 122.5, 52.7, 34.5, 30.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -60.15; IR (neat): 3624, 2960, 1715, 1440, 1259, 893 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₂F₃O₄ 537.22472; found 537.22577.

Synthesis of 4-(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2-yl)-2-(trifluoromethyl)benzonitrile (9c).

This compound was prepared according to typical procedure A from 4-((2-formylphenyl)ethynyl)-2-(trifluoromethyl)benzonitrile (44.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 50 °C for 22 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **9c** was obtained as an amorphous red solid (46.6 mg, 62%). $R_f = 0.22$ (PE/EtOAc = 20:1); m.p. 231-232°C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 2H), 7.65-7.58 (m, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 7.1 Hz, 1H), 7.33 (d, J = 7.0 Hz, 1H), 7.19 (s, 2H), 5.61 (s, 1H), 1.36 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 160.7, 156.4, 144.2, 137.6, 137.2, 134.5, 133.9, 133.6, 132.4 (q, J = 32.3 Hz), 131.3, 130.2, 128.2 (q, J = 4.0 Hz), 127.7, 126.0, 123.5, 122.6, 122.4 (q, J = 275.7 Hz), 122.3, 115.9, 107.8, 34.6, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.12; IR (neat): 3538, 2962, 1694, 1305, 1131, 735 cm⁻¹.

HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₁H₂₉F₃NO₂ 504.21449; found 504.21515.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-nitro-3-(trifluoromethyl)-phenyl)-1*H*-inden-1-one (10c).

This compound was prepared according to typical procedure A from 2-((4-nitro-3-(trifluoromethyl)-phenyl)ethynyl)benzaldehyde (47.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 50 °C for 22 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **10c** was obtained as an amorphous red solid (65 mg, 83 %). $R_f = 0.17$ (PE/EtOAc = 20:1); m.p. 223-225°C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.33 (d, J = 7.0 Hz, 1H), 7.20 (s, 2H), 5.62 (s, 1H), 1.37 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 160.8, 156.4, 146.2, 144.3, 137.6, 137.2, 134.3, 133.9, 131.3, 130.3, 129.5 (q, J = 4.0 Hz), 127.4, 125.9, 125.3, 123.6 (q, J = 34.3 Hz), 123.5, 122.6, 122.3, 122.0 (q, J = 274.7 Hz), 34.6, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -60.03; IR (neat): 3537, 2962, 1698, 1354, 1145, 738 cm⁻¹. HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₂₉F₃NO₄ 524.20432; found 524.20496.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4,5-dimethoxy-2-nitrophen-yl)-1*H*-inden-1-one (11c).

This compound was prepared according to typical procedure A from 2-((4,5-dimethoxy-2-nitrophenyl)-ethynyl)benzaldehyde (46.7 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.7 mg, 0.45 mmol) by stirring at 50 °C for 22 h. After a flash column

chromatography (PE/EtOAc = 5:1), the product **11c** was obtained as an amorphous red solid (40.5 mg, 52%). $R_f = 0.27$ (PE/EtOAc = 5:1); m.p. 171-172°C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.57 (d, J = 6.7 Hz, 1H), 7.42 (t, J = 7.0 Hz, 1H), 7.35 (d, J = 7.1 Hz, 1H), 7.31 (t, J = 7.3 Hz, 1H), 7.24 (s, 2H), 6.38 (s, 1H), 5.49 (s, 1H), 3.96 (s, 3H), 3.59 (s, 3H), 1.33 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.3, 156.1, 155.6, 152.7, 148.6, 145.0, 142.6, 136.5, 133.4, 131.9, 131.1, 129.3, 126.2, 123.5, 123.0, 122.5, 121.9, 113.9, 108.0, 56.7, 56.2, 34.5, 30.3; IR (neat): 3619, 2958, 1705, 1590, 1266, 734 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₁H₃₄NO₆ 516.23806; found 516.23785.

Synthesis of 3-(4-hydroxy-3,5-diisopropylphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (12c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethyn-yl)benzaldehyde (37.7 mg, 0.15 mmol) and 2,6-di-isopropylphenol (80.2 mg, 0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 10:1), the product **12c** was obtained as an amorphous red solid (46.0 mg, 72%). $R_f = 0.22$ (PE/EtOAc = 10:1); m.p. 253-255°C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 6.9 Hz, 1H), 7.50 – 7.41 (m, 3H), 7.36 (t, J = 6.9 Hz, 1H), 7.29 (d, J = 6.7 Hz, 1H), 7.08 (s, 2H), 5.14 (s, 1H), 3.21 – 3.07 (m, 2H), 1.16 (d, J = 6.4 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 159.4, 152.1, 146.7, 144.6, 139.1, 134.6, 133.7, 131.4, 131.0, 129.9, 129.1, 124.7, 123.8, 123.4, 123.4, 122.3, 27.2, 22.8; IR (neat): 3433, 2959, 1687, 1338, 1267, 758 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₇H₂₆NO₄ 428.18563; found 428.18539.

Synthesis of 3-(2'-hydroxy-[1,1':3',1''-terphenyl]-5'-yl)-2-(4-nitrophenyl)-1*H*-inden-1-one (13c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and [1,1':3',1"-terphenyl]-2'-ol (110.8 mg, 0.45 mmol) by stirred at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **13c** was obtained as an amorphous red solid (44.8 mg, 60%). $R_f = 0.32$ (PE/EtOAc = 5:1); m.p. 253-254°C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 7.0 Hz, 1H), 7.57 (d, J = 8.8 Hz, 2H), 7.48 – 7.32 (m, 13H), 7.30 (s, 2H), 5.71 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 195.4, 158.0, 151.4, 147.0, 144.5, 138.5, 136.5, 133.9, 131.0, 130.4, 130.1, 129.9, 129.7, 129.4, 129.3, 128.5, 124.4, 123.6, 123.5, 122.3 (one carbon missing due to overlap); IR (neat): 3515, 2924, 1702, 1341, 1229, 843 cm⁻¹. HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₃H₂₂NO₄ 496.15433; found 496.15536.

Synthesis of 3-(3-(*tert*-butyl)-4-hydroxy-5-methylphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (14c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and 2-(*tert*-butyl)-6-methylphenol (73.9 mg, 0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 10:1), the product **14c** was obtained as an amorphous red solid (48.3 mg, 78%). R_f = 0.35 (PE/EtOAc = 5:1); m.p. 226-228°C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 6.7 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.14 – 7.08 (m, 2H), 2.27 (s, 3H),

1.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 159.1, 154.9, 146.8, 144.6, 139.0, 136.6, 133.7, 131.3, 131.0, 129.9, 129.1, 128.8, 126.8, 124.0, 123.4, 123.33, 123.27, 122.3, 34.8, 29.7, 16.3; IR (neat): 3464, 2947, 1593, 1344, 1197, 737 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₆H₂₄NO₄ 414.16998; found 414.16956.

Synthesis of 3-(4-hydroxy-3,5-dimethylphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (15c).

This compound was prepared according to typical procedure A from 2-((4nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and 2,6-dimethylphenol (55.1 mg, 0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **15c** was obtained as an amorphous red solid (43.2 mg, 78%). $R_f = 0.10$ (PE/EtOAc = 10:1); m.p. 239-240°C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.0 Hz, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.43 (t, J =7.4 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.28 –7.22 (m, 1H), 7.01 (s, 2H), 5.01 (s, 1H), 2.24 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 158.9, 154.3, 146.9, 144.8, 138.7, 133.8, 131.1, 130.9, 129.9, 129.1, 124.2, 123.8, 123.4, 123.3, 122.3, 16.2 (one carbon missing due to overlap); IR (neat): 3447, 2942, 1693, 1264, 1197, 848 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₃H₁₈NO₄ 372.12303; found 372.12262.

Synthesis of 3-(4-hydroxy-3-iodophenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (16c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and 2-iodophenol (99.0 mg,

0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 2:1), the product **16c** was obtained as an amorphous red solid (37.0 mg, 53%). $R_f = 0.13$ (PE/EtOAc = 5:1); m.p. 215-216°C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 2H), 7.75 (s, 1H), 7.62 (d, J = 6.9 Hz, 1H), 7.49 – 7.43 (m, 3H), 7.37 (t, J = 7.3 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.04 (d, J = 8.3 Hz, 1H), 5.71 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 156.6, 156.3, 147.1, 144.3, 138.3, 137.8, 134.1, 131.0, 130.9, 130.7, 130.2, 130.1, 126.2, 123.7, 123.7, 122.0, 116.0, 86.4; IR (neat): 3428, 2930, 1702, 1341, 1184, 739 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₁H₁₃INO₄ 469.98838; found 469.98849.

Synthesis of 3-(3-(*tert*-butyl)-4-hydroxyphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (17c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and 2-(*tert*-butyl)phenol (67.6 mg, 0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **17c** was obtained as an amorphous red solid (41.3 mg, 69%). $R_f = 0.25$ (PE/EtOAc = 5:1); m.p. 254-255°C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 6.6 Hz, 1H), 7.49 – 7.40 (m, 3H), 7.36 (t, J = 6.9 Hz, 1H), 7.32 – 7.23 (m, 2H), 7.16 (d, J = 7.9 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.35 (s, 1H), 1.29 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 158.9, 156.4, 146.8, 144.5, 138.9, 137.2, 133.8, 131.3, 131.0, 130.0, 129.3, 128.7, 127.8, 123.9, 123.5, 123.4, 122.3, 117.4, 34.9, 29.6; IR (neat): 3742, 2957, 1689, 1339, 1195, 644 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₅H₂₂NO₄ 400.15433; found 400.15414.

Synthesis of 3-(6-hydroxy-[1,1'-biphenyl]-3-yl)-2-(4-nitrophenyl)-1*H*-inden-1-one (18c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and [1,1'-biphenyl]-2-ol (76.6 mg, 0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **18c** was obtained as an amorphous red solid (39.4 mg, 63%). $R_f = 0.15$ (PE/EtOAc = 5:1); m.p. 231-232°C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 6.6 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 7.5 Hz, 2H), 7.41 (d, J = 6.9 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.30 – 7.22 (m, 3H), 7.04 (d, J = 7.9 Hz, 1H), 5.66 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 195.5, 158.2, 154.5, 154.1, 146.9, 144.5, 138.5, 136.0, 133.9, 131.0, 130.8, 130.1, 129.9, 129.8, 129.5, 129.2, 129.1, 128.7, 124.4, 123.6, 123.5, 122.3, 117.0; IR (neat): 3439, 2933, 1700, 1402, 1265, 829 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₇H₁₈NO₄ 420.12303; found 420.12311.

Synthesis of 3-(4-hydroxyphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (19c).

This compound was prepared according to typical procedure A from 2-((4-nitrophenyl)ethynyl)benzaldehyde (37.7 mg, 0.15 mmol) and phenol (42.4 mg, 0.45 mmol) by stirring at 110 °C for 5 h. After a flash column chromatography (PE/EtOAc = 2:1), the product **19c** was isolated as an amorphous red solid (18.8 mg, 37 %). R_f = 0.13 (PE/EtOAc = 5:1); m.p. 242-243°C; ¹H NMR (400 MHz, DMSO) δ 10.14 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.58 –7.51(m, 2H), 7.59 – 7.40 (m, 3H), 7.33 (d, J = 7.2 Hz, 1H), 7.27 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H); ¹³C NMR (101 MHz, DMSO)

δ 194.6, 159.5, 158.1, 146.3, 143.8, 138.5, 134.1, 130.9, 130.5, 130.4, 130.0, 128.4, 123.2, 122.7, 122.3, 121.6, 116.0; IR (neat): 3746, 2924, 1792, 1341, 1265, 636 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₁H₁₄NO₄ 344.09173; found 344.09122.

Synthesis of 6-chloro-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-nitrophenyl)-1*H*-inden-1-one (20c).

This compound was prepared according to typical procedure B from 5-chloro-2-((4-nitrophenyl)ethynyl)benzaldehyde (42.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **20c** was isolated as an amorphous red solid (60.9 mg, 83%). $R_f = 0.27$ (PE/EtOAc = 20:1); m.p. 269-270°C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.5 Hz, 2H), 7.57 (s, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.8 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.19 (s, 2H), 5.61 (s, 1H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 159.3, 156.4, 146.9, 142.6, 138.8, 137.0, 136.1, 133.2, 132.9, 131.1, 129.2, 126.3, 123.9, 123.4, 123.2, 122.4, 34.7, 30.4; IR (neat): 3572, 2927, 1692, 1335, 1264, 739 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₂₉ClNO₄ 490.17796; found 490.17725.

Synthesis of 3-(3,5-di-*t*ert-butyl-4-hydroxyphenyl)-2-(4-nitrophenyl)-6-(trifluoro-omethyl)-1*H*-inden-1-one (21c).

This compound was prepared according to typical procedure B from 2-((4-nitrophenyl)ethynyl)-5-(trifluoromethyl)benzaldehyde (47.9 mg, 0.15 mmol) and 2,6-

di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **21c** was isolated as an amorphous red solid (41.8 mg, 53%). $R_f = 0.23$ (PE/EtOAc = 20:1); m.p. 246-248°C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.51–7.44 (m, 3H), 7.21 (s, 2H), 5.63 (s, 1H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 158.5, 156.5, 147.9, 147.2, 138.5, 137.1, 132.12 (q, J = 33.3 Hz), 132.10, 131.2, 130.9 (q, J = 4.0 Hz), 130.8, 126.3, 123.9 (q, J = 274.7 Hz), 123.5, 122.2, 122.1, 120.0 (q, J = 4.0 Hz), 34.7, 30.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.75. IR (neat): 3578, 2955, 1742, 1516, 1258, 742 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₂₉F₃NO₄ 524.20432; found 524.20392.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-6-fluoro-2-(4-nitrophenyl)-1*H*-inden-1-one (22c).

This compound was prepared according to typical procedure B from 5-fluoro-2-((4-nitrophenyl)ethyn-yl)benzaldehyde (40.4 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **22c** was obtained as a crystalline red solid (61.4 mg, 86%). $R_f = 0.22$ (PE/EtOAc = 20:1); m.p. 241-242°C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.8 Hz, 2H), 7.44 (s, 2H), 7.34 – 7.27 (m, 2H), 7.20 (s, 2H), 7.10 (t, J = 9.6 Hz, 1H), 5.60 (s, 1H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 164.2 (d, J = 252.5 Hz), 159.6, 156.4, 146.8, 139.9 (d, J = 3.0 Hz), 138.9, 136.8, 134.1 (d, J = 7.1 Hz), 131.0, 129.2 (d, J = 5.1 Hz), 126.3, 123.6 (d, J = 7.1 Hz), 123.4, 122.4, 118.9 (d, J = 23.2 Hz), 111.9 (d, J = 25.3 Hz), 34.6, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.01; IR (neat): 3616, 2960, 1703, 1517, 1257, 741 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₂₉FNO₄ 474.20751; found 474.20715.

Synthesis of 5-chloro-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-nitrophenyl)-1H-

inden-1-one (20c').

This compound was prepared according to typical procedure B from 4-chloro-2-((4nitrophenyl)ethynyl)benzaldehyde (42.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **20c'** was obtained as a crystalline red solid (47.4 mg, 64%). R_f = 0.38 (PE/EtOAc = 20:1); m.p. 262-263°C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.31 (s, 1H), 7.18 (s, 2H), 5.61 (s, 1H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 158.2, 156.4, 146.9, 146.5, 139.9, 138.7, 136.9, 131.1, 123.0, 129.6, 129.4, 126.2, 124.2, 123.4, 123.2, 122.1, 34.6, 30.3; IR (neat): 3617, 2960, 1705, 1402, 1071, 738 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₂₉ClNO₄ 490.17796; found 490.17856.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-nitrophenyl)-5-(trifluoro-methyl)-1*H*-inden-1-one (21c').

This compound was prepared according to typical procedure B from 2-((4-nitrophenyl)ethynyl)-4-(trifluoromethyl)benzaldehyde (47.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **21c'** was obtained as a crystalline red solid (49.1 mg, 63%). R_f = 0.27 (PE/EtOAc = 20:1); m.p. 263-264°C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.5 Hz, 2H), 7.72 (d, *J* = 7.4 Hz, 1H), 7.67 (d,

J = 7.5 Hz, 1H), 7.60 (s, 1H), 7.49 (d, J = 8.5 Hz, 2H), 7.23 (s, 2H), 5.65 (s, 1H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 158.5, 156.6, 147.0, 145.3, 138.5, 137.0, 135.2 (q, J = 32.3 Hz), 134.2, 131.1, 130.0, 127.3 (q, J = 4.0 Hz), 126.4, 123.7(q, J = 273.7 Hz), 123.5, 123.2, 121.9, 119.0 (q, J = 3.0 Hz), 34.7, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.21; IR (neat): 3456, 2935, 1706, 1408, 1262, 765 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₂₉F₃NO₄ 524.20432; found 524.20386.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-fluoro-2-(4-nitrophenyl)-1*H*-inden-1-one (22c').

This compound was prepared according to typical procedure B from 4-fluoro-2-((4-nitrophenyl)-ethynyl)benzaldehyde (40.4 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **22c'** was obtained as an amorphous red solid (31.3 mg, 44%). $R_f = 0.23$ (PE/EtOAc = 20:1); m.p. 262-263 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.7 Hz, 2H), 7.63 – 7.58 (m, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.18 (s, 2H), 7.06 – 6.95 (m, 2H), 5.59 (s, 1H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 166.5 (d, J = 256.5 Hz), 157.3, 156.3, 147.8 (d, J = 10.1 Hz), 123.4, 122.2, 115.4 (d, J = 22.2 Hz), 111.2 (d, J = 26.3 Hz), 34.6, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -103.46; IR (neat): 3619, 2959, 1705, 1343, 1205, 742 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₉H₂₉FNO₄ 474.20751; found 474.20731.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-methyl-2-(4-nitrophenyl)-1*H*-inden-1-one (23c).

This compound was prepared according to typical procedure B from 4-methyl-2-((4-nitrophenyl)ethynyl)benzaldehyde (39.8 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 23 °C for 48 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **23c** was obtained as an amorphous red solid (15.7 mg, 22%). R_f = 0.17 (PE/EtOAc = 20:1); m.p. 256-257°C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 7.2 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.20 (s, 2H), 7.17 – 7.12 (m, 2H), 5.56 (s, 1H), 2.40 (s, 3H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.3, 159.1, 156.0, 146.7, 144.9, 144.6, 139.4, 136.7, 131.1, 129.9, 129.4, 129.1, 126.3, 123.8, 123.4, 123.3, 122.7, 34.6, 30.4, 22.5; IR (neat): 3604, 2957, 1697, 1513, 1245, 740 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₂NO4 470.23258; found 470.23224.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-methoxy-2-(4-nitrophenyl)-1*H*-inden-1-one (24c).

This compound was prepared according to typical procedure B from 4-methoxy-2-((4-nitrophenyl)-ethynyl)benzaldehyde (42.2 mg, 0.15 mmol) and 2,6-di-*tert*butylphenol (154.8 mg, 0.75 mmol) by stirring at 23 °C for 48 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **24c** was obtained as an amorphous red solid (10.7 mg, 15%). R_f = 0.25 (PE/EtOAc = 10:1); m.p. 272-274°C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.19 (s, 2H), 6.89 (s, 1H), 6.74 (d, *J* = 7.9 Hz, 1H), 5.55 (s, 1H), 3.87 (s, 3H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 164.6, 157.3, 156.0, 147.1, 146.7, 139.3, 136.7, 131.1, 130.4, 126.3, 125.2, 124.1, 123.3, 122.6, 111.5, 111.4, 56.0, 34.6, 30.4; IR (neat): 3413, 2958, 1698, 1516, 1343, 746 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₂NO₅ 486.22750; found 486.22739.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-4-methyl-2-(4-nitrophenyl)-1*H*-inden-1-one (25c).

This compound was prepared according to typical procedure B from 3-methyl-2-((4-nitrophenyl)-ethynyl)benzaldehyde (39.8 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 23 °C for 48 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **25c** was obtained as a crystalline red solid (13.2 mg, 19%). $R_f = 0.25$ (PE/EtOAc = 20:1); m.p. 206-207°C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 6.6 Hz, 1H), 7.32 (d, J = 8.3 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.05 (s, 2H), 5.43 (s, 1H), 1.96 (s, 3H), 1.37 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.9, 163.1, 155.1, 146.5, 141.6, 138.8, 138.4, 137.0, 134.2, 131.6, 131.2, 130.8, 129.8, 125.4, 124.9, 123.1, 121.3, 34.7, 30.5, 20.1; IR (neat): 3622, 2960, 1702, 1343, 1239, 748 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₂NO₄ 470.23258; found 470.23199.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5,6-dimethoxy-2-(4-nitrophe-nyl)-1*H*-inden-1-one (26c).

This compound was prepared according to typical procedure A from 4,5-dimethoxy-

2-((4-nitrophenyl)-ethynyl)benzaldehyde (46.6 mg, 0.15 mmol) and 2,6-di-*tert*butylphenol (92.9 mg, 0.45 mmol) by stirring at 70 °C for 22 h. After a flash column chromatography (PE/EtOAc = 10:1), the product **26c** was obtained as an amorphous red solid (49.2 mg, 64%). R_f = 0.30 (PE/EtOAc = 5:1); m.p. 229-231°C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.22 (s, 3H), 6.92 (s, 1H), 5.57 (s, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 158.3, 156.1, 152.7, 149.9, 146.5, 139.4, 138.6, 136.7, 130.9, 127.6, 126.2, 124.0, 123.3, 122.8, 107.6, 106.9, 56.7, 56.4, 34.6, 30.4; IR (neat): 3618, 2956, 1691, 1338, 1011, 738 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₁H₃₄NO₆ 516.23806; found 516.23798.

Synthesis of 7-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-6-(4-nitrophenyl)-5*H*-cyclopenta[*b*]pyridin-5-one (27c).

This compound was prepared according to typical procedure B from 2-((4nitrophenyl)ethynyl)-nicotinaldehyde (37.8 mg, 0.15 mmol) and 2,6-di-*tert*butylphenol (154.8 mg, 0.75 mmol) by stirring in DMSO (3.0 mL) at 23 °C for 5 h. After a flash column chromatography (PE/EtOAc =5:1), the product **27c** was obtained as an amorphous red solid (45.9 mg, 67%). $R_f = 0.47$ (PE/EtOAc = 5:1); m.p. 254-255°C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 3.6 Hz, 1H), 8.21 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 7.0 Hz, 1H), 7.65 (s, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.24 – 7.20 (m, 1H), 5.64 (s, 1H), 1.33 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 166.4, 157.1, 156.4, 152.3, 147.1, 139.0, 136.1, 131.3, 130.9, 129.5, 128.7, 126.0, 123.6, 123.1, 120.9, 34.6, 30.3; IR (neat): 3613, 2959, 1704, 1518, 1252, 750 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₈H₂₉N₂O₄ 457.21218; found 457.21170.

Synthesis of 7-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-6-(4-nitrophenyl)-5*H*-cyclopenta[*c*]pyridin-5-one (28c).

This compound was prepared according to typical procedure B from 3-((4-nitrophenyl)ethynyl)-isonicotinaldehyde (37.8 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 10:1), the product **28c** was obtained as an amorphous red solid (44.1 mg, 64%). R_f = 0.17 (PE/EtOAc = 5:1); m.p. 263-264°C; ¹H NMR (400 MHz, CDCl₃) δ 8.81 – 8.76 (m, 1H), 8.69 (s, 1H), 8.16 (d, *J* = 8.3 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.26 (s, 2H), 5.68 (s, 1H), 1.33 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 160.1, 156.9, 153.3, 147.1, 142.2, 138.5, 138.3, 137.6, 137.0, 131.2, 129.4, 126.6, 123.5, 121.9, 116.4, 34.6, 30.3; IR (neat): 3614, 2960, 1706, 1519, 1257, 845 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₂₈H₂₉N₂O₄ 457.21218; found 457.21152.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-nitrophenyl)-1*H*-cyclopenta[*b*]quinolin-1-one (29c).

This compound was prepared according to typical procedure B from 2-((4-nitrophenyl)ethynyl)quinoline-3-carbaldehyde (45.3 mg, 0.15 mmol) and 2,6-di-*tert*butylphenol (154.8 mg, 0.75 mmol) by stirring at 0 °C for 12 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **29c** was obtained as an amorphous red solid (50.6 mg, 67%). R_f = 0.27 (PE/EtOAc = 10:1); m.p. > 269°C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.22 (m, 3H), 8.12 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.81 (s, 2H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 5.67 (s, 1H), 1.36 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 163.8, 157.2, 156.5, 149.7, 147.3, 139.2, 136.2, 136.1, 131.7, 131.4, 131.0, 130.3, 130.2, 129.2, 127.9, 127.4, 125.0, 123.6, 120.9, 34.7, 30.3; IR (neat): 3755, 2958, 1700, 1399, 1265, 751 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₁N₂O₄ 507.22783; found 507.22757.

Synthesis of 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(2-(trifluoromethyl) phenyl) -1*H*-inden-1-one (30c').

This compound was prepared according to typical procedure C from 2-((2-(trifluoromethyl)phenyl)-ethynyl)benzaldehyde (41.1 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 23 °C for 24 h and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **30c'** was obtained as an amorphous red solid (63.3 mg, 88%). R_f = 0.38 (PE/EtOAc = 10:1); m.p. 198-199°C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.7 Hz, 1H), 7.61 (d, J = 7.0 Hz, 1H), 7.53 – 7.38 (m, 4H), 7.33 (t, J = 7.0 Hz, 1H), 7.19 (s, 2H), 7.17 (d, J = 7.4 Hz, 1H), 5.44 (s, 1H), 1.29 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 157.8, 155.6, 144.8, 136.0, 133.1, 132.6, 132.2, 132.0, 131.8, 131.6, 130.6 (q, J = 30.3 Hz), 129.2, 128.2, 126.9 (q, J = 5.1 Hz), 126.4, 124.2 (q, J = 274.7 Hz), 123.2, 123.1, 122.3, 34.5, 30.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -59.99; IR (neat): 3625, 2960, 1729, 1352, 1122, 736 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₀F₃O₂ 479.21924; found 479.21967.

Synthesis of ethyl 4-(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-5-(trifluorome-thyl)-1*H*-inden-2-yl)benzoate (33c).

This compound was prepared according to typical procedure C from ethyl 4-((2-formyl-4-(trifluoromethyl)phenyl)ethynyl)benzoate (52.0 mg, 0.15 mmol) and 2,6-di*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 7 h and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **33c** was obtained as a crystalline red solid (75.5 mg, 91%). R_f = 0.20 (PE/EtOAc = 20:1); m.p. 192-194°C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 7.1 Hz, 1H), 7.58 (s, 1H), 7.37 (d, J = 7.8 Hz, 2H), 7.24 (s, 2H), 5.60 (s, 1H), 4.38 (q, J = 6.8 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 166.6, 157.2, 156.2, 145.7, 136.7, 136.1, 134.9 (q, J = 32.3 Hz), 134.3, 131.4, 130.2, 129.6, 129.5, 126.9 (q, J = 4.0 Hz), 126.4, 123.8 (q, J = 273.7 Hz), 122.9, 122.3, 118.6 (q, J = 3.0 Hz), 61.2, 34.6, 30.3, 14.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.17; IR (neat): 3632, 2960, 1603, 1312, 1122, 743 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₃H₃₄F₃O₄ 551.24037; found 551.24005.

Synthesis of ethyl 4-(5-chloro-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2-yl)benzoate (34c).

This compound was prepared according to typical procedure C from ethyl 4-((4-chloro-2-formylphenyl)-ethynyl)benzoate (46.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 8 h and at 50 °C for 5 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **34c** was obtained as a crystalline red solid (64.8 mg, 84%). R_f = 0.20 (PE/EtOAc = 20:1); m.p. 235-236°C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.19 (s, 2H), 5.55 (s, 1H), 4.37 (q, J = 7.0 Hz, 2H), 1.38 (t, J = 7.3 Hz, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 166.6, 156.8, 155.9, 146.9, 139.6, 136.6, 136.3, 131.5, 130.2, 129.7, 129.5, 129.4, 128.9, 126.3, 123.9, 122.8, 122.6, 61.1, 34.6, 30.3, 14.5; IR (neat): 3626, 2961, 1602, 1273, 1109,

744 cm⁻¹; HRMS(ESI) m/z: $[M+H]^+$ calculated for C₃₂H₃₄ClO₄ 517.21401; found 517.21381.

Synthesis of ethyl 4-(3-(3,5-di*-tert*-butyl-4-hydroxyphenyl)-5-fluoro-1-oxo-1*H*-inden-2-yl)benzoate (35c).

This compound was prepared according to typical procedure C from ethyl 4-((4-fluoro-2-formylphenyl)ethynyl)benzoate (44.4 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 8 h and at 50 °C for 21 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **35c** was obtained as a crystalline red solid (44.7 mg, 60 %). $R_f = 0.38$ (PE/EtOAc = 10:1); m.p. 235-236°C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.58 (s, 1H), 7.35 (d, J = 7.7 Hz, 2H), 7.19 (s, 2H), 7.02 (d, J = 8.4 Hz, 1H), 6.96 (t, J = 8.2 Hz, 1H), 5.53 (s, 1H), 4.37 (q, J = 6.8 Hz, 2H), 1.38 (t, J = 7.0 Hz, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 166.7, 166.4 (d, J = 255.5 Hz), 155.9, 148.2 (d, J = 9.1 Hz), 136.6, 136.4, 131.7, 130.2, 129. 44, 129.38, 128.1, 127.4 (d, J = 3.0 Hz), 126.2, 124.8 (d, J = 10.1 Hz), 122.6, 114.9 (d, J = 22.2 Hz), 110.9 (d, J = 26.3 Hz), 61.1, 34.6, 30.3, 14.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -104.09; IR (neat): 3619, 2959, 1704, 1272, 1107, 747 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₄FO₄ 501.24356; found 501.24335.

Synthesis of ethyl 4-(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-6-(trifluorom-ethyl)-1*H*-inden-2-yl)benzoate (33c').

This compound was prepared according to typical procedure C from ethyl 4-((2-

formyl-5-(trifluoromethyl)phenyl)ethynyl)benzoate (52.0 mg, 0.15 mmol) and 2,6-di*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 7 h and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **33c'** was obtained as an amorphous red solid (65.9 mg, 80%). R_f = 0.23 (PE/EtOAc = 20:1); m.p. 229-230°C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.9 Hz, 2H), 7.82 (s, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.22 (s, 2H), 5.57 (s, 1H), 4.37 (q, J = 6.8 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 166.6, 157.1, 156.1, 148.3, 136.6, 136.1, 132.2, 131.5 (q, J = 33.3 Hz), 130.7 (q, J = 3.0 Hz), 130.2, 129.7, 129.5, 126.4, 124.0 (q, J = 272.7 Hz), 122.4, 121.8, 119.8 (q, J = 3.0 Hz), 61.2, 34.6, 30.3, 14.5 (one carbon missing due to overlap); ¹⁹F NMR (377 MHz, CDCl₃) δ -62.69. IR (neat): 3548, 2959, 1599, 1352, 1122, 736 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₃H₃₄F₃O₄ 551.24037; found 551.24017.

Synthesis of ethyl 4-(6-chloro-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-oxo-1*H*-inden-2-yl)benzoate (34c').

This compound was prepared according to typical procedure C from ethyl 4-((5-chloro-2-formylphenyl)ethynyl)benzoate (46.9 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 7 h, at 23 °C for 16 h, and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **34c'** was obtained as an amorphous red solid (63.7 mg, 82%). R_f = 0.25 (PE/EtOAc = 20:1); m.p. 209-210°C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.9 Hz, 2H), 7.54 (s, 1H), 7.39 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.25 (d, *J* = 8.9 Hz, 1H), 7.20 (s, 2H), 5.55 (s, 1H), 4.37 (q, *J* = 6.9 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 166.6, 157.9, 156.0, 142.9, 136.5, 136.4, 135.5, 133.3, 132.6, 130.6, 130.1, 129.4, 126.3, 123.6, 122.8, 122.7, 61.1, 34.6, 30.3, 14.5 (one

carbon missing due to overlap); IR (neat): 3543, 2959, 1705, 1603, 1271, 737 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₄ClO₄ 517.21401; found 517.21478.

Synthesis of ethyl 4-(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-6-fluoro-1-oxo-1*H*-inden-2-yl)benzoate (35c').

This compound was prepared according to typical procedure C from ethyl 4-((5-fluoro-2-formylphenyl)-ethynyl)benzoate (44.4 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 7 h, at 23 °C for 36 h, and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 20:1), the product **35c'** was obtained as an amorphous red solid (52.4 mg, 70%). R_f = 0.42 (PE/EtOAc = 10:1); m.p. 231-232°C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 2H), 7.37 – 7.24 (m, 4H), 7.21 (s, 2H), 7.07 (t, J = 8.3 Hz, 1H), 5.54 (s, 1H), 4.37 (q, J = 7.0 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.33 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 194.5, 166.7, 163.9 (d, J = 251.5 Hz), 158.2, 155.9, 140.2 (d, J = 4.0 Hz), 136.52, 136.45, 134.2 (d, J = 8.1 Hz), 130.7, 130.1, 129.4, 129.3, 126.4, 123.1 (d, J = 7.1 Hz), 122.8, 118.6 (d, J = 23.2 Hz), 111.6 (d, J = 25.3 Hz), 61.1, 34.6, 30.3, 14.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -111.00; IR (neat): 3625, 2977, 1709, 1429, 1266, 895 cm⁻¹. HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₄FO₄ 501.24356; found 501.24442.

Synthesis of methyl 4-(5-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-7-oxo-7*H*-cyclo-penta[*c*]pyridin-6-yl)benzoate (36c').

This compound was prepared according to typical procedure C from methyl 4-((4-

formylpyridin-3-yl)ethynyl)benzoate (39.8 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 7 h and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **36c'** was obtained as an amorphous red solid (26.6 mg, 57%). R_f = 0.20 (PE/EtOAc = 3:1); m.p. 260-262°C; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 2H), 7.99 (d, *J* = 7.5 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 2H), 7.32 (s, 1H), 7.21 (s, 2H), 5.60 (s, 1H), 3.92 (s, 3H), 1.34 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 195.3, 167.0, 156.2, 155.8, 155.4, 153.1, 142.8, 136.7, 136.0, 132.2, 130.4, 129.6, 126.4, 125.3, 122.1, 116.7, 52.4, 34.6, 30.3 (one carbon missing due to overlap); IR (neat): 3563, 2958, 1599, 1275, 1112, 739 cm⁻¹; HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₂NO₄ 470.23258; found 470.23346.

Synthesis of methyl 4-(5-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-7-oxo-7*H*-cyclo-penta[*b*]pyridin-6-yl)benzoate (37c').

This compound was prepared according to typical procedure C from methyl 4-((3-formylpyridin-2-yl)ethynyl)benzoate (39.8 mg, 0.15 mmol) and 2,6-di-*tert*-butylphenol (92.9 mg, 0.45 mmol) by stirring at 0 °C for 7 h and at 50 °C for 4 h. After a flash column chromatography (PE/EtOAc = 5:1), the product **37c'** was obtained as an amorphous red solid (32.9 mg, 70%). R_f = 0.22 (PE/EtOAc = 3:1); m.p. 265-266°C; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 4.3 Hz, 1H), 7.98 (d, *J* = 7.9 Hz, 2H), 7.66 (d, *J* = 7.4 Hz, 1H), 7.39 (d, *J* = 7.8 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.23 (s, 2H), 5.60 (s, 1H), 3.92 (s, 3H), 1.33 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 167.1, 156.3, 156.1, 151.9, 149.7, 140.2, 136.7, 136.2, 130.3, 129.9, 129.5, 129.3, 128.3, 126.4, 125.8, 122.3, 52.4, 34.6, 30.3. IR (neat): 3619, 2958, 1602, 1273, 1112, 737 cm⁻¹. HRMS(ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₂NO₄ 470.23258; found 470.23251.

5. Scale-up Reactions and Synthetic Transformations.

5.1. Scale-up of indenone 1c.

To a 50 mL round-bottom flask was added **1a** (0.251 g, 1.0 mmol), **1b** (0.619 g, 3.0 mmol), Cs_2CO_3 (0.326 g, 1.0 mmol) and TEMPO (0.234 g, 1.5 mmol). The flask was evacuated and refilled with argon three times. The degassed DMSO (20.0 mL) was added and the resulting mixture was heated in an oil bath at 50 °C for 22 h. Upon completion, the mixture was cooled to room temperature, diluted with ethyl acetate (40 mL) and washed with brine (50 mL x 2). The combined aqueous layers were back-extracted with EtOAc (30 mL x 2). The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate/dichloromethane = 20/1/2) to afford indenone **1c** as an amorphous red solid (0.403 g, 88%).

5.2 Scale-up of indenone 4c.

To a solution of **4a** (0.278 g, 1.0 mmol) and **1b** (0.619 g, 3.0 mmol) in degassed MeCN (20.0 mL) were added KOH (0.084 g, 1.5 mmol) and *t*-BuNH₂ (0.219 g, 3.0 mmol) under argon at 25 °C. The mixture was stirred at the same temperature for 24 h. An additional KOH (0.084 g, 1.5 mmol) was added and the mixture was heated in an oil bath at 50 °C under air (balloon) for 23 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (40 mL) and washed with water (40 mL). The aqueous layer was back-extracted with EtOAc (30 mL x 2). The combined organic

layers were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether/ethyl acetate = 20/1) to afford Indenone **4c** as an amorphous red solid (0.310 g, 64%).

5.3 Synthetic Transformation of 1c.

To a solution of **1c** (0.0683 g, 0.15 mmol) in PhH (4.0 mL) was added AlCl₃ (0.300 g, 2.25 mmol) and MeNO₂ (1.0 mL). The resulting mixture was heated in an oil bath at 60 °C for 23 h. The progress of the reaction was monitored by TLC analysis to establish its completion. After cooling to room temperature, the reaction mixture was quenched by 1M HCl (10 mL) and extracted with EtOAc (15 mL). The aqueous layer was back-extracted with EtOAc (15 mL x 2). The combined organic layers were washed with saturated NaHCO₃ (15 mL x 2), dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc = 10:1) to afford indenone **19c** as an amorphous red solid (0.035 g, 68%), and recover starting material **1c** (0.020 g, 30%).

6. Control Experiments.

6.1 Isolation of indanone intermediate 5.

To a solution of 2-((4-nitrophenyl)ethynyl)benzaldehyde 1a (0.050 g, 0.2 mmol) and 2,6-di-tert-butylphenol (0.124 g, 0.6 mmol) in degassed DMSO (4.0 mL) was added Cs_2CO_3 (0.066 g, 0.2 mmol) under argon. The resulting mixture was heated in an oil bath at 50 °C under argon for 22 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (15 mL) and washed twice brine (15 mL x 2). The combined aqueous layers were back-extracted with EtOAc (15 mL x 2). The combined organic layers were dried over MgSO4, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc = 20:1) to afford indanone 5 as a yellow oil (0.031 g, 34%), along with indenone 1c (0.040 g, 45%). R_f = 0.22 (PE/EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.7 Hz, 2H), 7.89 (d, J = 7.7 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (d, J =7.7 Hz, 1H), 7.32 (d, J = 8.7 Hz, 2H), 6.82 (s, 2H), 5.18 (s, 1H), 4.50 (d, J = 4.9 Hz, 1H), 3.89 (d, J = 5.0 Hz, 1H), 1.37 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 204.2, 156.3, 153.3, 147.3, 146.5, 136.8, 136.0, 135.9, 132.3, 129.7, 128.7, 127.1, 124.4, 124.3, 124.2, 64.5, 54.7, 34.6, 30.5. IR (neat): 3445, 2997, 1657, 1423, 1033, 702 cm⁻¹. HRMS(ESI) m/z: $[M+H]^+$ calculated for C₂₉H₃₂NO₄ 458.23258; found 458.23328.

A solution of **5** (0.046 g, 0.1 mmol), Cs₂CO₃ (0.033 g, 0.1 mmol) and TEMPO (0.023 g, 0.15 mmol) in degassed DMSO (2.0 mL) was heated in an oil bath at 50 °C for 4 h under argon. The progress of the reaction was monitored by TLC analysis to establish

its completion. After cooling to room temperature, the mixture was diluted with ethyl acetate (15 mL) and washed with brine (15 mL x 2). The combined aqueous layers were back-extracted with EtOAc (15 mL x 2). The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc = 20:1) to afford indenone **1c** as an amorphous red solid (0.029 g, 64%).

6.2 Synthesis of ethyl 4-((2-((3,5-di-*t*ert-butyl-4-hydroxyphenyl)(hydroxy)methyl)phenyl)ethynyl)benzoate (6).

To a solution of ethyl 4-((2-formylphenyl)ethynyl)benzoate (4a) (0.200 g, 0.72 mmol) and 1b (0.445 g, 2.16 mmol) in degassed MeCN (15.0 mL) were added KOH (0.061 g, 1.08 mmol) and *t*-BuNH₂ (0.158 g, 2.16 mmol) under argon at room temperature. The resulting solution was stirred at the same temperature for 14 h. The completed reaction was diluted with ethyl acetate (15 mL) and washed with brine (15 mL x 2). The combined aqueous layers were back-extracted with EtOAc (20 mL x 2). The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc = 10:1) to afford product **6** as a yellow solid (0.235 g, 68%). $R_f = 0.47$ (PE/EtOAc = 5:1); m.p. 150-152°C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 7.8 Hz, 1H), 7.55 – 7.47 (m, 3H), 7.42 (t, J = 7.5 Hz, 1H), 7.30 – 7.24 (m, 3H), 6.31 (s, 1H), 5.16 (s, 1H), 4.39 (q, J = 7.1 Hz, 2H), 2.38 (s, 1H), 1.41 (t, J = 7.1 Hz, 3H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 153.5, 146.6, 136.0, 134.0, 132.6, 131.5, 130.2, 129.7, 129.5, 127.9, 127.4, 126.2, 123.8, 120.7, 94.0, 90.9, 74.7, 61.4, 34.6, 30.4, 14.5. IR (neat): 3632, 2962, 1711, 1273, 1109, 743 cm⁻¹. HRMS(ESI) m/z: [M-H₂O]⁺ calculated for C₃₂H₃₅O₃ 467.25807; found 467.25861.

To a solution of **6** (0.048 g, 0.10 mmol) in degassed MeCN (3.0 mL) was added KOH (0.0084g, 0.15 mmol, 1.5 equiv.) and the resulting mixture was stirred at 50 °C under Argon for 2h. Then the mixture was heated at the same temperature under air (balloon) for another 5h. After a flash column chromatography (PE/EtOAc = 20:1), the product **4c** was obtained as an amorphous red solid (30.0 mg, 61%).

7. Proposed Mechanism for Oxidation of Dihydroindenone and Inden-1-ol7.1 Proposed mechanism for oxidation of inden-1-ol by DMSO

This mechanism was proposed based on oxidation of benzhydrols by DMSO reported by Ravikumar etc.¹³

7.2 Proposed mechanism for oxidation of inden-1-ol by TEMPO

This mechanism was proposed based on oxidation of alcohol by TEMPO reported by Hong etc.¹⁴

7.3 Proposed mechanism for oxidation of dihydroindenone by TEMPO

This mechanism was proposed based on oxidation of alcohol by TEMPO reported

8. References

- [1] Korich, A. L.; Hughes, T. S. Org. Lett. 2008, 10, 5405-5408.
- [2] Kaiser, R. P.; Mosinger, J.; Cisarova, I.; Kotora, M. Org. Biomol. Chem. 2017, 15, 6913-6920.
- [3] Allen, C. P.; Benkovics, T.; Turek, A. K.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 12560-12561.
- [4] Bucher, J.; Stoesser, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2015, 54, 1666-1670.
- [5] Saifuddin, M.; Samala, S.; Krishna, D. G. V.; Kundu, B. Syn. 2013, 45, 1553-1563.
- [6] Mukherjee, A.; Liu, R. S. Org. Lett. 2011, 13, 660-663.
- [7] Chen, J. Y.; Liu, B.; Chen, Y. H.; He, Q.; Yang, C. H. RSC Adv. 2014, 4, 11168-11175.
- [8] Pagire, S. K.; Kreitmeier, P.; Reiser, O. Angew. Chem., Int. Ed. 2017, 56, 10928-10932.
- [9] Verma, A. K.; Kotla, S. K. R.; Choudhary, D.; Patel, M.; Tiwari, R. K. J. Org. Chem. 2013, 78, 4386-4401.
- [10] Mariaule, G.; Newsome, G.; Toullec, P. Y.; Belmont, P.; Michelet, V. Org. Lett. 2014, 16, 4570-4573.
- [11] Alfonsi, M.; Dell'Acqua, M.; Facoetti, D.; Arcadi, A.; Abbiati, G.; Rossi, E. Eur. J.

Org. Chem. 2009, 2852-2862.

- [12] Guo, Z.; Liu, T.; Liang, X.; Wu, Y. Yao, T. Adv. Synth. Catal. 2020, 362, 1053-1057.
- [13] R. Chebolu, A. Bahuguna, R. Sharma, V. K. Mishra, P. C. Ravikumar, *Chem. Commun.*, 2015, **51**, 15438.
- [14] M. Hong, J. Min, S. Wu, H. Cui, Y. Zhao, J. Li, S. Wang, ACS Omega, 2019, 4, 7054.

9. Single Crystal X-ray Structures of 20c', 21c', 22c, 25c, 33c, 34c and

35c.

The data was collected at Rigaku XtaLAB Synergy four-circle diffractometer under MoK α radiation ($\lambda = 0.71073$), with the CrysAlisPro software (version 1.171.39.34b) for data reduction and analysis. The structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. All non-hydrogen atoms in the structure were refined with anisotropic models. All hydrogen atoms were generated geometrically.

9.1 X-ray Crystal of 20c'.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **20c'** were with thermal ellipsoids at 50% probability.

Table S1. Crystal Data and Structure Refinement for 20c'

Identification code	20c'
Empirical formula	C ₂₉ H ₂₈ ClNO ₄
Formula weight	489.97
Temperature/K	273.15
Crystal system	triclinic
Space group	P-1
a/Å	10.0582(6)
b/Å	11.3137(7)
c/Å	11.3744(7)
$\alpha/^{\circ}$	85.422(2)
β/°	89.974(2)
γ/°	77.443(2)
Volume/Å ³	1259.17(13)
Z	2
pcalcg/cm ³	1.292
µ/mm ⁻¹	0.187
	S50

F(000)	516.0
Crystal size/mm ³	$0.21\times0.2\times0.18$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.92 to 50
Index ranges	$-11 \le h \le 11, -13 \le k \le 13, -13 \le l \le 13$
Reflections collected	42032
Independent reflections	4436 [$R_{int} = 0.0741, R_{sigma} = 0.0422$]
Data/restraints/parameters	4436/2/323
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0597, wR_2 = 0.1249$
Final R indexes [all data]	$R_1 = 0.0879, wR_2 = 0.1338$
Largest diff. peak/hole / e Å ⁻³	0.27/-0.25

9.2 X-ray Crystal of 21c'.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **21c'** were with thermal ellipsoids at 50% probability.

Table S2. Crystal Data and Structure Refinement for 21c'

Identification code	21c'
Empirical formula	$C_{30}H_{28}F_{3}NO_{4}$
Formula weight	523.53
Temperature/K	273.15
Crystal system	monoclinic
Space group	C2/c
a/Å	25.520(8)
b/Å	11.215(3)
c/Å	20.049(7)
$\alpha/^{\circ}$	90.00
β/°	112.806(9)
γ/°	90.00
Volume/Å ³	5290(3)
Z	8
$\rho_{calc}g/cm^3$	1.315
μ/mm^{-1}	0.101
	S52

F(000)	2192.0
Crystal size/mm ³	$0.2\times0.18\times0.17$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.02 to 49.98
Index ranges	$-30 \le h \le 30, -13 \le k \le 13, -23 \le l \le 23$
Reflections collected	38214
Independent reflections	4667 [$R_{int} = 0.0919$, $R_{sigma} = 0.0620$]
Data/restraints/parameters	4667/12/350
Goodness-of-fit on F ²	1.100
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1225, wR_2 = 0.2644$
Final R indexes [all data]	$R_1 = 0.1691, wR_2 = 0.2859$
Largest diff. peak/hole / e Å ⁻³	0.61/-0.49

9.3 X-ray Crystal of 22c.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **22c** were with thermal ellipsoids at 50% probability.

Table S3. Crystal Data and Structure Refinement for 22c

Identification code	22c
Empirical formula	C ₂₉ H ₂₈ FNO ₄
Formula weight	473.52
Temperature/K	301.0
Crystal system	triclinic
Space group	P-1
a/Å	9.4344(4)
b/Å	10.4959(5)
c/Å	14.3304(6)
α/°	96.736(2)
β/°	104.101(2)
γ/°	94.205(2)
Volume/Å ³	1359.10(10)
Z	2
$\rho_{calc}g/cm^3$	1.157
µ/mm ⁻¹	0.081
μ/mm ⁻¹	0.081 \$54

F(000)	500.0
Crystal size/mm ³	$0.21\times0.19\times0.18$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.476 to 49.998
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -17 \le l \le 17$
Reflections collected	40874
Independent reflections	4795 [$R_{int} = 0.0536$, $R_{sigma} = 0.0329$]
Data/restraints/parameters	4795/1/323
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0573, wR_2 = 0.1697$
Final R indexes [all data]	$R_1 = 0.0851, wR_2 = 0.1845$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.39

9.4 X-ray Crystal of 25C.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **25c** were with thermal ellipsoids at 50% probability.

Table S4. Crystal Data and Structure Refinement for 25c

Identification code	25c
Empirical formula	C ₃₀ H ₃₁ NO ₄
Formula weight	469.56
Temperature/K	273.15
Crystal system	triclinic
Space group	P-1
a/Å	11.4176(5)
b/Å	11.6040(5)
c/Å	22.5633(10)
α/°	98.223(2)
β/°	92.734(2)
$\gamma/^{\circ}$	119.2730(10)
Volume/Å ³	2556.78(19)
Ζ	4
$\rho_{calc}g/cm^3$	1.220
μ/mm^{-1}	0.080
	S56

F(000)	1000.0
Crystal size/mm ³	$0.21\times0.21\times0.18$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.1 to 50
Index ranges	$-13 \le h \le 13, -13 \le k \le 13, -26 \le l \le 26$
Reflections collected	79313
Independent reflections	9021 [$R_{int} = 0.0882$, $R_{sigma} = 0.0527$]
Data/restraints/parameters	9021/10/647
Goodness-of-fit on F ²	1.078
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0553, wR_2 = 0.1344$
Final R indexes [all data]	$R_1 = 0.1102, wR_2 = 0.1613$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.34

9.5 X-ray Crystal of 33C.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **33c** were with thermal ellipsoids at 50% probability.

Table S5	Crystal	Data a	nd Structure	Refinement	for	33c
----------	---------	--------	--------------	------------	-----	-----

Identification code	33c
Empirical formula	$C_{32}H_{33}F_{3}NO_{4}$
Formula weight	552.59
Temperature/K	273.15
Crystal system	triclinic
Space group	P-1
a/Å	9.1533(13)
b/Å	12.2143(16)
c/Å	13.953(2)
$\alpha/^{\circ}$	96.106(5)
β/°	106.461(5)
$\gamma/^{\circ}$	90.549(5)
Volume/Å ³	1486.3(4)
Ζ	2
$ ho_{calc}g/cm^3$	1.235
µ/mm ⁻¹	0.093

F(000)	582.0
Crystal size/mm ³	$0.18\times0.17\times0.15$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.28 to 50
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -16 \le l \le 16$
Reflections collected	42190
Independent reflections	5232 [$R_{int} = 0.1761$, $R_{sigma} = 0.1155$]
Data/restraints/parameters	5232/4/369
Goodness-of-fit on F ²	1.059
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1379, wR_2 = 0.2837$
Final R indexes [all data]	$R_1 = 0.2196, wR_2 = 0.3238$
Largest diff. peak/hole / e Å ⁻³	0.60/-0.55

9.6 X-ray Crystal of 34C.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **34c** were with thermal ellipsoids at 50% probability.

Identification code	34c
Empirical formula	C ₃₂ H ₃₃ ClO ₄
Formula weight	517.03
Temperature/K	273.15
Crystal system	triclinic
Space group	P-1
a/Å	9.1084(5)
b/Å	11.8341(7)
c/Å	13.8157(8)
α/°	94.809(2)
β/°	107.322(2)
γ/°	91.397(2)
Volume/Å ³	1414.74(14)
Z	2
$\rho_{calc}g/cm^3$	1.214
μ/mm ⁻¹	0.169
	S60

Table S6. Crystal Data and Structure Refinement for 34c

F(000)	548.0
Crystal size/mm ³	$0.2\times0.19\times0.17$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.42 to 50
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -16 \le l \le 16$
Reflections collected	42560
Independent reflections	4972 [$R_{int} = 0.0675$, $R_{sigma} = 0.0411$]
Data/restraints/parameters	4972/2/342
Goodness-of-fit on F ²	1.074
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0601, wR_2 = 0.1536$
Final R indexes [all data]	$R_1 = 0.0995, wR_2 = 0.1699$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.31

9.7 X-ray Crystal of 35C.

The crystal was obtained by recrystallization in ethyl acetate and petroleum ether. Crystal data and structure refinement for **35c** were with thermal ellipsoids at 50% probability.

Table S7. Crystal Data and Structure Refinement for 35c

Identification code	35c
Empirical formula	$C_{32}H_{33}FO_4$
Formula weight	500.58
Temperature/K	273.15
Crystal system	triclinic
Space group	P-1
a/Å	10.7537(13)
b/Å	11.4253(14)
c/Å	11.8372(15)
α/\circ	83.875(4)
β/°	77.861(4)
$\gamma/^{\circ}$	68.433(4)
Volume/Å ³	1321.6(3)
Z	2
$\rho_{calc}g/cm^3$	1.258
μ/mm^{-1}	0.086
	S62

F(000)	532.0
Crystal size/mm ³	$0.21\times0.2\times0.18$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.14 to 49.98
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -14 \le l \le 14$
Reflections collected	39970
Independent reflections	4645 [$R_{int} = 0.1147, R_{sigma} = 0.0742$]
Data/restraints/parameters	4645/2/342
Goodness-of-fit on F ²	1.005
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0618, wR_2 = 0.1492$
Final R indexes [all data]	$R_1 = 0.1410, wR_2 = 0.1799$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.31

10. ¹H NMR, ¹⁹F NMR and ¹³C NMR Spectral Copies.

¹H NMR (400MHz, CDCl₃) for 8a.

¹³C NMR (101 MHz, CDCl₃) for 8a.

fl (ppm)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

¹³C NMR (101 MHz, CDCl₃) for **9a**.

¹H NMR (400MHz, CDCl₃) for 10a

$^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) for 10a.

¹³C NMR (101 MHz, CDCl₃) for **11a**.

¹H NMR (400MHz, CDCl₃) for 20a

¹³C NMR (101 MHz, CDCl₃) for **20a**.

1.97 0.98 ⊈ 1.00 ⊈ 1.96 ⊈

0.90

21a

¹³C NMR (101 MHz, CDCl₃) for **21a**.

 ^{19}F NMR (377 MHz, CDCl₃) for **21a**.

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 ſ1 (ppm)

 ^{13}C NMR (151 MHz, CDCl₃) for **22a**.

¹⁹F NMR (377 MHz, CDCl₃) for **22a**.

$^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) for $\mathbf{20a'}.$

¹H NMR (400MHz, CDCl₃) for **21a'**.

-10.63-8.29-8.27-8.27-7.78-7.78

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹³C NMR (101 MHz, CDCl₃) for **21a'**.

¹⁹F NMR (377 MHz, CDCl₃) for **21a'**.

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 F1 (ppm)

¹H NMR (400MHz, CDCl₃) for **22a'**.

¹³C NMR (101 MHz, CDCl₃) for **22a'**.

¹⁹F NMR (377 MHz, CDCl₃) for **22a'**.

¹³C NMR (101 MHz, CDCl₃) for **23a**.

¹³C NMR (101 MHz, CDCl₃) for **24a**.

^{13}C NMR (101 MHz, CDCl₃) for **25a**.

¹H NMR (400MHz, CDCl₃) for **27a**.

 $-10. \frac{1}{63}$

¹³C NMR (101 MHz, CDCl₃) for **27a**.

-10.57-9.008.80-8.29-8.27-7.75

¹³C NMR (101 MHz, CDCl₃) for **28a**.

¹³C NMR (101 MHz, CDCl₃) for **34a'**.

¹³C NMR (101 MHz, CDCl₃) for **37a'**.

^{13}C NMR (101 MHz, CDCl₃) for 1c.

S86

^{13}C NMR (101 MHz, CDCl₃) for **2c**.

^{13}C NMR (101 MHz, CDCl₃) for **3c**.

¹H NMR (400MHz, CDCl₃) for 4c.

¹H NMR (400MHz, CDCl₃) for 5c.

¹H NMR (400MHz, CDCl₃) for 6c.

¹H NMR (400MHz, CDCl₃) for 7c.

¹H NMR (400MHz, CDCl₃) for 8c.

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

$^1\mathrm{H}$ NMR (400MHz, CDCl₃) for **9c**.

^{13}C NMR (101 MHz, CDCl₃) for **9c**.

 ^{19}F NMR (377 MHz, CDCl₃) for 9c.

---62.12

¹H NMR (400MHz, CDCl₃) for **10c**.

¹⁹F NMR (377 MHz, CDCl₃) for **10c**.

¹³C NMR (101 MHz, CDCl₃) for **11c**.

¹³C NMR (101 MHz, CDCl₃) for **12c**.

¹H NMR (400MHz, CDCl₃) for **13c**.

¹³C NMR (101 MHz, CDCl₃) for **13c**.

¹³C NMR (101 MHz, CDCl₃) for **14c**.

¹³C NMR (101 MHz, CDCl₃) for **15c**.

¹H NMR (400MHz, CDCl₃) for **16c**.

 $\begin{array}{c} & 16 \\ & & 3, 16 \\ & & & 75 \\ & & & 75 \\ & & & 7, 35 \\ & & & & 7, 35 \\ & & & & 7, 225 \\ & & & & & 7, 025 \\ & & & & & 7, 025 \end{array}$

¹³C NMR (101 MHz, CDCl₃) for **16c**.

¹³C NMR (101 MHz, CDCl₃) for **17c**.

¹H NMR (400MHz, CDCl₃) for **18c**.

 $\begin{array}{c} & 8.15 \\ & 8.15 \\ & 8.17 \\ & 8.17 \\ & 1.749 \\ & 7.134 \\ & 7.1234 \\ & 7.234 \\ &$

¹³C NMR (101 MHz, CDCl₃) for **18c**.

¹³C NMR (101 MHz, DMSO-*d*₆) for **19c**.

¹³C NMR (101 MHz, CDCl₃) for **20c**.

¹³C NMR (101 MHz, CDCl₃) for **21c**.

CH3 ∼сн₃ к СН3

òн

H₃C

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 F1 (ppm)

н₃с́ , СН3 21c

-90

-110

-130

-150

-170

-190

-210

¹H NMR (400MHz, CDCl₃) for **22c**.

¹⁹F NMR (377 MHz, CDCl₃) for **22c**.

¹³C NMR (101 MHz, CDCl₃) for **20c'**.

¹³C NMR (101 MHz, CDCl₃) for **21c'**.

¹⁹F NMR (377 MHz, CDCl₃) for **21c'**.

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 ſ1 (ppm)

¹H NMR (400MHz, CDCl₃) for **22c'**.

S113

¹⁹F NMR (377 MHz, CDCl₃) for **22c'**.

¹³C NMR (101 MHz, CDCl₃) for **23c**.

¹³C NMR (101 MHz, CDCl₃) for **24c**.

¹³C NMR (101 MHz, CDCl₃) for **25c**.

¹³C NMR (101 MHz, CDCl₃) for **26c**.

¹³C NMR (101 MHz, CDCl₃) for **27c**.

¹³C NMR (101 MHz, CDCl₃) for **28c**.

¹³C NMR (101 MHz, CDCl₃) for **29c**.

¹³C NMR (101 MHz, CDCl₃) for **30c'**.

¹⁹F NMR (377 MHz, CDCl₃) for **30c'**.

¹H NMR (400MHz, CDCl₃) for **33c**.

----63.17

¹³C NMR (101 MHz, CDCl₃) for **34c**.

¹³C NMR (101 MHz, CDCl₃) for **35c**.

¹H NMR (400MHz, CDCl₃) for **33c'**.

S127

5.5 8.0 7.5 6.5 6.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.0 1.5 0.5 0.0 7.0 5.0 2.5 1.0

¹³C NMR (101 MHz, CDCl₃) for **34c'**.

¹³C NMR (101 MHz, CDCl₃) for **35c'**.

¹H NMR (400MHz, CDCl₃) for **36c'**.

¹H NMR (400MHz, CDCl₃) for **37c'**.

¹H NMR (400MHz, CDCl₃) for **5**.

 1 H NMR (400MHz, CDCl₃) for **6**.

