# SUPPLEMENTALLY INFORMATION

# A convenient method to estimate glass transition temperature of small organic semiconductor materials

Youichi Tsuchiya,<sup>\*,a</sup> Nozomi Nakamura,<sup>a</sup> Shunta Kakumachi,<sup>a,b</sup> Keiko Kusuhara,<sup>a</sup> Chin-Yiu Chan<sup>a</sup> and Chihaya Adachi<sup>\*,a,b,c</sup>

<sup>a</sup> Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

<sup>b</sup> Department of Chemistry and Biochemistry, Kyushu University, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

<sup>c</sup> International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

E-mails:

tsuchiya@opera.kyushu-u.ac.jp, adachi@cstf.kyushu-u.ac.jp

## Contents:

- 1. Experimental details
- 2. Structures of Materials
- 3. Derivation of Fox equation
- 4. Coefficient of determination, R<sup>2</sup>
- 5. Note for plots of  $T_g$  versus fraction of blends
- 6. Full scaled DSC thermal profile of CBP blends
- 7. DSC thermal profile and  $T_g$  analysis of T2T blends
- 8. Full scaled DSC thermal profile of T2T blends
- 9. DSC analysis of T2T with quick cooling by liquid N<sub>2</sub>
- 10. Results of  $T_g$  estimation using melt-blending methods for 4CzIPN and 5CzTRZ
- 11. Summary of Thermal behavior of organic semiconductors
- 12. DSC data for bulk organic semiconductors
- 13. Appendix: Characterization of DSC curves
- 14. Appendix: Purity of materials

#### 1. Experimental details

The organic semiconductors were purchased or synthesized by previously reported methods, and their purity was confirmed by the LC-ESI-MS analysis system consisting of HPLC, Waters Alliance 2695 with 3100 Mass Detector (Waters, USA) by using InertSustain C18 (GL Science, Japan) with a tetrahydrofuran-acetonitrile mixed system. **Cz-TRZ**,<sup>S1</sup> **PPT**,<sup>S2</sup> **DPEPO**,<sup>S3</sup> **5CzTRZ**,<sup>S4</sup> **HDT**-1,<sup>S5</sup> **TrisCz-TRZ**,<sup>S6</sup>, and **PXZ-TRZ**<sup>S7</sup> were synthesized by ourselves with the reported methods. **CBP** (Angene International Limited), **TCTA** (TCI), **TPD** (TCI), **TPBi** (Suzhou Geao New Material Co., Ltd.), and **4CzIPN** (Chemicalsoft Co., Ltd.) were purchased and purified with sublimation in our laboratory. **mCP** (Changchun Tuo Cai Technology Co., ltd.), **mCBP** (NARD INSTITUTE, LTD.), **PyD2Cz** (Lumtec), **TAPC** (Lumtec), **T2T** (NARD INSTITUTE, LTD.), **DPPS** (Lumtec), **TmPyPB** (Lumtec), **SF3-TRZ** (NARD INSTITUTE, LTD.) were directly used as is with or without the purity check. The thermal analysis was performed with thermogravimetry-differential thermal analysis (TG-DTA 2400SA, BRUKER, Germany) and differential scanning calorimetry (DSC; DSC 204 F1, NETZCH, Germany). TG-DTA measurements were performed with the scan rate of 10 °C/min under N<sub>2</sub> atmosphere.

To measure  $T_g$  values by using DSC, it is necessary to melt the samples at the 1<sup>st</sup> heating process. Then, the sample is quickly cooled to around 0 °C (1<sup>st</sup> cooling), providing a glass state of samples. Next, we heat the sample again to find the  $T_g$  signal (2<sup>nd</sup> heating). In this time, we employ 10 and 20 °C/min as the heating and cooling rate, and 10 min as an interval time for the first heating and cooling. This long interval time is a waiting time for blending the two materials at the melting state; this is the origin of the name of the melt-blending method. It should be noted that the incubation temperature must be lower than  $T_{dec}$  of blend components. To obtain homogeneous blend glass, it is better to use the blend samples ground well by an agate mortar and the incubation time at a high temperature can be tuned. It is important to check the sample state after the measurement of 2<sup>nd</sup> cooling (same rate with 1<sup>st</sup> cooling); the sample formed clear glass without whitish-fog or not.

#### **References:**

- S1) J. Xiao, X.-K. Liu, X.-X. Wang, C.-J. Zheng, and F. Li, Org. Electron. 2014, 2763–2768.
- S2) C. Fan, C. Duan, Y. Wei, D. Ding, H. Xu, and W. Huang, Chem. Mater. 2015, 27, 5131-5140.
- S3) J. Fawcett, A. W. G.Platt, S. Vickers, M. D.Ward, Polyhedron 2004, 2561–2567.
- S4) L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, and R. H. Friend, *Nat. Photon.* 2020, **14**, 636–642.
- S5) C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, and C. Adachi, *Nat. Photon.* 2021, **15**, 203–207.
- S6) S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S.-Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, and C. Adachi, Nat. Materials 2015, 14, 330–336.
- S7) H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi, Chem Commun. 2012, 48, 11392–11394.

## 2. Structures of Materials



HDT-1

Û

Û

Ì



PXZ-TRZ

#### 3. Derivation of Fox equation

In general,  $T_g$  (in Kelvin) of amorphous polymer blends between two components, A and B, follows the relationship of the Gordon-Taylor equation with  $T_g$  of each component ( $T_{g,A}^0$  and  $T_{g,B}^0$ ).<sup>8</sup>

$$T_g = \frac{w_A T_{g,A}^0 + k w_B T_{g,B}^0}{w_A + k w_B} = \frac{(1 - w_B) T_{g,A}^0 + k w_B T_{g,B}^0}{(1 - w_B) + k w_B},$$
(S3.1)

where  $w_A$  and  $w_B$  are the weight fraction of each component A and B. k is the ratio related to the  $T_g$  values and densities of the glass states ( $\rho_A^0$  and  $\rho_B^0$ ) for each component as follows,<sup>9</sup>

$$k = \frac{T_{g,A}^{0}}{T_{g,B}^{0}} \cdot \frac{\rho_{A}^{0}}{\rho_{B}^{0}}.$$
 (S3.2)

When  $\rho_A^0 = \rho_B^0$  is employed as the assumption, the equation can be rewritten as the simple form called Fox equation as follows,<sup>7</sup>

$$\frac{1}{T_g} = \frac{w_A}{T_{g,A}^0} + \frac{w_B}{T_{g,B}^0} = \frac{1 - w_B}{T_{g,A}^0} + \frac{w_B}{T_{g,B}^0}.$$
(S3.3)

#### 4. Coefficient of determination, R<sup>2</sup>

Eqn (4) derived from the Fox equation does not give an exact liner relationship between the theoretical  $T_g$  and the fraction of the target compound but it gives an approximately linear relationship. In this report, therefore, the most general R<sup>2</sup> which is defined by the residual sum of squares (RSS) and a total sum of squares (TSS) was employed as an accuracy value for theoretically estimated  $T_g$ .

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}},$$
(S4.1)

where  $y_i$  are the set of observations,  $\hat{y}_i$  is the set of theocraticals, and  $\overline{y}_i$  is the average of  $y_i$ . The  $R^2$  value is sometimes provided as a negative value, which means the theoretical model cannot explain the observed values.

### 5. Note for plots of $T_g$ versus fraction of blends

The Fox equation does not provide the liner plot for  $T_g$  of blends. When it is required the pictures in the exact liner relationship, the deformed eqns (S5.2) and (S5.3) can be employed to draw the theoretical line and plot the observed  $T_a$  instead of eqn (4).

$$T_g = T_{g,matrix}^0 T_{g,target}^0 W \tag{S5.2}$$

$$W = \frac{1}{T_{g,target}^{0} + (T_{g,matrix}^{0} - T_{g,target}^{0})w_{target}}$$
(S5.3)

where  $T_{g,target}^{0}$  is the average estimated  $T_{g}$  value for the target material from each observed  $T_{g}$  value. It should note that Kelvin was used as the temperature to apply each equation while those values were written in the Celsius degree in the main text, Figures, and Tables.

## 6. Full scaled DSC thermal profile of organic semiconductor blends



Fig. S1 DSC curves of **mCP/CBP** blends with the various blend ratio at 2<sup>nd</sup> heating.



Fig. S2 DSC curves of **mCBP/CBP** blends with the various blend ratio at 2<sup>nd</sup> heating.





Fig. S3 (a and c)  $T_g$  signals of **T2T** blends at second heating of DSC measurement with **mCP** (a) or **mCBP** (c) as a matrix. (b and d) Plots of inflection (open circle) and onset  $T_g$  values (closed circle) versus CBP fraction of each blend; (b) **mCP** and (d) **mCBP**. Broken lines were obtained with eqn (4) as theoretical curve of the Fox equation.

## 8. Full scaled DSC thermal profile of T2T blends



Fig. S4 DSC curves of **mCP/T2T** blends with the various blend ratio at 2<sup>nd</sup> heating.



Fig. S5 DSC curves of **mCBP/T2T** blends with the various blend ratio at 2<sup>nd</sup> heating.

## 9. DSC analysis of T2T with quick cooling by liquid $N_2$



Fig. S6 (a) DSC curves of **T2T** by heating and cooling processes. (b) Focusing  $T_g$  signal at 1<sup>st</sup> heating. The sample **T2T** in an aluminum pan was cooled into liquid N<sub>2</sub> after heating to 230 °C on hot plate.





Fig. S7 Plots of inflection (open circle) and onset  $T_g$  values (closed circle) versus **4CzIPN** fraction of **4CzIPN-mCBP** (a) or **4CzIPN-mCP** (b) blends; the horizontal scale was emphasized from 0 to 0.1. Broken lines were obtained with eqn (4) as theoretical curve of Fox equation.



Fig. S8 (a)  $T_g$  signals of **4CzIPN** blends at second heating of DSC measurement with **Tris-PCz** as a matrix. (b) Plots of inflection (open circle) and onset  $T_g$  values (closed circle) versus **4CzIPN** fraction of each blend. Broken lines were obtained with eqn (4) as theoretical curve of Fox equation.



Fig. S9 (a)  $T_g$  signals of **5CzTRZ** blends at second heating of DSC measurement with **Tris-PCz** as a matrix. (b) Plots of inflection (open circle) and onset  $T_g$  values (closed circle) versus **5CzTRZ** fraction of each blend. Broken lines were obtained with eqn (4) as theoretical curve of Fox equation.

### **11.** Summary of Thermal behavior of organic semiconductors

| Table S1. Thermo-physical parameters for interest OLED materials (cool | ling rate, 20 °C min <sup>-1</sup> ; | ; heating rate, | , 10 °C/ min) |
|------------------------------------------------------------------------|--------------------------------------|-----------------|---------------|
|------------------------------------------------------------------------|--------------------------------------|-----------------|---------------|

|                                 | Purity               | $T_g^i$ /°C            | $T_g^o/^{\circ}\mathrm{C}$ | <i>Т<sub>с</sub>/</i> °С              | $T_m^{\rm f)}$ / °C | T <sub>dec</sub> <sup>g)</sup> / °C | $T_g^{Lit}$ /°C                                                                                                                                                                                        |  |  |  |
|---------------------------------|----------------------|------------------------|----------------------------|---------------------------------------|---------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Host materials                  |                      |                        |                            |                                       |                     |                                     |                                                                                                                                                                                                        |  |  |  |
| mCP                             | 1.000                | 64                     | 62                         | N.D.                                  | 177                 | -                                   | 55 (-/-/-) <sup>s8</sup> , 60 (-/-/-) <sup>s9</sup> , 65 (100/10/i) <sup>s10</sup> , 66 (-/-/-) <sup>s11</sup>                                                                                         |  |  |  |
| mCBP                            | 0.999                | 92                     | 90                         | 137                                   | 271                 | 349                                 | 92 (100/10/i) <sup>\$10</sup> , (-/-/-) <sup>\$11</sup>                                                                                                                                                |  |  |  |
| CBP                             | 0.996                | 109                    | 103                        | 162 <sup>b)</sup>                     | 282                 | -                                   | 62 (-/-/-) <sup>59</sup> , 112(Liq.N <sub>2</sub> /50/i) <sup>512</sup>                                                                                                                                |  |  |  |
| Cz-TRZ                          | 0.999                | 92                     | 90                         | 149                                   | 276                 | 345                                 | N/A                                                                                                                                                                                                    |  |  |  |
| PPT                             | 0.999                | 109                    | 105                        | N.D.                                  | 252                 | 406                                 | 107 (-/-/-) <sup>511</sup>                                                                                                                                                                             |  |  |  |
| DPEPO                           | 0.994                | 95                     | 90                         | 160                                   | 282                 | 316                                 | 93 (100/10/i) <sup>510</sup> , 94 (-/-/-) <sup>511</sup>                                                                                                                                               |  |  |  |
| PyD2Cz                          | > 0.99 <sup>a)</sup> | 74                     | 70                         | N.D.                                  | 308                 | 319                                 | N/A                                                                                                                                                                                                    |  |  |  |
| Hole transporting materials     |                      |                        |                            |                                       |                     |                                     |                                                                                                                                                                                                        |  |  |  |
| TAPC                            | 0.996                | 86                     | 82                         | N.D.                                  | 187                 | 357                                 | 78 (10/10/-) <sup>\$13</sup> , 79 (-/-/-) <sup>\$14</sup> , 89 (-/-/-) <sup>\$15</sup>                                                                                                                 |  |  |  |
| Tris-PCz                        | 0.999                | 163                    | 157                        | N.D.                                  | N.D.                | 481                                 | 154 (100/10/i) <sup>S10</sup>                                                                                                                                                                          |  |  |  |
| α-NPD                           | 0.998                | 101                    | 95                         | 211                                   | 282                 | 375                                 | 75 (-/-/-) <sup>\$16</sup> , 95 (-/-/-) <sup>\$17</sup> , 96 (-/-/-) <sup>\$14</sup> , 99 (-/-/-) <sup>\$11</sup> 100 (-/-/-) <sup>\$15</sup>                                                          |  |  |  |
| TCTA                            | 0.997                | 155                    | 152                        | N.D.                                  | 300                 | 471                                 | 151 (-/5/o) <sup>518</sup> , (-/-/-) <sup>519</sup>                                                                                                                                                    |  |  |  |
| TPD                             | 0.997                | 65                     | 63                         | N.D.                                  | 171                 | 329                                 | 58 (-/-/-) <sup>\$14</sup> , 60 (10/10/-) <sup>\$20</sup> , (-/5/-) <sup>\$11</sup> , (-/-/-) <sup>\$18</sup> , 61 (-/-/-) <sup>\$16</sup> , 63 (-/-/-) <sup>\$21</sup> , 65 (10/10/-) <sup>\$22</sup> |  |  |  |
| <i>m</i> -MTDATA                | > 0.99 <sup>a)</sup> | 82                     | 76                         | N.D.                                  | 206                 | 399                                 | 75 (-/-/-) <sup>514</sup> , (-/-/o) <sup>523</sup>                                                                                                                                                     |  |  |  |
| Electron transporting materials |                      |                        |                            |                                       |                     |                                     |                                                                                                                                                                                                        |  |  |  |
| T2T                             | 1.000                | 59<br>56 <sup>c)</sup> | 55<br>55 <sup>c)</sup>     | 109 <sup>b)</sup><br>94 <sup>c)</sup> | 214                 | 366                                 | 55 (-/-/-) <sup>524</sup> , 95 (-/-/-) <sup>525</sup>                                                                                                                                                  |  |  |  |
| DPPS                            | > 0.99 <sup>a)</sup> | 53                     | 50                         | N.D.                                  | 154                 | 312                                 | N/A                                                                                                                                                                                                    |  |  |  |
| ТРВі                            | 0.999                | 123                    | 120                        | N.D.                                  | 277                 | 381                                 | 122 (-/-/-) <sup>526</sup> , 124 (-/-/i) <sup>527</sup> , 127 (-/10/-) <sup>528</sup>                                                                                                                  |  |  |  |
| TmPyPB                          | 0.993                | 79                     | 76                         | 121 <sup>d)</sup>                     | 198                 | 395                                 | 79 (-/10/-) <sup>s29</sup>                                                                                                                                                                             |  |  |  |
| SF3-TRZ                         | 1.000                | 134                    | 130                        | 207                                   | 278                 | 348                                 | 135 (-/-/i) <sup>s30</sup>                                                                                                                                                                             |  |  |  |
| TADF materials                  |                      |                        |                            |                                       |                     |                                     |                                                                                                                                                                                                        |  |  |  |
| 4CzIPN                          | 0.993                | 183                    | 176                        | 265 <sup>e)</sup>                     | 381                 | 389                                 | N/A                                                                                                                                                                                                    |  |  |  |
| 5CzTRZ                          | 0.994                | 153                    | 151                        | N.D.                                  | 471                 | 486                                 | N/A                                                                                                                                                                                                    |  |  |  |
| HDT-1                           | 0.999                | 205                    | 197                        | N.D.                                  | 414                 | 491                                 | N/A                                                                                                                                                                                                    |  |  |  |
| TrisCz-TRZ                      | 0.998                | 198                    | 195                        | N.D.                                  | 354                 | 491                                 | 197 (-/10/-) <sup>S31</sup>                                                                                                                                                                            |  |  |  |
| PXZ-TRZ                         | 0.995                | 89                     | 87                         | 138                                   | 308                 | 351                                 | N/A                                                                                                                                                                                                    |  |  |  |

All values were written by considering the number of significant figures. a) Information from vendor company. b) Estimated from **mCP** blend with the fraction of 0.7. c) Using sample cooled with liquid N<sub>2</sub> after heating  $T_m$ +20 °C on heater at air atmosphere condition. d) Estimated from first heating of DSC. e) Estimated from **Tris-PCz** blend with the fraction of 0.3. f) peak value in DTA measurement. g) 0.5% weight loss in TG measurement. h) indicating in parentheses as cooling rate (°C/min)/ heating rate (°C/min)/ inflection (i) or onset (o); "-" means not provided.

#### **References for Table S1:**

- S8) S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu and C.-H. Chen, Adv. Mater. 2005, 17, 285-289.
- M.-H. Tsai, Y.-H. Hong, C.-H. Chang, H.-C. Su, C.-C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius and C.-P. Hsu, Adv. Mater. 2007, 19, 862. (= Ref. 11)
- S10) B. A. Naqvi, M. Schmid, E. Crovini, P. Sahay, T. Naujoks, F. Rodella, Z. Zhang, P. Strohriegl, S. Bräse, E. Zysman-Colman and W. Brütting, Front. Chem. 2020, 8, 750.
- S11) N. Notsuka, R. Kabe, K. Goushi and C. Adachi, *Adv. Funct. Mater.* 2017, **27**, 1703902.
- S12) N. Van den Brande, A. Gujral, C. Huang, K. Bagchi, H. Hofstetter, L. Yu, and M. D. Ediger, Cryst. Growth Des. 2018, 18, 5800-5807. (= Ref. 12)
- S13) P. Strohrigl and J. V. Grazulevicius, Adv. Mater. 2002, 14, 1439-1452.
- S14) M. Aonuma, T. Oyamada, H. Sasabe, T. Miki, C. Adachi, Appl. Phys. Lett. 2007, 90, 183503.
- S15) Shahnawaz, S. S. Swayamprabha, M. R. Nagar, R. A. K. Yadav, S. Gull, D. K. Dubey and J.-H. Jou, J. Mater. Chem. C 2019, 7, 7144–7158.
- S16) Y. Shirota, K. Okumoto and H. Inada, Synth. Metals 2000, 111–112, 387–391.
- S17) S. A. Van Slyke, C. H. Chen, and C. W. Tang, *Appl. Phys. Lett.* 1996, **69**, 2160-2162.
- S18) K. Naito and A. Miura, J. Phys. Chem. 1993, 97, 6240–6248.
- S19) Y. Kuwabara, H. Ogawa, H. Inada, N. Noma and Y. Shirota, Adv. Mater. 1994, 6, 677–679.
- S20) H. Tanaka, S. Tokito, Y. Taga and A. Okada, J. Chem. Soc., Chem. Commun. 1996, 2175–2176.
- S21) D. M. Pai, J. F. Yanus and M. Stolka, J. Phys. Chem. 1984, 88, 4714–4717.
- S22) P. Strohrigl and J. V. Grazulevicius, Adv. Mater. 2002, 14, 1439-1452.
- S23) Y. Shirota, T. Kobata and N. Noma, *Chem. Lett.* 1989, **18**, 1145–1148.
- S24) D. P. K. Tsang and C. Adachi, Sci. Rep. 2016, 6, 22463. (= Ref. 18)
- S25) H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang and K.-T. Wong, J. Mater. Chem. 2009, 19, 8112. (= Ref 17)
- S26) C. Mayr and W. Brütting, *Chem. Mater.* 2015, **27**, 2759–2762.
- S27) H. K. Kim , Y. H. Byun , R. R. Das , B. K. Choi and P. S. Ahn, Appl. Phys. Lett. 2007, 91, 093512.
- S28) Z. Wang, P. Lu, S. Chen, Z. Gao, F. Shen, W. Zhang, Y. Xu, H. S. Kwok and Y. Ma, J. Mater. Chem. 2011, 21, 5451-5456.
- S29) S.-J. Su, Y. Takahashi, T. Chiba, T. Takeda and J. Kido, Adv. Funct. Mater. 2009, 19, 1260.
- S30) L.-S. Cui, S.-B. Ruan, F. Bencheikh, R. Nagata, L. Zhang, K. Inada, H. Nakanotani, L.-S. Liao and C. Adachi, Nat. Commun. 2017, 8, 2250.
- S31) Y. Li, J.-J. Liang, H.-C. Li, L.-S. Cui, M.-K. Fung, S. Barlow, S. R. Marder, C. Adachi, Z.-Q. Jiang and L.-S. Liao, J. Mater. Chem. C 2018, 6, 5536–5541.



## 12. DSC data for bulk organic semiconductors

Fig. S10 (a) DSC curves of **mCP** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S11 (a) DSC curves of **mCBP** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S12 (a) DSC curves of **CBP** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S13 (a) DSC curves of **Cz-TRZ** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S14 (a) DSC curves of **PPT** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S15 (a) DSC curves of **DPEPO** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S16 (a) DSC curves of **PyD2Cz** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S17 (a) DSC curves of **TAPC** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S18 (a) DSC curves of **Tris-PCz** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S19 (a) DSC curves of  $\alpha$ -NPD by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S20 (a) DSC curves of **TCTA** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S2! (a) DSC curves of **TPD** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S22 (a) DSC curves of *m*-MTDATA by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S23 (a) DSC curves of **T2T** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S24 (a) DSC curves of **DPPS** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S25 (a) DSC curves of **TPBi** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S26 (a) DSC curves of **TmPyPB** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Figure S27. (a) DSC curves of **SF3-TRZ** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S28 (a) DSC curves of **HDT-1** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S29 (a) DSC curves of **TrisCz-TRZ** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



Fig. S30 (a) DSC curves of **PXZ-TRZ** by heating and cooling processes. (b) Focusing  $T_g$  signal at 2<sup>nd</sup> heating.



### 13. Appendix: Characterization of DSC curves

Fig. S31 (a) Illustration of typical DSC curves and definition of  $T_g^o$ ,  $T_g^i$ ,  $T_c$ , and  $T_m$ . (b) Focusing illustration of glass transition temperature region in case of with and without enthalpy relaxation.



## 14. Appendix: Purity of materials





Fig. S33 HPLC analytical chart for CBP.







Fig. S35 HPLC analytical chart for Cz-TRZ.



Fig. S36 HPLC analytical chart for **PPT**.



Fig. S37 HPLC analytical chart for DPEPO.



Fig. S38 HPLC analytical chart for TAPC.



Fig. S39 HPLC analytical chart for Tris-PCz.



Fig. S40 HPLC analytical chart for  $\alpha$ -NPD.



Fig. S41 HPLC analytical chart for TCTA.



Fig. S42 HPLC analytical chart for TPD.



Fig. S43 HPLC analytical chart for **T2T**.







Fig. S45 HPLC analytical chart for TmPyPB.



Fig. S46 HPLC analytical chart for SF3-TRZ.



Fig. S47 HPLC analytical chart for **4CzIPN**.



Fig. S48 HPLC analytical chart for **5CzTRZ**.



Fig. S49 HPLC analytical chart for HDT-1.



Fig. S50 PLC analytical chart for TrisCz-TRZ.



Fig. S51 HPLC analytical chart for **PXZ-TRZ**.