Bisphosphorylation of Anhydrides - Convenient Access to Bisphosphonates with a P-O-C-P Motif

Xin-Yue Zhang, ${ }^{\text {a }}$ Qi-Wei Li, ${ }^{\text {a }}$ Hui-Qi Yue, ${ }^{\text {a }}$ Zi-Qian Wu, ${ }^{a}$ Ji Li, ${ }^{a}$ Ming Li, ${ }^{a}$ Lu Lu, ${ }^{\text {a }}$ Shang-Dong Yang ${ }^{\mathrm{b}}$ and Bin Yang, ${ }^{\text {a, }}{ }^{*}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
${ }^{\text {b }}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
E-mail: yangbin_hy@ytu.edu.cn

Contents

1. General Information S2
2. Reaction Condition Optimization S2
3. General Procedure for Bisphosphorylation. S4
4. Application S6
5. Mechanism Studies S9
6. Characterization of the Products S10
7. Reference S24
8. Charts of Compounds S25

1. General information

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a 500 M Bruker AVANCE NEO spectrometer in CDCl_{3} with TMS as internal standard. High resolution mass spectroscopic (HRMS) and mass spectra were measured using Thermo Scientific DS II mass spectrometer, Thermo Q Exactive Focus and Bruker micro TOF-Q mass spectrometer. Thermo gravimetric analysis (TGA) of samples was carried out with Mettler TGA/DSC 3+ thermal analyzer from $25{ }^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. The starting materials were purchased from Aldrich, Acros Organics, J\&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM). Substrates of $\mathbf{2 a - 2 c}, \mathbf{2 e}, \mathbf{2 f}, \mathbf{2 h}, \mathbf{2 j}$ were prepared according to literature procedure. ${ }^{[1-3]}$

2. Reaction Condition Optimization

2.1 Table S1. Condition Optimization of Using $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{H}$ as Substrate ${ }^{a}$

${ }^{\text {a }}$ Reaction conditions: $1 \mathrm{a}(0.2 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}(121.2 \mathrm{mg}, 3.0$ equiv.), Base (0.2 equiv.), Solvent $(2.0 \mathrm{~mL}), \mathrm{N}_{2}, 100^{\circ} \mathrm{C}$ overnight, isolated yield; ${ }^{\mathrm{b}}$ toluene $(1.5 \mathrm{~mL}) ;{ }^{\mathrm{c}}$ toluene $(2.5 \mathrm{~mL}) ;{ }^{\mathrm{d}}$ Under air.
2.1 Table S2. Condition Optimization of Using (EtO) ${ }_{2} \mathrm{P}(\mathrm{O})-\mathrm{H}$ as Substrate ${ }^{a}$

	 1a		DBU Solvent, \mathbf{N}_{2}		
Entry	DBU (equiv.)	1a/2a	$T\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%)
1	1.5	$1.0: 3.0$	90	toluene	42
2	1.5	$1.0: 3.0$	90	DCE	trace
3	1.5	1.0:3.0	90	THF	26
4	1.5	$1.0: 3.0$	90	1,4-dioxane	20
5	1.5	$1.0: 3.0$	90	DMSO	trace
6	1.5	$1.0: 3.0$	90	DMF	trace
7	1.5	$1.0: 3.0$	90	MeCN	17
8	1.5	1.0:3.0	60	toluene	32
9	1.5	1.0:3.0	70	toluene	60
10	1.5	$1.0: 3.0$	80	toluene	49
11	1.5	$1.0: 3.0$	100	toluene	34
12	1.5	$1.0: 2.5$	70	toluene	33
13	1.5	$1.0: 3.5$	70	toluene	36
14	0.5	$1.0: 3.0$	70	toluene	22
15	1.0	$1.0: 3.0$	70	toluene	43
16	2.0	$1.0: 3.0$	70	toluene	32
17	2.5	$1.0: 3.0$	70	toluene	33
$18^{\text {b }}$	1.5	$1.0: 3.0$	70	toluene	33
$19^{\text {c }}$	1.5	$1.0: 3.0$	70	toluene	35
20	DMAP (1.5)	1.0 : 3.0	70	toluene	trace
21	pyridine(1.5)	$1.0: 3.0$	70	toluene	N.R
22	DABCO(1.5)	$1.0: 3.0$	70	toluene	N.R
23	$\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5)$	$1.0: 3.0$	70	toluene	N.R
24	$\mathrm{NaHCO}_{3}(1.5)$	$1.0: 3.0$	70	toluene	N.R
25	$\mathrm{K}_{3} \mathrm{PO}_{4}(1.5)$	$1.0: 3.0$	70	toluene	N.R
26	-	$1.0: 3.0$	70	toluene	N.R

${ }^{\text {a }}$ Reaction conditions: $1 \mathbf{1 a}(0.2 \mathrm{mmol}),(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}(82.8 \mathrm{mg}, 3.0$ equiv.), DBU (1.5 equiv.), Solvent $(2.0 \mathrm{~mL}), \mathrm{N}_{2}$, stirred at $70^{\circ} \mathrm{C}$ overnight, isolated yield; ${ }^{\text {b }}$ toluene $(1.5 \mathrm{~mL})$; ${ }^{\mathrm{c}}$ toluene $(2.5 \mathrm{~mL})$.

2.3 Reaction Conditions:

$>$ Condition A for $R^{1} \mathbf{R}^{2} \mathbf{P}(\mathbf{O})$-H

Condition A: $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ eq.), $\mathbf{2}$ ($0.6 \mathrm{mmol}, 3.0$ eq.), DMAP ($4.9 \mathrm{mg}, 0.2$ eq.), toluene $(2.0 \mathrm{~mL}), \mathrm{N}_{2}$, stirred at $90^{\circ} \mathrm{C}$ overnight.

$>$ Condition B for $(\mathrm{RO})_{2} \mathrm{P}(\mathrm{O})-\mathrm{H}$

Condition B: 1a ($20.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 4 ($0.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.), DBU ($45.7 \mathrm{mg}, 1.5 \mathrm{eq}$.), toluene (2.0 mL), N_{2}, stirred at $70{ }^{\circ} \mathrm{C}$ overnight.

3. General Procedure for Bisphosphorylation

3.1 General procedure for bis-phosphorylation with $R^{1} R^{2} P(O)$-H as substrate

A mixture of $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathbf{2}$ ($0.6 \mathrm{mmol}, 3.0$ eq.) and DMAP ($4.9 \mathrm{mg}, 20$ $\mathrm{mol} \%$) was dissolved in toluene (2.0 mL) under N_{2} atmosphere, stirred at $90{ }^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic fractions washed with brine and dried over MgSO_{4}. The solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (dichloromethane $/$ methanol $=100: 1)$ to afford the products 3 .
3.2 General procedure for bis-phosphorylation with $(\mathrm{RO})_{2} \mathrm{P}(\mathrm{O})-\mathrm{H}$ as substrate

A mixture of $\mathbf{1 a}(20.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}),. 4(0.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and DBU (45.7 $\mathrm{mg}, 1.5$ eq.) was dissolved in toluene (2.0 mL) under N_{2} atmosphere, stirred at $70{ }^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel $($ petroleum ether/ethyl acetate $=2: 1,300 \mathrm{~mL}$, then dichloromethane $/$ methanol $=$ 30: 1) to afford the products 5 .
3.3 General procedure for bis-phosphorylation with $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O})-\mathrm{H}$ as substrate

A mixture of $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0 \mathrm{eq}.), 4 \mathrm{e}(140.4 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) , DMAP (36.7$ $\mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ eq.) was dissolved in toluene $(2.0 \mathrm{~mL})$ under N_{2} atmosphere, stirred at $90^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=6: 1$) to afford products $\mathbf{5 e - 5 i}$.
3.4 General procedure for bis-phosphorylation with $\mathrm{RCO}-\mathrm{Cl}(\mathbf{6 a}, \mathbf{6 b})$ as substrate

A mixture of $\mathbf{6 a}(0.2 \mathrm{mmol}, 28.1 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , or \mathbf{6 b}(0.2 \mathrm{mmol}, 15.7 \mathrm{mg}, 1.0 \mathrm{eq}),. \mathbf{2 a}$ ($0.6 \mathrm{mmol}, 121.2 \mathrm{mg}, 3.0$ eq.) and DMAP ($4.9 \mathrm{mg}, 20 \mathrm{~mol} \%$) was dissolved in toluene (2.0 mL) under N_{2} atmosphere, stirred at $90{ }^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic fractions washed with brine and dried over MgSO_{4}. The solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (dichloromethane $/$ methanol $=$ 100: 1) to afford 72.2 mg of $\mathbf{3 k}(0.142 \mathrm{mmol}, 71 \%)$ or 29.4 mg of $\mathbf{3 a}(0.066 \mathrm{mmol}$, $33 \%)$.
3.5 General procedure for bis-phosphorylation with $\operatorname{RCOOEt}(\mathbf{6 c}, \mathbf{6 d})$ as substrate

A mixture of $\mathbf{6 c}(0.2 \mathrm{mmol}, 17.6 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , or \mathbf{6 d}(0.2 \mathrm{mmol}, 28.4 \mathrm{mg}, 1.0 \mathrm{eq}),. \mathbf{2 a}$ ($0.6 \mathrm{mmol}, 121.2 \mathrm{mg}, 3.0$ eq.) and DMAP ($4.9 \mathrm{mg}, 20 \mathrm{~mol} \%$) was dissolved in toluene (2.0 mL) under N_{2} atmosphere, stirred at $90{ }^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic fractions washed with brine and dried over MgSO_{4}. The solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (dichloromethane $/$ methanol $=$ 100: 1) to afford 0 mg of $\mathbf{3 a}(0 \%)$ or 29.0 mg of $\mathbf{3 f}(0.058 \mathrm{mmol}, 29 \%)$.
3.6 General procedure for bis-phosphorylation with peroxides ($\mathbf{6 e}, \mathbf{6 f}$) as substrate

A mixture of $\mathbf{6 e}(0.2 \mathrm{mmol}, 79.7 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , or \mathbf{6 f}(0.2 \mathrm{mmol}, 48.4 \mathrm{mg}, 1.0 \mathrm{eq}),. \mathbf{2 a}$ ($0.6 \mathrm{mmol}, 121.2 \mathrm{mg}, 3.0$ eq.) and DMAP ($4.9 \mathrm{mg}, 20 \mathrm{~mol} \%$) was dissolved in
toluene (2.0 mL) under N_{2} atmosphere, stirred at $90{ }^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic fractions washed with brine and dried over MgSO_{4}. The solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (dichloromethane $/$ methanol $=$ 100: 1) to afford 73.9 mg of $\mathbf{3 r}(0.126 \mathrm{mmol}, 63 \%)$ or 45.7 mg of $\mathbf{3 k}(0.09 \mathrm{mmol}$, $45 \%)$.

4. Applications

4.1 Large-Scale Preparation and Byproduct Recovery

A mixture of $\mathbf{1 k}$ ($5 \mathrm{mmol}, 1.13 \mathrm{~g}, 1.0 \mathrm{eq}$.), 2a ($15 \mathrm{mmol}, 3.03 \mathrm{~g}, 3.0 \mathrm{eq}$.) and DMAP ($122.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) was dissolved in toluene (45 mL) under N_{2} atmosphere, stirred at $90^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, 50 mL of sat. aq. NaHCO_{3} was added. The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic fractions washed with brine and dried over MgSO_{4}. The solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (dichloromethane $/$ methanol $=100: 1$) to afford 1.78 g (3.5 mmol) of $\mathbf{3 k}$ in 70% yield. Next, the conc. HCl was added to the aqueous phase until the $\mathrm{pH}=1$. After that, the white solid was dissolved by ethyl acetate (100 mL) and the aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic fractions dried over MgSO_{4} and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=1: 2$ with $1 \% \mathrm{AcOH})$ to afford $0.52 \mathrm{~g}(4.3 \mathrm{mmol})$ of benzoic acid (7) in 86% yield.

4.2 Further transformations of $\mathbf{5 h}$

A mixture of $\mathbf{5 g}(0.2 \mathrm{mmol}, 114.4 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , \mathrm{TfOH}(0.24 \mathrm{mmol}, 36.0 \mathrm{mg}, 1.2 \mathrm{eq}$.) was dissolved in mesitylene (0.3 mL), stirred at $50^{\circ} \mathrm{C}$ overnight. At the completion of the reaction, the reaction was quenched with water, and the required compounds were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layer was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=8: 1$) to afford the compound $\mathbf{8}$ in 92% yield ($81.3 \mathrm{mg}, 0.18 \mathrm{mmol}$).

A mixture of $\mathbf{5 h}(0.2 \mathrm{mmol}, 114.4 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , TMSI (iodotrimethylsilane) (0.8$ mmol, $160.1 \mathrm{mg}, 4.0$ eq.) was dissolved in MeCN (2.0 mL), stirred at room
temperature for 20 min . At the completion of the reaction, the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to afford the compound 9 in 87% yield ($56.4 \mathrm{mg}, 0.17 \mathrm{mmol}$).
4.3 Thermal analysis of DOPO and selected bisphosphorylation samples.

Figure. S1. TGA Curves of DOPO and $\mathbf{3 a}, \mathbf{3 k}, \mathbf{3 m}$ and $\mathbf{5 e}$

Figure. S2. DTG Curves of DOPO and $\mathbf{3 a}, \mathbf{3 k}, \mathbf{3 m}$ and $\mathbf{5 e}$

Table S3. TGA and DTG data of DOPO, 3a, 3k, 3m and 5e

Sample	$T_{-5 \mathrm{wt} \%}\left({ }^{\circ} \mathrm{C}\right)$	$T_{-50 \mathrm{wt} \%}\left({ }^{\circ} \mathrm{C}\right)$	$T_{\max }\left({ }^{\circ} \mathrm{C}\right)$
DOPO	155.2	289.9	306.6
3a	100.3	336.0	353.8
3k	289.0	349.0	358.1
3m	242.7	349.1	350.2
5e	178.5	295.5	307.0

5. Mechanism studies
6.

2.

3t, N. D
3.

11

2a
4.

11

2a

Tol. $\mathrm{N}_{2}, 90^{\circ} \mathrm{C}$

10, 47\%

3k, 76\%

3k, 11\%

Scheme S1. Control experiments. ${ }^{a}$

Several control experiments were carried out to deduce key information about the reaction pathway (Scheme S1). When a mixed acid anhydride, acetic propionic anhydride (1s) was used as a substrate, we obtained the bisphosphorylation products 3a and 3b in a 53% and a 28% yield, respectively (Scheme S1-1). Moreover, by using di-tert-butyl dicarbonate (1t) as substrate, we only obtained acylphosphine oxide (10) instead of the bisphosphorylation product (3t) (Scheme S1-2). These results indicate that steric hindrance has an obvious effect and the reaction of anhydride with large steric hindrance may terminate in the first step to give acylphosphine oxide as the intermediate. To verify the above hypothesis, we employed compound $\mathbf{1 1}$ as the substrate (Scheme S1-3), and it could be smoothly converted into the desired bisphosphorylation product ($\mathbf{3 k}$) under the standard conditions. Without adding DMAP, the yield of 3k dropped sharply (Scheme S1-4),
which indicate that DMAP also play an important role to promote the addition of 2a to 11 .
${ }^{a}$ Compound 11 was prepared according to the literature: Org. Lett. 2020, 22, 4633-4637.

Scheme S2. Possible Mechanism for the DBU-promoted bisphosphorylation of anhydride with phosphite.

6. Characterization of the Products

1-(diphenylphosphoryl)ethyl diphenylphosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $74.0 \mathrm{mg}(0.166 \mathrm{mmol}, 83 \%)$ of $\mathbf{3 a}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.56-7.39(\mathrm{~m}, 10 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.48-5.41(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 14.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.3,132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2.7 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $132.2 \mathrm{~Hz}), 130.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=105.0 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=7.4 \mathrm{~Hz}), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.3 \mathrm{~Hz}\right), 127.9,70.0\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=89.1 \mathrm{~Hz}\right), 15.9 .{ }^{31} \mathrm{P}$ NMR $(203$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.91$ (d, $J=26.8 \mathrm{~Hz}$), $31.19(\mathrm{~d}, J=25.2 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{ESI}): 446.7(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[4]}$

1-(diphenylphosphoryl)propyl diphenylphosphinate. Performed according to the general procedure (conditions A, 26.0 mg of $\mathbf{1 b}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane / methanol = 100: 1) to afford $67.2 \mathrm{mg}(0.146 \mathrm{mmol}, 73 \%)$ of $\mathbf{3 b}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.48 (m, 2H), 7.46-7.35 (m, 8H), 7.30-7.26 (m, 2H), 7.22-7.18 (m, 2H), 5.43-5.38 (m, 1H),
2.03-1.93 (m, 2H), $0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.8,132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7\right.$ $\mathrm{Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.8 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right)$, $131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 131.3,131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.4 \mathrm{~Hz}\right), 130.9,130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=142.7 \mathrm{~Hz}\right), 128.7$, 128.6, $128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 128.51\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.1 \mathrm{~Hz}\right), 75.1\left(\mathrm{dd}, J_{1}=8.3\right.$ $\left.\mathrm{Hz}, J_{2}=87.2 \mathrm{~Hz}\right), 24.1,10.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.73(\mathrm{~d}, J=22.1 \mathrm{~Hz})$, $30.38(\mathrm{~d}, J=21.9 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 461.1430$, found 461.1426 .

1-(diphenylphosphoryl)butyl diphenylphosphinate Performed according to the general procedure (conditions A, 31.6 mg of $\mathbf{1 c}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $68.3 \mathrm{mg}(0.144 \mathrm{mmol}, 72 \%)$ of $\mathbf{3 c}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.48 (m, 2H), 7.46-7.35 (m, 8H), 7.30-7.26 (m, 2H), 7.22-7.18 (m, 2H), 5.49-5.44 (m, 1H), 1.92-1.85 (m, 2H), 1.36-1.21 (m, 2H), $0.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.8$, $132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right)$, $131.4,131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=96.9 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $155.4 \mathrm{~Hz}), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 73.7\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.3 \mathrm{~Hz}, J_{2}=87.5 \mathrm{~Hz}\right), 32.7,19.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right), 13.6 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.62(\mathrm{~d}, J=$ $20.2 \mathrm{~Hz}), 30.6(\mathrm{~d}, J=21.0 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 475.1586$, found 475.1583 .

1-(diphenylphosphoryl)hexyl diphenylphosphinate Performed according to the general procedure (conditions A, 42.9 mg of $\mathbf{1 d}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane / methanol $=100: 1)$ to afford $61.2 \mathrm{mg}(0.122 \mathrm{mmol}, 61 \%)$ of $\mathbf{3 d}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.34 (m, 8H), 7.30-7.26 (m, 2H), 7.21-7.17 (m, 2H), 5.50-5.45 (m, 1H), 1.92-1.85 (m, 2 H$)$, 1.27-1.18 (m, 2H), 1.05-0.94 (m, 4H), $0.67(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.9$, $132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.8,131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7\right.$ $\mathrm{Hz}), 131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=96.7 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=161.7\right.$ $\mathrm{Hz}), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.4 \mathrm{~Hz}\right), 128.5,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 73.8\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=87.5 \mathrm{~Hz}\right), 31.2,30.5,25.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 22.0,13.7 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $33.55(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 30.5(\mathrm{~d}, J=20.1 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 503.1899$, found 503.1895.

(diphenylphosphoryl)(methoxy)methyl diphenylphosphinate. Performed according to the general procedure (conditions A, 32.4 mg of $\mathbf{1 e}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1$) to afford $71.4 \mathrm{mg}(0.15 \mathrm{mmol}, 75 \%)$ of $\mathbf{3 e}$ as
colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H})$, 7.54-7.36 (m, 10H), 7.29-7.24 (m, 2H), 7.22-7.18 (m, 2H), 5.68-5.63 (m, 1H), 3.82-3.78 (m, 1H), 3.73-3.68 (m, 1H), 2.86 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.6,132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.2$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.1,132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.5,131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.2\right.$ $\mathrm{Hz}), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=97.1 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.8\right.$ $\mathrm{Hz}), 128.6,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 72.6\left(\mathrm{dd}, J_{1}=\right.$ $8.4 \mathrm{~Hz}, J_{2}=86.2 \mathrm{~Hz}$), $70.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 58.0 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.93(\mathrm{~d}, J=20.3$ $\mathrm{Hz}), 28.74(\mathrm{~d}, J=20.3 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 477.1379$, found 477.1375.

$\mathrm{Ph}_{2}(0) \mathrm{P}$

1-(diphenylphosphoryl)-2,2,2-trifluoroethyl diphenylphosphinate. Performed according to the general procedure (conditions A at $120^{\circ} \mathrm{C}$ instead, 42.0 mg of $\mathbf{1 f}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1$) to afford 52.0 mg $(0.104 \mathrm{mmol}, 52 \%)$ of $\mathbf{3 f}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.74-7.70$ (m, 2H), 7.55-7.50 (m, 2H), 7.46-7.32 (m, 8H), 7.30-7.26 (m, 2H), 7.22-7.19 (m, 2H), 6.01-5.93 (m, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.7\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=11.1 \mathrm{~Hz}\right)$, $132.1,132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 131.1,130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=10.9 \mathrm{~Hz}), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=103.1 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=7.7 \mathrm{~Hz}), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.7 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=104.7 \mathrm{~Hz}\right), 69.9\left(\mathrm{qd}, \mathrm{J}_{1}=\right.$ $\left.7.7 \mathrm{~Hz}, \mathrm{~J}_{2}=32.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (203 MHz, CDCl_{3}): $\delta 38.32(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 24.93(\mathrm{~d}, J=12.0 \mathrm{~Hz})$. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-66.72\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{F}}=3.1 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{ESI}): 500.9(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[5]}$

1-(diphenylphosphoryl)-2,2,3,3,3-pentafluoropropyl diphenylphosphinate. Performed according to the general procedure (conditions A at $120^{\circ} \mathrm{C}$ instead, 121.2 mg of $\mathbf{1 g}, 60.6 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1$) to afford 50.6 $\mathrm{mg}(0.092 \mathrm{mmol}, 46 \%)$ of $\mathbf{3 g}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91-7.81(\mathrm{~m}, 4 \mathrm{H})$, 7.73-7.69 (m, 2H), 7.50-7.47 (m, 2H), 7.41-7.33 (m, 8H), 7.30-7.27 (m, 2H), 7.22-7.19 (m, 2H), 6.18-6.10 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.6\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 132.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.8,131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 131.3$, $131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=47.0 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=103.0 \mathrm{~Hz}\right)$, $128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.2 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.6 \mathrm{~Hz}\right)$, $127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=104.1 \mathrm{~Hz}\right), 70.3-69.2(\mathrm{~m}) .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 24.80$. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-81.13,-113.82\left(\mathrm{ddd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=282.7 \mathrm{~Hz}, J_{3}=1036.7 \mathrm{~Hz}\right.$). MS (ESI): $550.9(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[6]}$

1-(diphenylphosphoryl)-3-methylbutyl diphenylphosphinate. Performed according to the general procedure (conditions A, 37.3 mg of $\mathbf{1 h}, 121.2 \mathbf{~ m g}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $69.3 \mathrm{mg}(0.142 \mathrm{mmol}, 71 \%)$
of 3h as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.67$ $(\mathrm{m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.52(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 133.0,132.1,132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2.7 \mathrm{~Hz}), 131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.8 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=130.3 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $10.4 \mathrm{~Hz}), 129.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=169.7 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.4 \mathrm{~Hz}\right), 128.4,128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.4 \mathrm{~Hz}\right), 128.1(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=13.2 \mathrm{~Hz}\right), 72.3\left(\mathrm{dd}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=87.5 \mathrm{~Hz}\right), 39.3,24.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 22.8,21.2 .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.42(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 31.11(\mathrm{~d}, J=20.1 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{ESI}): 488.9(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[7]}$

1-(diphenylphosphoryl)-2-methylpropyl diphenylphosphinate Performed according to the general procedure (conditions A, 31.6 mg of $\mathbf{1 i}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $37.9 \mathrm{mg}(0.08 \mathrm{mmol}, 40 \%)$ of 3i as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.47(\mathrm{~m}$, 2H), 7.43-7.39 (m, 4H), 7.35-7.23 (m, 6H), 7.17-7.14 (m, 2H), $5.54\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.34-2.26 (m, 1H), $1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $133.3,132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 132.2,132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.0,131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=49.9 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 131.1(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=97.7 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.5 \mathrm{~Hz}\right), 128.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=13.4 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.4 \mathrm{~Hz}\right), 77.9\left(\mathrm{dd}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=85.3 \mathrm{~Hz}\right)$, $30.0,21.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 17.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right) . .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.50(\mathrm{~d}, J=$ $16.8 \mathrm{~Hz}), 28.63(\mathrm{~d}, J=17.0 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 475.1586$, found 475.1587.

(diphenylphosphoryl)(phenyl)methyl diphenylphosphinate. Performed according to the general procedure (conditions A, 45.2 mg of $\mathbf{1 k}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $75.2 \mathrm{mg}(0.148 \mathrm{mmol}, 74 \%)$ of $\mathbf{3 k}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.51$ (m, 1H), 7.47-7.39 (m, 6H), 7.36-7.22 (m, 7H), 7.17-7.07 (m, 5H), 7.01 (t, J=7.7 Hz, 2H), 6.32 (dd, J_{1} $\left.=2.6 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 132.4,132.3(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=9.1 \mathrm{~Hz}), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=81.6 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.9 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $107.1 \mathrm{~Hz}), 129.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right), 128.6,128.5,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right)$, $128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=31.1 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 74.7\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=85.6 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (203 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.43(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 28.93(\mathrm{~d}, J=23.5 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{ESI}): 508.9(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[8]}$

(diphenylphosphoryl)(p-tolyl)methyl diphenylphosphinate. Performed according to the general procedure (conditions A, 50.9 mg of $\mathbf{1 1}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane / methanol $=100: 1)$ to afford $83.5 \mathrm{mg}(0.160 \mathrm{mmol}, 80 \%)$ of $\mathbf{3 1}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H})$, 7.47-7.38 (m, 6H), 7.35-7.29 (m, 5H), 7.27-7.22 (m, 2H), 7.16-7.12 (m, 2H), 7.06 (d, J=7.1 Hz, 2H), $6.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.27\left(\mathrm{dd}, J_{1}=2.3 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 138.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.4\right.$ $\mathrm{Hz}), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 131.5,131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $10.7 \mathrm{~Hz}), 130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=98.9 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 129.3,129.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 128.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 128.1,127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.4 \mathrm{~Hz}\right), 74.7\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=\right.$ 86.6 Hz), 21.1. ${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.24$ (d, $J=25.2 \mathrm{~Hz}$), 28.84 (d, $J=25.2 \mathrm{~Hz}$). HRMS calc. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 523.1586$, found 523.1585 .

(diphenylphosphoryl)(4-methoxyphenyl)methyl diphenylphosphinate. Performed according to the general procedure (conditions A, 57.3 mg of $\mathbf{1 m}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $82.9 \mathrm{mg}(0.154 \mathrm{mmol}$, 77%) of $\mathbf{3 m}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 3 \mathrm{H})$, 7.49-7.37 (m, 6H), 7.34-7.29 (m, 5H), 7.27-7.22 (m, 2H), 7.17-7.12 (m, 4H), $6.56(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.26\left(\mathrm{dd}, J_{1}=1.9 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $1.6 \mathrm{~Hz}), 132.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8\right.$ $\mathrm{Hz}), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.5,131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $67.5 \mathrm{~Hz}), 130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.7 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=102.1 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $11.6 \mathrm{~Hz}), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.4 \mathrm{~Hz}\right), 124.4,113.3$, $74.4\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=87.7 \mathrm{~Hz}\right), 55.1 .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.21(\mathrm{~d}, J=25.5 \mathrm{~Hz}), 28.89$ (d, $J=25.3 \mathrm{~Hz}$). HRMS calc. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 539.1536$, found 539.1531.

(diphenylphosphoryl)(4-fluorophenyl)methyl diphenylphosphinate. Performed according to the general procedure (conditions A, 52.4 mg of $\mathbf{1 n}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $80.0 \mathrm{mg}(0.152 \mathrm{mmol}, 76 \%)$ of $\mathbf{3 n}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.38$ $(\mathrm{m}, 6 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.30\left(\mathrm{dd}, J_{1}\right.$ $\left.=2.2 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.7\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=246.7 \mathrm{~Hz}\right)$,
$132.4,132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7\right.$ $\mathrm{Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1\right.$ $\mathrm{Hz}), 130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=69.0 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=102.5 \mathrm{~Hz}\right), 128.6,128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=2.6 \mathrm{~Hz}), 128.4,128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.6 \mathrm{~Hz}\right), 128.1,127.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.1 \mathrm{~Hz}\right), 114.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right)$, 73.8 (dd, $\left.J_{1}=7.7 \mathrm{~Hz}, J_{2}=86.2 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.51(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 28.85(\mathrm{~d}, J$ $=25.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-112.54\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{F}}=2.8 \mathrm{~Hz}\right.$). HRMS calc. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{FO}_{3} \mathrm{P}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 527.1336$, found 527.1335 .

(4-chlorophenyl)(diphenylphosphoryl)methyl diphenylphosphinate. Performed according to the general procedure (conditions A, 59.0 mg of $\mathbf{1 0}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $87.8 \mathrm{mg}(0.162 \mathrm{mmol}, 81 \%)$ of $\mathbf{3 o}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.31$ $(\mathrm{m}, 11 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{dd}$, $\left.J_{1}=2.7 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 134.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2.8 \mathrm{~Hz}), 132.3,132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=10.8 \mathrm{~Hz}), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.1 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 131.0,130.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=80.9 \mathrm{~Hz}\right), 130.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=16.4 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=104.8 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 128.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 128.0,127.9,73.9\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=85.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}$ ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.68\left(\mathrm{~d}, ~ J=23.8 \mathrm{~Hz}\right.$), $28.82\left(\mathrm{~d}, J=24.8 \mathrm{~Hz}\right.$). HRMS calc. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{ClO}_{3} \mathrm{P}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 543.1040$, found 543.1040 .
$\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{P}_{1}$

1-(diphenylphosphoryl)vinyl diphenylphosphinate. Performed according to the general procedure (conditions A, 34.2 mg of $\mathbf{1 p}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane / methanol = 100: 1) to afford $51.5 \mathrm{mg}(0.116 \mathrm{mmol}, 58 \%)$ of $\mathbf{3 p}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 10 \mathrm{H})$, $7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.05\left(\mathrm{ddd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, J_{3}=28.3 \mathrm{~Hz}\right), 5.70\left(\mathrm{ddd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=3.2\right.$ $\left.\mathrm{Hz}, J_{3}=9.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.1\left(\mathrm{dd}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=127.4 \mathrm{~Hz}\right.$), $132.5\left(\mathrm{dd}, J_{1}\right.$ $\left.=2.7 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=26.2 \mathrm{~Hz}\right)$, $129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.2 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 113.7\left(\mathrm{dd}, J_{1}=6.2 \mathrm{~Hz}, J_{2}=\right.$ $18.1 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.22(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 22.34(\mathrm{~d}, J=17.3 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 445.1117$, found 445.1114 .

1,3-bis(diphenylphosphoryl)propyl diphenylphosphinate. Performed according to the general procedure (conditions A, 25.2 mg of $\mathbf{1 q}, 121.2 \mathrm{mg}$ of $\mathbf{2 a}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $21.1 \mathrm{mg}(0.032 \mathrm{mmol}, 16 \%)$ of $\mathbf{3 q}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44$
$(\mathrm{m}, 8 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 14 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.53(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.9,132.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.2 \mathrm{~Hz}\right), 132.3\left(\mathrm{td}, J_{1}=\right.$ $\left.2.6 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}\right), 132.1,131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=31.9 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.4,131.3,131.2,131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 130.7,130.6,130.5,130.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=62.9 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=106.2 \mathrm{~Hz}\right), 128.8,128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.9 \mathrm{~Hz}\right), 128.6,128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.8\right.$ $\mathrm{Hz}), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 128.2,73.6\left(\mathrm{ddd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, J_{3}=86.0 \mathrm{~Hz}\right), 26.0\left(\mathrm{dd}, J_{1}=\right.$ $\left.7.2 \mathrm{~Hz}, J_{2}=71.0 \mathrm{~Hz}\right), 23.1{ }^{31} \mathrm{P}$ NMR (203 MHz, CDCl_{3}): $\delta 34.43(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 31.9,30.5(\mathrm{~d}, J=$ $18.0 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{3}(\mathrm{M}+\mathrm{H})^{+}: 661.1821$, found 661.1816 .

1-(bis(4-fluorophenyl)phosphoryl)ethyl bis(4-fluorophenyl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of 1a, 142.8 mg of bis(4-fluorophenyl)phosphine oxide $\mathbf{2 b}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100$: 1) to afford $90.1 \mathrm{mg}(0.174 \mathrm{mmol}, 87 \%)$ of 3aa as colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.93-7.88 (m, 2H), 7.81-7.69 (m, 4H), 7.35-7.30 (m, 2H), 7.19-7.12 (m, 6H), 7.01-6.97 (m, 2H), $5.52-5.46(\mathrm{~m}, 1 \mathrm{H}), 1.49\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.6 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.4(\mathrm{dd}$, $\left.J_{1}=1.9 \mathrm{~Hz}, J_{2}=252.9 \mathrm{~Hz}\right), 165.2\left(\mathrm{ddd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=25.0 \mathrm{~Hz}, J_{3}=253.4 \mathrm{~Hz}\right), 134.5,134.4,134.3$, $134.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.8 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right), 133.8,133.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0\right.$ $\mathrm{Hz}), 133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 127.6\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=112.4 \mathrm{~Hz}\right), 126.7\left(\mathrm{dd}, J_{1}=3.4 \mathrm{~Hz}, J_{2}=74.1\right.$ $\mathrm{Hz}), 125.8\left(\mathrm{dd}, J_{1}=3.4 \mathrm{~Hz}, J_{2}=58.7 \mathrm{~Hz}\right), 124.1\left(\mathrm{dd}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=102.4 \mathrm{~Hz}\right), 116.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.7\right.$ $\mathrm{Hz}), 116.3,116.2,116.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.7 \mathrm{~Hz}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 115.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 115.6,69.7\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=90.1 \mathrm{~Hz}\right), 15.7 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 32.42$ (d, $J=23.3 \mathrm{~Hz}$), $29.69(\mathrm{~d}, J=23.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-105.0(\mathrm{~d}, J=118.7 \mathrm{~Hz}$), $-105.3(\mathrm{~d}, J=123.1 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 519.0897$, found 519.0892.

1-(bis(4-bromophenyl)phosphoryl)ethyl bis(4-bromophenyl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 214.7 \mathrm{mg}$ of bis(4-bromophenyl)phosphine oxide $\mathbf{2 c}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100$: 1) to afford $144.8 \mathrm{mg}(0.19 \mathrm{mmol}, 95 \%)$ of $\mathbf{3 a b}$ as colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.73-7.69 (m, 2H), 7.63-7.52 (m, 10H), 7.45-7.43 (m, 2H), 7.16-7.12 (m, 2H), 5.52-5.46 (m, 1H), 1.50 $\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 133.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 132.7(\mathrm{t}$, $\left.J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 132.4,132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right), 132.0,131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.7 \mathrm{~Hz}\right)$, $131.7,130.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=131.5 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=81.3 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=45.5 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $3.5 \mathrm{~Hz}), 128.1\left(\mathrm{dd}, J_{1}=3.7 \mathrm{~Hz}, J_{2}=34.9 \mathrm{~Hz}\right), 128.0,127.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=100.2 \mathrm{~Hz}\right), 69.6\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}\right.$,
$\left.J_{2}=89.4 \mathrm{~Hz}\right), 15.8 .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.86(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 29.79(\mathrm{~d}, J=22.6 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}_{4} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 762.7653$, found 762.7652 .

1-(bis(4-(trifluoromethyl)phenyl)phosphoryl)ethyl bis(4-(trifluoromethyl)phenyl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 202.8 \mathrm{mg}$ of bis(4-(trifluoromethyl)phenyl)phosphine oxide $\mathbf{2 d}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1$) to afford $140.7 \mathrm{mg}(0.196 \mathrm{mmol}, 98 \%)$ of $\mathbf{3 a c}$ as white solid: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09-7.89(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H})$, 7.55-7.47 (m, 4H), 5.81-5.75 (m, 1H), 1.59 (dd, $\left.J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 135.9,134.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.8 \mathrm{~Hz}\right), 134.7,134.6\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=32.9 \mathrm{~Hz}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $133.9 \mathrm{~Hz}), 134.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 134.1,133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=42.4 \mathrm{~Hz}\right), 132.6(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=97.0 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.1 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=10.8 \mathrm{~Hz}), 126.4,125.9-125.7(\mathrm{~m}), 125.6-125.2(\mathrm{~m}), 123.1\left(\mathrm{ddd}, J_{1}=3.1 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, J_{3}=271.4\right.$ $\mathrm{Hz}), 119.8\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=14.8 \mathrm{~Hz}\right.$), $69.8\left(\mathrm{dd}, J_{1}=7.4 \mathrm{~Hz}, J_{2}=88.7 \mathrm{~Hz}\right), 15.7 .{ }^{31} \mathrm{P}$ NMR (203 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.85(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 27.93(\mathrm{~d}, J=20.9 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-63.5$, $-63.67(\mathrm{~d}, J=80.7 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~F}_{12} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 719.0769$, found 719.0765.

1-(di-p-tolylphosphoryl)ethyl di-p-tolylphosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 138.1 \mathrm{mg}$ of di-p-tolylphosphine oxide $\mathbf{2 e}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $64.3 \mathrm{mg}(0.128$ $\mathrm{mmol}, 64 \%$) of 3ad as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.63\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.54\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=12.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.278-7.12(\mathrm{~m}$, $8 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.31(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.50\left(\mathrm{dd}, J_{1}=7.0\right.$ $\left.\mathrm{Hz}, J_{2}=14.5 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=14.6 \mathrm{~Hz}\right), 142.6$, $132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right)$, $129.3,129.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.1 \mathrm{~Hz}\right), 129.0,128.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.7 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=35.2 \mathrm{~Hz}), 127.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 125.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=101.0 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.3 \mathrm{~Hz}\right), 69.8\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{2}=89.6 \mathrm{~Hz}\right), 21.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 16.0 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.72(\mathrm{~d}, J=25.1$ $\mathrm{Hz}), 31.84(\mathrm{~d}, J=26.8 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 503.1899$, found 503.1897.

1-(bis(4-(tert-butyl)phenyl)phosphoryl)ethyl bis(4-(tert-butyl)phenyl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 188.5 \mathrm{mg}$ of bis(4-(tert-butyl)phenyl)phosphine oxide $\mathbf{2 f}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $101.8 \mathrm{mg}(0.152 \mathrm{mmol}, 76 \%)$ of $\mathbf{3 a e}$ as white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 7.73 (dd, $J_{1}=$ $\left.8.4 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.58\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.53-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.28(\mathrm{~m}, 1 \mathrm{H}), 1.51\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.6 \mathrm{~Hz}\right.$, $3 \mathrm{H}), 1.34(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.6\left(\mathrm{dd}, J_{1}\right.$ $\left.=2.8 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}\right), 155.5\left(\mathrm{dd}, J_{1}=2.6 \mathrm{~Hz}, J_{2}=25.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.6,131.5$, $131.4,131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 129.2,128.1,127.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=36.2 \mathrm{~Hz}\right), 125.6,125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right)$, $125.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 125.2,125.1,124.7,70.1\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=89.9 \mathrm{~Hz}\right), 35.0,34.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $9.1 \mathrm{~Hz}), 31.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 31.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.7 \mathrm{~Hz}\right), 15.9 .{ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.26(\mathrm{~d}$, $J=26.1 \mathrm{~Hz}), 31.54(\mathrm{~d}, J=27.4 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 671.3778$, found 671.3773

1-(bis(4-methoxyphenyl)phosphoryl)ethyl bis(4-methoxyphenyl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 157.2 \mathrm{mg}$ of bis(4-methoxyphenyl)phosphine oxide $\mathbf{2 g}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane / methanol $=100: 1)$ to afford $83.8 \mathrm{mg}(0.148 \mathrm{mmol}, 74 \%)$ of 3af as white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.84\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=10.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.20\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=12.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 6.97-6.89 (m, 6H), $6.74\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.33-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 6 \mathrm{H})$, $3.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.50\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.5 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.6(\mathrm{t}, J=2.2 \mathrm{~Hz}), 162.4\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=31.3 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $11.2 \mathrm{~Hz}), 133.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=126.3 \mathrm{~Hz}\right), 122.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=38.8 \mathrm{~Hz}\right), 121.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=17.2 \mathrm{~Hz}), 119.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=105.0 \mathrm{~Hz}\right), 114.2,114.1,114.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 113.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.2 \mathrm{~Hz}\right)$, 113.6, $69.8\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=90.6 \mathrm{~Hz}\right), 55.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 55.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.1 \mathrm{~Hz}\right), 16.0 .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.65\left(\mathrm{~d}, J=25.6 \mathrm{~Hz}\right.$), $31.73\left(\mathrm{~d}, J=25.3 \mathrm{~Hz}\right.$). HRMS calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{P}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 567.1696$, found 567.1694 .

1-(di(naphthalen-2-yl)phosphoryl)ethyl di(naphthalen-2-yl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 181.3 \mathrm{mg}$ of di(naphthalen-2-yl)phosphine oxide $\mathbf{2 h}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100$: 1) to afford $86.6 \mathrm{mg}(0.134 \mathrm{mmol}, 67 \%)$ of 3ag as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.75(\mathrm{~m}, 12 \mathrm{H}), 7.68-7.47$ $(\mathrm{m}, 9 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.78(\mathrm{~m}, 1 \mathrm{H}), 1.68\left(\mathrm{dd}, J_{1}=\right.$ $\left.7.0 \mathrm{~Hz}, J_{2}=14.5 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 134.6\left(\mathrm{dd}, J_{1}=1.9\right.$ $\left.\mathrm{Hz}, J_{2}=38.5 \mathrm{~Hz}\right), 133.6\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}\right), 133.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.8\right.$ $\mathrm{Hz}), 132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=14.6 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=14.6 \mathrm{~Hz}\right), 129.5,128.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $17.7 \mathrm{~Hz}), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.3 \mathrm{~Hz}\right), 128.5,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.1 \mathrm{~Hz}\right), 128.2(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 128.1,127.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 127.8,127.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=17.7 \mathrm{~Hz}\right), 127.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.5\right.$ $\mathrm{Hz}), 127.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=31.6 \mathrm{~Hz}\right), 126.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 126.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.2\right.$ $\mathrm{Hz}), 126.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=98.9 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.5 \mathrm{~Hz}\right), 70.1\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}\right.$, $J_{2}=89.3 \mathrm{~Hz}$), 16.3. ${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.54(\mathrm{~d}, J=25.1 \mathrm{~Hz}), 31.53(\mathrm{~d}, J=25.1 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 647.1899$, found 647.1897.

1-(di-m-tolylphosphoryl)ethyl di-m-tolylphosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 138.1 \mathrm{mg}$ of di-o-tolylphosphine oxide $\mathbf{2 i}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $79.3 \mathrm{mg}(0.158$ mmol, 79%) of 3ah as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75-7.71 (m, 1H), 7.62 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 6 \mathrm{H})$, 7.23-7.10 (m, 3H), 7.03-6.99 (m, 1H), 5.44-5.38 (m, 1H), $2.34(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.52$ $\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.5 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.3 \mathrm{~Hz}\right), 138.3(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 138.2,138.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.3 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 132.9\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=\right.$ $5.6 \mathrm{~Hz}), 132.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 131.9\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 131.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $134.3 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.8 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $9.0 \mathrm{~Hz}), 128.8,128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.7 \mathrm{~Hz}\right), 128.5,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 128.3,128.2,128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $10.1 \mathrm{~Hz}), 128.0,69.9\left(\mathrm{dd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=88.9 \mathrm{~Hz}\right), 21.3,21.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 15.9 .{ }^{31} \mathrm{P}$ NMR $(203$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.46(\mathrm{~d}, J=27.2 \mathrm{~Hz}), 31.29(\mathrm{~d}, J=25.9 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H}){ }^{+}$: 503.1899, found 503.1896.

1-(bis(3,5-dimethylphenyl)phosphoryl)ethyl
bis(3,5-dimethylphenyl)phosphinate. Performed according to the general procedure (conditions A, 20.4 mg of $\mathbf{1 a}, 154.9 \mathrm{mg}$ of bis(3,5-dimethylphenyl)phosphine oxide $\mathbf{2 j}$ and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1)$ to afford $34.6 \mathrm{mg}(0.062 \mathrm{mmol}, 31 \%)$ of 3ai as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$
$(\mathrm{d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}$, $6 \mathrm{H}), 2.27(\mathrm{~s}, 12 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 1.50\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 138.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 138.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=14.0 \mathrm{~Hz}\right)$, $133.8\left(\mathrm{ddd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}, J_{3}=23.0 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=132.9 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=135.0\right.$ $\mathrm{Hz}), 130.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}}=96.5 \mathrm{~Hz}\right), 129.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.2 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right)$, $128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=87.9 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.4 \mathrm{~Hz}\right), 69.7\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=88.6 \mathrm{~Hz}\right), 21.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 3.8 Hz), 21.1, 15.9. ${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.03(\mathrm{~d}, J=26.0 \mathrm{~Hz}$), $30.97(\mathrm{~d}, J=25.3 \mathrm{~Hz}$). HRMS calc. for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 559.2525$, found 559.2525.

1-(diethoxyphosphoryl)ethyl diethyl phosphate. Performed according to the general procedure (conditions B, 20.4 mg of $\mathbf{1 a}, 82.8 \mathrm{mg}$ of diethyl phosphonate $\mathbf{4 a}$ and 45.7 mg of DBU), and purified by column chromatography (petroleum ether/ethyl acetate $=2: 1,300 \mathrm{~mL}$, then dichloromethane $/$ methanol $=30: 1)$ to afford $38.2 \mathrm{mg}(0.12 \mathrm{mmol}, 60 \%)$ of $\mathbf{5 a}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.74-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.10(\mathrm{~m}, 8 \mathrm{H}), 1.59\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=16.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37-1.34(\mathrm{~m}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 69.1\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=173.1 \mathrm{~Hz}\right), 64.0\left(\mathrm{dd}, J_{1}=6.1 \mathrm{~Hz}, J_{2}=\right.$ $16.0 \mathrm{~Hz}), 62.9\left(\mathrm{dd}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=18.3 \mathrm{~Hz}\right), 16.6,16.4\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right), 16.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.30\left(\mathrm{~d}, J=32.6 \mathrm{~Hz}\right.$), -1.17 ($\mathrm{d}, J=32.6 \mathrm{~Hz}$). MS (ESI): $318.6(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[9]}$

1-(dimethoxyphosphoryl)ethyl dimethyl phosphate Performed according to the general procedure (conditions B, 20.4 mg of $\mathbf{1 a}, 66.0 \mathrm{mg}$ of dimethyl phosphonate $\mathbf{4 b}$ and 45.7 mg of DBU),, and purified by column chromatography (petroleum ether/ethyl acetate $=2: 1,300 \mathrm{~mL}$, then dichloromethane $/$ methanol $=30: 1)$ to afford $21.5 \mathrm{mg}(0.164 \mathrm{mmol}, 41 \%)$ of $\mathbf{5 b}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 12 \mathrm{H}), 1.59\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=16.8 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 69.1\left(\mathrm{dd}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=172.9 \mathrm{~Hz}\right), 54.5\left(\mathrm{dd}, J_{1}=6.1 \mathrm{~Hz}, J_{2}=19.0 \mathrm{~Hz}\right), 53.5$ $\left(\mathrm{dd}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=22.8 \mathrm{~Hz}\right), 16.6 .{ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.54(\mathrm{~d}, J=30.1 \mathrm{~Hz}), 1.08(\mathrm{~d}, J$ $=30.9 \mathrm{~Hz})$. MS (ESI): $262.6(\mathrm{M}+\mathrm{H})^{+}$.
The analytical data matched those reported in the literature. ${ }^{[9]}$

dibutyl (1-(dibutoxyphosphoryl)ethyl) phosphate. Performed according to the general procedure (conditions B, 20.4 mg of $\mathbf{1 a}, 116.4 \mathrm{mg}$ of dibutyl phosphonate $\mathbf{4 c}$ and 45.7 mg of DBU), and purified by column chromatography (petroleum ether/ethyl acetate $=2: 1,300 \mathrm{~mL}$, then dichloromethane $/$ methanol $=30: 1)$ to afford $35.7 \mathrm{mg}(0.076 \mathrm{mmol}, 38 \%)$ of $\mathbf{5 c}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.74-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 8 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 8 \mathrm{H}), 1.58\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=16.7 \mathrm{~Hz}\right.$, $3 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 8 \mathrm{H}), 0.94\left(\mathrm{td}, J_{1}=1.1 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 12 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 69.2$ $\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=173.1 \mathrm{~Hz}\right), 67.7\left(\mathrm{dd}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=14.1 \mathrm{~Hz}\right), 66.6\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=19.8\right.$ $\mathrm{Hz}), 32.5\left(\mathrm{dd}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}\right), 32.2\left(\mathrm{dd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}\right), 18.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right), 16.7$, $13.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.26(\mathrm{~d}, J=32.7 \mathrm{~Hz}),-0.93(\mathrm{~d}, J=32.7 \mathrm{~Hz})$.

HRMS calc. for $\mathrm{C}_{18} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 431.2322$, found 431.2320 .

dibenzyl (1-(bis(benzyloxy)phosphoryl)ethyl) phosphate. Performed according to the general procedure (conditions B, 20.4 mg of $\mathbf{1 a}, 157.3 \mathrm{mg}$ of dibenzyl phosphonate $\mathbf{4 d}$ and 45.7 mg of DBU), and purified by column chromatography (petroleum ether/ethyl acetate $=2: 1,300 \mathrm{~mL}$, then dichloromethane $/$ methanol $=30: 1)$ to afford $54.3 \mathrm{mg}(0.096 \mathrm{mmol}, 48 \%)$ of $\mathbf{5 d}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.25(\mathrm{~m}, 20 \mathrm{H}), 5.06-4.97(\mathrm{~m}, 8 \mathrm{H}), 4.86-4.76(\mathrm{~m}, 1 \mathrm{H}), 1.52\left(\mathrm{dd}, J_{1}=\right.$ $\left.7.1 \mathrm{~Hz}, J_{2}=17.1 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.8\left(\mathrm{dd}, J_{1}=5.7 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}\right), 135.5(\mathrm{t}$, $\left.J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 128.5,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.3,128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right)$, $69.7\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=173.2 \mathrm{~Hz}\right), 69.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}\right), 68.2\left(\mathrm{dd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=18.3 \mathrm{~Hz}\right), 16.5$. ${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.95(\mathrm{~d}, J=32.6 \mathrm{~Hz}$), $-1.22(\mathrm{~d}, J=32.6 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 567.1696$, found 567.1693.

1-(diphenoxyphosphoryl)ethyl diphenyl phosphate. Performed according to the general procedure (conditions B, 20.4 mg of $\mathbf{1 a}, 140.4 \mathrm{mg}$ of diphenyl phosphonate $\mathbf{4 e}$ and 36.7 mg of DMAP, stirred at $90^{\circ} \mathrm{C}$ instead), and purified by column chromatography (petroleum ether/ethyl acetate $=6: 1$) to afford $78.6 \mathrm{mg}(0.154 \mathrm{mmol}, 77 \%)$ of $\mathbf{5 e}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.09(\mathrm{~m}, 20 \mathrm{H})$, 5.29-5.21 (m, 1H), $1.72\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=17.9 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.2(\mathrm{dd}$, $\left.J_{1}=7.4 \mathrm{~Hz}, J_{2}=12.9 \mathrm{~Hz}\right), 149.9\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=17.3 \mathrm{~Hz}\right), 129.8,129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 125.5$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=15.5 \mathrm{~Hz}\right), 125.4,120.5\left(\mathrm{dd}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}\right), 120.1\left(\mathrm{dd}, J_{1}=4.7 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}\right)$, $70.5\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=175.5 \mathrm{~Hz}\right), 16.6 .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.2(\mathrm{~d}, J=35.6 \mathrm{~Hz})$, $-12.01(\mathrm{~d}, J=36.7 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 511.1070$, found 511.1065.

1-(diphenoxyphosphoryl)-2-methoxyethyl diphenyl phosphate. Performed according to the general procedure (conditions B, 32.4 mg of $\mathbf{1 e}, 140.4 \mathrm{mg}$ of diphenyl phosphonate $\mathbf{4 e}$ and 36.7 mg of DMAP, stirred at $90^{\circ} \mathrm{C}$ instead), and purified by column chromatography (petroleum ether/ethyl acetate $=6: 1$) to afford $70.2 \mathrm{mg}(0.13 \mathrm{mmol}, 65 \%)$ of $\mathbf{5 f}$ as colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.23(\mathrm{~m}$, $12 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 8 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 150.5\left(\mathrm{dd}, J_{1}=7.4 \mathrm{~Hz}, J_{2}=15.3 \mathrm{~Hz}\right), 149.8\left(\mathrm{dd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=25.7 \mathrm{~Hz}\right), 129.8,129.7(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 120.7\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}\right), 120.3,120.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $4.1 \mathrm{~Hz}), 73.6\left(\mathrm{dd}, J_{1}=7.3 \mathrm{~Hz}, J_{2}=169.7 \mathrm{~Hz}\right), 70.8\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}\right), 58.9 .{ }^{31} \mathrm{P}$ NMR $(203$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.61(\mathrm{~d}, J=27.6 \mathrm{~Hz}),-11.92(\mathrm{~d}, J=27.7 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{8} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H}){ }^{+}$: 541.1176, found 541.1173.

(diphenoxyphosphoryl)(phenyl)methyl diphenyl phosphate. Performed according to the general
procedure (conditions B, 45.2 mg of $\mathbf{1 k}, 140.4 \mathrm{mg}$ of diphenyl phosphonate $\mathbf{4 e}$ and 36.7 mg of DMAP, stirred at $90^{\circ} \mathrm{C}$ instead), and purified by column chromatography (petroleum ether/ethyl acetate $=6: 1$) to afford $77.8 \mathrm{mg}(0.136 \mathrm{mmol}, 68 \%)$ of $\mathbf{5 g}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56-7.54$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.06(\mathrm{~m}, 14 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.12\left(\mathrm{dd}, J_{1}=\right.$ $\left.10.4 \mathrm{~Hz}, J_{2}=13.1 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.1\left(\mathrm{dd}, J_{1}=7.4 \mathrm{~Hz}, J_{2}=29.1 \mathrm{~Hz}\right.$), $150.0\left(\mathrm{dd}, J_{1}=5.7 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}\right), 131.6,129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 128.6(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right), 125.4,125.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 120.3\left(\mathrm{dd}, J_{1}=4.4 \mathrm{~Hz}, J_{2}=9.9\right.$ $\mathrm{Hz}), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 119.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 75.9\left(\mathrm{dd}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=176.5 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}$ ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~d}, J=40.1 \mathrm{~Hz}),-11.69(\mathrm{~d}, J=40.2 \mathrm{~Hz}) . \mathrm{HRMS}$ calc. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})$ +: 573.1226, found 573.1222.

(diphenoxyphosphoryl)(p-tolyl)methyl diphenyl phosphate. Performed according to the general procedure (conditions B, 50.9 mg of $\mathbf{1 1}, 140.4 \mathrm{mg}$ of diphenyl phosphonate $\mathbf{4 e}$ and 36.7 mg of DMAP, stirred at $90^{\circ} \mathrm{C}$ instead), and purified by column chromatography (petroleum ether/ethyl acetate $=6: 1$) to afford $73.8 \mathrm{mg}(0.126 \mathrm{mmol}, 63 \%)$ of $\mathbf{5 h}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72\left(\mathrm{dd}, J_{1}\right.$ $\left.=1.8 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.27-7.07(\mathrm{~m}, 16 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.08(\mathrm{dd}$, $\left.J_{1}=10.3 \mathrm{~Hz}, J_{2}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.34(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.2\left(\mathrm{dd}, J_{1}\right.$ $\left.=7.3 \mathrm{~Hz}, J_{2}=25.1 \mathrm{~Hz}\right), 150.0\left(\mathrm{dd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=13.6 \mathrm{~Hz}\right), 139.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $6.1 \mathrm{~Hz}), 129.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.6 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 125.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=25.5\right.$ $\mathrm{Hz}), 125.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 120.4\left(\mathrm{dd}, J_{1}=4.3 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}\right), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 119.9(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right), 75.9\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=178.0 \mathrm{~Hz}\right), 21.3 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.55(\mathrm{~d}, J=$ $40.5 \mathrm{~Hz}),-11.74(\mathrm{~d}, J=40.1 \mathrm{~Hz}) . \mathrm{HRMS}$ calc. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 587.1383$, found 587.1379 .

(diphenoxyphosphoryl)(p-tolyl)methyl diphenyl phosphate. Performed according to the general procedure (conditions B, 59.0 mg of $\mathbf{1 0}, 140.4 \mathrm{mg}$ of diphenyl phosphonate $\mathbf{4 e}$ and 36.7 mg of DMAP, stirred at $90^{\circ} \mathrm{C}$ instead), and purified by column chromatography (petroleum ether/ethyl acetate $=6: 1$) to afford $72.7 \mathrm{mg}(0.12 \mathrm{mmol}, 60 \%)$ of $\mathbf{5 i}$ as colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44\left(\mathrm{dd}, J_{1}=\right.$ $\left.2.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.29-7.10(\mathrm{~m}, 16 \mathrm{H}), 7.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.07\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=13.3 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.2(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 150.0,149.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 149.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 135.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 130.3$, $129.8,129.7,129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 129.5,128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 125.6,125.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right)$, $120.3\left(\mathrm{dd}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}\right), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 119.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 75.1\left(\mathrm{dd}, J_{1}=7.0\right.$ $\left.\mathrm{Hz}, J_{2}=177.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J=38.1 \mathrm{~Hz}),-11.68(\mathrm{~d}, J=40.1 \mathrm{~Hz})$. HRMS calc. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{ClO}_{7} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})^{+}: 607.0837$, found 607.0835 .

1-(diphenylphosphoryl)dodecyl diphenylphosphinate Performed according to the general procedure (conditions A, 79.7 mg of $\mathbf{6 e}, 121.2 \mathrm{mg}$ of diphenylphosphine oxide 2a and 4.9 mg of DMAP), and purified by column chromatography (dichloromethane $/$ methanol $=100: 1$) to afford $73.9 \mathrm{mg}(0.126$ $\mathrm{mg}, 63 \%$) of $\mathbf{3 r}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.69(\mathrm{~m}, 4 \mathrm{H})$, 7.50-7.47 (m, 2H), 7.43-7.34 (m, 8H), 7.30-7.26 (m, 2H), 7.20-7.19 (m, 2H), 5.52-5.47 (m, 1H), $1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.10(\mathrm{~m}, 14 \mathrm{H}), 1.03-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.87\left(\mathrm{td}, J_{1}=1.3\right.$ $\left.\mathrm{Hz}, J_{2}=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.8,132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2.7 \mathrm{~Hz}), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6\right.$ $\mathrm{Hz}), 131.4,131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.2 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 130.6,129.3$, $128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.2 \mathrm{~Hz}\right), 73.8\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=\right.$ $87.4 \mathrm{~Hz}), 31.8,30.4,29.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 29.2,29.1,29.0,28.9,25.9,25.8,22.6,14.0 .{ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.65\left(\mathrm{~d}, J=20.1 \mathrm{~Hz}\right.$), $30.7\left(\mathrm{~d}, J=20.1 \mathrm{~Hz}\right.$). HRMS calc. for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{P}_{2}(\mathrm{M}+\mathrm{H})$ ${ }^{+}$: 587.2838, found 587.2840.

diphenyl (mesityl(phenyl)methyl)phosphonate. Performed according to the literature ${ }^{[10]}$ with 1.0 eq. compound $\mathbf{5 h}(0.2 \mathrm{mmol}, 114.4 \mathrm{mg})$ and 1.2 eq . TfOH (36.0 mg) in mesitylene $(0.3 \mathrm{ml})$ at $50{ }^{\circ} \mathrm{C}$, and purified by column chromatography (petroleum ether/ethyl acetate $=5: 1)$ to afford $81.3 \mathrm{mg}(0.184$ $\mathrm{mmol}, 92 \%)$ of $\mathbf{8}$ as yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.58-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~d}, J=31.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.09(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.4\left(\mathrm{dd}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}\right), 139.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5\right.$ $\mathrm{Hz}), 137.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 136.3,131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $6.3 \mathrm{~Hz}), 129.7,129.3,129.2,128.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 128.4,126.6,125.2,124.6,120.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.3\right.$ $\mathrm{Hz}), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 44.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=141.8 \mathrm{~Hz}\right), 21.5,21.4,20.7 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ δ 19.15. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Na})^{+}: 443.1771$, found 443.1766.

diphenyl benzylphosphonate. Performed according to the literature ${ }^{[11]}$ with 1.0 eq. compound $\mathbf{5 h}(0.2$ mmol, 114.4 mg) and TMSI ($0.8 \mathrm{mmol}, 160.1 \mathrm{mg}, 4.0 \mathrm{eq}$.$) in \mathrm{MeCN}(2.0 \mathrm{ml})$ at r.t, and purified by column chromatography (petroleum ether/ethyl acetate $=5: 1)$ to afford $56.4 \mathrm{mg}(0.174 \mathrm{mmol}, 87 \%)$ of 9 as brown oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $9.2 \mathrm{~Hz}), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 129.6,128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 127.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=3.7 \mathrm{~Hz}), 125.1,120.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 33.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=138.5 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 19.55. HRMS calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Na})^{+}: 325.0988$, found 325.0984.

tert-butyl (diphenylphosphoryl)formate. Performed according to the general procedure (conditions A, 43.7 mg of $\mathbf{1 t}, 121.2 \mathrm{mg}$ of diphenylphosphine oxide $\mathbf{2 a}$ and 4.9 mg of DMAP),, and purified by column chromatography (petroleum ether/ethyl acetate $=6: 1)$ to afford $28.4 \mathrm{mg}(0.094 \mathrm{mmol}, 47 \%)$ of 10 as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}$, $4 \mathrm{H}), 1.53(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=143.9 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=2.7 \mathrm{~Hz}), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=100.6 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 86.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 4.0 Hz), 28.1. ${ }^{31} \mathrm{P}$ NMR (203 MHz, CDCl_{3}): δ 15.40. HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{PNa}(\mathrm{M}+\mathrm{Na})^{+}$: 325.0964, found 325.0959 .

7. Reference

1. Liu, N.; Mao, L. L.; Yang, B.; Yang, S. D. Chem.Commun. 2014, 50, 10879-10882.
2. King, A. K.; Buchard, A.; Mahon, M. F.; Webster, R. L. Chem. Eur. J. 2015, 21, 15960-15963.
3. Zhang, D.; Lian, M.; Liu, J.; Tang, S.; Liu, G.; Ma, C.; Meng, Q.; Peng, H.; Zhu, D. Org. Lett. 2019, 21, 2597-2601.
4. Frey, G.; Lesiecki, H.; Lindner, E.; Vordermaier, G. Chem. Ber. 1979, 112, 763-772.
5. Lesiecki, H.; Lindner, E.; Vordermaier, G. Chem. Ber. 1979, 112, 793-798.
6. Lindner, E.; Ebert, H.-D.; Geihell, K.; Haag, A. Chem. Ber. 1979, 104, 3121-3130.
7. Davidson, R. S.; Sheldon, R. A. Trippett, S. J. Chem. Soc.(C), 1966, 1700-1703.
8. Lindner, E.; Hiibner, D. Chem. Ber. 1983, 116, 2574-2590.
9. Keglevich, G.; Grün, A.; Molnár, I. G.; Greiner, I. Heteroatom Chem. 2011, 22, 640-648.
10. Pallikonda, G.; Chakravarty, M. J. Org. Chem. 2016, 81, 2135-2142.
11. Zhu, Q.; Tremblay, M. S. Bioorg. Med. Chem. Lett. 2006, 16, 6170-6172.

8. Charts of compounds

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \text { Ph } \\
& \text { 3b }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
5m

$$
\mathrm{Ph}^{-1} \mathrm{Ph}^{-1} \mathrm{P}_{0}^{-}
$$

3b
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

cher

H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\underset{\mathrm{Ph}^{-}-\mathrm{P}_{0}^{-}}{\mathrm{Ph}_{0}^{\prime}}
$$

3d
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

으ㄴㅒㅒ
ল্ল゙ল゙ゥ்ં

3d
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N8かのmの

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

® ゅのㅇ․

$$
\begin{aligned}
& \mathrm{Ph}^{-1} \\
& 3 \mathrm{e}
\end{aligned}
$$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{P}_{\mathrm{O}} \mathrm{O}_{3 \mathrm{C}}^{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}} \mathrm{CF}_{2} \mathrm{CF}_{3}
$$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

$$
\begin{aligned}
& \mathrm{Ph}^{-1} \mathrm{Ph}_{-1-\mathrm{Ph}}^{\mathrm{O}} \\
& \text { 3h }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3h
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3i
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Ph}^{-1} \mathrm{Ph}^{\circ}-\mathrm{P}
$$

3i
${ }^{31}$ P NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{P}_{1}$

31
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

31
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{P}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{P}$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Ph}_{2}(0) \mathrm{P}_{\mathrm{O}}^{\mathrm{O}}-\underset{\substack{\mathrm{P}(0) \mathrm{Ph}_{2} \\ 3 \mathrm{p}}}{ }
$$
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

in

(on
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aa
${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(200

3 ac
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

3af OMe
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8 운운

3ag
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]${ }^{31}$ P NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]

\[

$$
\begin{aligned}
& \text { 5b } \\
& { }^{31} \mathrm{P} \text { NMR }\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
\end{aligned}
$$
\]

Min N

5c
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(V)
${ }^{31} \mathrm{P}$ NMR ($203 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\underbrace{\infty \quad}
$$

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3})

H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \text { Pho } \\
& \text { 5e } \\
& { }^{31} \mathrm{P} \text { NMR }\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{31} \mathrm{P} \text { NMR }\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
\end{aligned}
$$

PhO
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
V:%%%
```


${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5h
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& { }^{31} \mathrm{P} \text { NMR }\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
\end{aligned}
$$

$$
\mathrm{Ph}_{\mathrm{Ph}^{\prime}}^{\mathrm{P}^{\prime \prime}} \mathrm{O}_{0}^{\mathrm{C}_{11} \mathrm{H}_{23}}
$$

3 r
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Ph}_{\mathrm{Ph}^{\prime \prime}}^{\mathrm{P}^{\prime \prime}}
$$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9
${ }^{31} \mathrm{P}$ NMR $\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: $V_{V}^{\sim N}$

[^1]: Nூ~N

 3ah

[^2]:

