SUPPORTING INFORMATION

Synthesis of a helicene-fused porphyrin leading to a π-extended chiral chromophore

Vincent Silber, ${ }^{\text {a }}$ Nathalie Gruber, ${ }^{\text {b }}$ Marion Jean, ${ }^{\text {c }}$ Nicolas Vanthuyne, ${ }^{\text {c }}$ and Romain Ruppert*a
${ }^{\text {a }}$ Institut de Chimie, UMR CNRS 7177, Institut Le Bel, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg (France). E-mail : rruppert@unistra.fr
${ }^{\text {b }}$ Fédération de Chimie Le Bel, FR 2010, BP 296R8, 1 rue Blaise Pascal, 67008 Strasbourg cedex (France).
${ }^{\text {c }}$ AMU, iSm2, UMR CNRS 7313, Centrale Marseille, Campus Scientifique de St Jérôme, 13397 Marseille cedex 20 (France).

Table of contents

I General method 2
II Synthetic procedures and characterisation 3
II. 1 Synthesis and characterisation of the free base porphyrin 3
II. 2 Synthesis of the $\mathrm{Ni}(\mathrm{II})$-porphyrin 1 5
II. 3 Synthesis and characterisation of the fused porphyrin 2 7
III Synthesis of the non-fused helicene-porphyrin 4 9
III. 1 Synthesis of the 2-(4-bromo-2,5-dimethoxystyryl)benzo[c]phenanthrene 10
III. 2 Synthesis of the 2-bromo-1,4-dimethoxyhexahelicene (\pm) 12
III. 3 Synthesis of the 2-formyl-1,4-dimethoxyhexahelicene (\pm) 14
III. 4 Synthesis of the porphyrin 3 (\pm) 16
IV Synthesis of the six-membered ring helicene-fused porphyrin 21
IV. 1 Synthesis of the 2-(2-bromo-5-methoxystyryl)benzo[c]phenanthrene 22
IV. 2 Synthesis of the 1-methoxy-4-bromo-[6]helicene (\pm) 24
IV. 3 Synthesis of the 1-methoxy-4-formyl-[6]helicene (\pm) 27
IV. 4 Synthesis of the free-base porphyrin 6 (\pm) 30
IV. 5 Synthesis of the $\mathrm{Ni}(I I)$-porphyrin 7 (\pm) 32
IV. 6 Synthesis and characterisation of the helicene-fused porphyrin 8 (\pm) 34
V Resolution of enantiomers by chiral HPLC. 38
V. 1 Porphyrin 4 38
V. 2 Porphyrin 7 41
V. 3 Porphyrin 8 44

EXPERIMENTAL PROCEDURES

I General method

NMR spectra were recorded on Bruker Advance $300(300 \mathrm{MHz}), 400(400 \mathrm{MHz}), 500(500 \mathrm{MHz}), 600$ (600 MHz) spectrometers. Chemical shifts are given in parts per million (ppm) by taking the solvent as a reference: $\delta\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm}, \delta\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=5.33 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and $\delta\left(\mathrm{CHCl}_{3}\right)=77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR (relative to TMS signal). The coupling constants (J) are given in Hertz (Hz) and the multiplicity of the signals are expressed as: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, m=$ multiplet, br = broad signal.

Mass spectrometry (MS and HRMS) experiments were performed on a Bruker Daltonics microTOF spectrometer equipped with an ESI source (Bruker Daltonik GmgH, Bremen, Germany) by the Service de Spectrométrie de Masse de la Fédération de Chimie "Le Bel" (FR 2010).

UV/vis spectra were recorded on a Cary 5000 UV/vis/NIR double-beam spectrometer in dichloromethane. Extinction coefficients were determined for samples with analyte concentrations ranging from 5.10^{-6} to $1.10^{-4} \mathrm{M}$. All experiments were performed in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (distilled over CaH_{2}) at 298 K .

X-ray analyses and structural resolutions were performed by Dr. L. Karmazin, Dr. C. Bailly and N. Grüber (Service de radiocristallographie, Fédération de Chimie, Strasbourg) using a Bruker APEX II DUO Kappa-CCD diffractometer using MoK $\backslash \alpha$ radiation $(\boldsymbol{\lambda}=0.71073 \AA$) or CuK $\backslash \alpha$ radiation $(\boldsymbol{\lambda}=$ 1.54178 A)

Electrochemical measurements were performed using a three-electrode cell connected to a computerized electrochemical device (SP150 from BioLogic). Measurements were usually performed using a glassy carbon electrode as the working electrode and the compound were dissolved in distilled dichloromethane with NBu4PF6 (0.1 M) as electrolyte. Electrochemical potentials were referenced to the Ferrocene/Ferrocenium couple ($\mathrm{Fc} / \mathrm{Fc}^{+}$).

ECD spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at $25.0 \pm 0.2^{\circ} \mathrm{C}$

II Synthetic procedures and characterisation

II. 1 Synthesis and characterisation of the free base porphyrin

Chemical Formula: $\mathrm{C}_{64} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{2}$ Exact Mass: 926.5499 Molecular Weight: 927.2900

A solution of 2,6-dimethyl-4-tert-butylbenzaldehyde ($1.72 \mathrm{~g}, 9.03 \mathrm{mmol}, 3 \mathrm{eq}$.), 2,5dimethoxybenzaldehyde ($500 \mathrm{mg}, 3.01 \mathrm{mmol}, 1 \mathrm{eq}$.), pyrrole ($0.84 \mathrm{~mL}, 12.04 \mathrm{mmol}, 4 \mathrm{eq}$.) in CHCl_{3} $(390 \mathrm{~mL})$ was degassed in the dark for 30 minutes by argon bubbling. Under argon, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.28$ $\mathrm{mL}, 5.7 \mathrm{mM}$) was added and the solution was stirred in the dark at room temperature for $1 \mathrm{~h} . p$ chloranil ($2.22 \mathrm{~g}, 9.03 \mathrm{mmol}, 3 \mathrm{eq}$.) was added and the solution was heated to reflux for an additional hour. The solution was filtered through a silica pad and evaporated to dryness. The desired porphyrin was isolated by column chromatography (silica gel, cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 8 / 2$ to 6/4) followed by precipitation from an acetone/hexane/methanol mixture to afford the desired porphyrin ($320 \mathrm{mg}, 0.35 \mathrm{mmol}, 11 \%$) as a purple solid.
${ }^{1} \mathrm{H}$ NMR (CDCl $3,500 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.74\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}\right), 8.64(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}_{\text {pyrr }}$), $8.60\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 7.61\left(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$), $7.43\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.33-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}+\right.$ H_{c}), $3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3-m}\right), 3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3-c}\right), 1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.88(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3 A r}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.60-1.50\left(\mathrm{~m}, 27 \mathrm{H}, \mathrm{H}_{t \mathrm{tbu}}\right),-2.51(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}}(\mathrm{ppm})=157.4,154.4,152.5,151.0,139.15,139.08,139.0,138.5$, 138.4 (CH), 132.3, 127.0, 124.01, 123.98 (CH), 121.7 (CH), 118.2, 118.1, 118.0, 114.81 (CH), 114.79, $112.5(\mathrm{CH}), 56.8\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 34.8,31.9(t \mathrm{Bu}), 22.21\left(\mathrm{CH}_{3}\right), 22.18\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ([M+H+]) 927.5572; found 927.5566.
UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=418 \mathrm{~nm}\left(\varepsilon=188000 \mathrm{L.cm}^{-1} \cdot \mathrm{~mol}^{-1}\right)$, 514 (10000), 548 (3200), 593 (2900), 647 (1800).

Figure S1: ${ }^{1} \mathrm{H}$ spectrum of the free-base porphyrin in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$.

Figure S2: ${ }^{13} \mathrm{C}$ spectrum of the free-base porphyrin in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S3: ${ }^{13} \mathrm{C}$ DEPT spectrum of the free-base porphyrin in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

II. 2 Synthesis of the $\mathrm{Ni}(\mathrm{II})$-porphyrin 1

A solution containing the free-base porphyrin ($320 \mathrm{mg}, 0.35 \mathrm{mmol}, 1 \mathrm{eq}$.) and $\mathrm{Ni}(\mathrm{acac})_{2}(440 \mathrm{mg}$, $1.73 \mathrm{mmol}, 5 \mathrm{eq}$.) in toluene (100 mL) was refluxed overnight. The mixture was filtered through an alumina pad. The solvent was evaporated under vacuum and the resulting solid was further purified by precipitation from an acetone/hexane/methanol mixture to afford the desired metallo-porphyrin 1 ($344 \mathrm{mg}, 1.57 \mathrm{mmol}$, quant.) as a red solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.67\left(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}\right), 8.56(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}$, $H_{\text {pyrr) }}$, $8.55-8.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 7.45\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 7.24\left(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 7.20(\mathrm{~d}$, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3-m}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3-0}\right), 1.90-1.80\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.55-156$ ($2 \mathrm{~s}, 27 \mathrm{H}, \mathrm{H}_{\mathrm{tBu}}$).
${ }^{13}{ }^{1}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=156.8,153.7,152.5,150.91,150.89,142.9,142.6,142.5$, $142.4,141.4,138.74,138.71,138.6,137.5,137.4,132.0$ (CH), 131.5 (CH), 131.4 (CH), 131.3 (CH), $131.0,127.0$ (CH), 125.1 (CH), 124.0 (CH), 123.97 (CH), 121.0 (CH), 117.22, 117.18, 114.9 (CH), 114.1, $112.2(\mathrm{CH}), 56.6\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{OCH}_{3}\right), 34.83,34.80,31.8(t \mathrm{Bu}), 22.04\left(\mathrm{CH}_{3}\right), 22.02\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ([M $\left.{ }^{+}\right]$) 982.4690; found 982.4695.
UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=419 \mathrm{~nm}\left(\varepsilon=140000{\left.\mathrm{~L} . \mathrm{cm}^{-1} . \mathrm{mol}^{-1}\right), 527(13000), 565(3500) .}^{5}\right.$.

Figure S4: ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{1}$ in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$.

Figure S5: ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{1}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S6: ${ }^{13} \mathrm{C}$ DEPT spectrum of $\mathbf{1}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

II. 3 Synthesis and characterisation of the fused porphyrin 2

A solution of the porphyrin $1(60 \mathrm{mg}, 61 \mathrm{mmol}, 1$ eq.) in chlorobenzene (3 mL) was degassed by argon bubbling for 30 minutes. In a second flask, anhydrous $\mathrm{FeCl}_{3}(100 \mathrm{mg}, 0.61 \mathrm{mmol}, 10 \mathrm{eq}$.) was dissolved in $\mathrm{MeNO}_{2}(1 \mathrm{~mL})$ and degassed by argon bubbling for 30 minutes. The iron chloride solution was cannulated to the porphyrin solution and the resulting mixture instantly turned to dark green upon addition. The solution was heated for 4 h at $50^{\circ} \mathrm{C}$ while maintaining the argon bubbling. The solution was allowed to cool to room temperature and $\mathrm{NEt}_{3}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(5 \mathrm{~mL})$ were added. The solvents were removed under reduced pressure and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added. The organic layer was collected, washed thrice with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were removed under reduced pressure. The crude product was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{cyclohexane} 1 / 1$) to afford the desired porphyrin $\mathbf{2}$ (35 mg , $35.6 \mathrm{mmol}, 58 \%$) as a green solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=9.76\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}\right), 8.37(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $H_{\text {pyrr) }}$) 8.15 (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$), 8.09 (d $, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}, 8.06$ (br s, 2H, $\mathrm{H}_{\text {pyrr) }}$), 7.69 (s, 1H, $H_{\text {pyrr }}$), $7.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 7.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 7.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.76\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 6.62(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$), $4.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3-\mathrm{o}}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3-m}\right), 1.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.90(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3 A r}\right), 1.54$ (br s, 18H, $\mathrm{H}_{t B u}$), 1.52 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{t B u}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=153.9,150.94,150.89,150.87,150.81,150.6,146.1,145.8$, $145.4,144.8,144.0,143.4,143.2,143.0,138.6,138.4,138.3,137.6,137.0,136.9,136.1,132.8$ (CH), 132.0 (CH), 131.4 (CH), 130.5 (CH), 129.9 (CH), 129.4 (CH), 126.9, $124.0(\mathrm{CH}), 122.8$ (CH), 122.2, $121.0,117.2,116.4(\mathrm{CH}), 113.7(\mathrm{CH}), 112.5,56.4\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 34.74,34.72,31.79(t \mathrm{Bu})$, $31.76(t B u), 22.0\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ($\left[\mathrm{M}^{+} \mathrm{]}\right.$) 980.4534; found 980.4527.
UV-vis ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\lambda_{\text {max }}=424 \mathrm{~nm}\left(\varepsilon=50000 \mathrm{L.cm}^{-1} . \mathrm{mol}^{-1}\right)$, 473 (75000), 570 (6700), 618 (5400), 645 (1000).

Figure S7: Electronic spectra of $\mathbf{1}$ and $\mathbf{2}$ in dichloromethane.

Figure S8: ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{2}$ in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$ and aromatic area.

Figure S9: ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{2}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

160	140	120	100	$\begin{array}{r} 80 \\ \mathrm{ppm} \end{array}$	60	40	20	0

Figure S10: ${ }^{13} \mathrm{C}$ DEPT spectrum of $\mathbf{2}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S11: HR-ESI mass of compound $\mathbf{2}$ (top) and simulation (bottom).

III Synthesis of the non-fused helicene-porphyrin 4

i) n-BuLi, THF, $1 \mathrm{~h},-78^{\circ} \mathrm{C}$
ii) DMF (dry), 1 h, r.t.

i) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CHCl} 3,1$ h, r.t.
ii) p-chloranil, 1 h , reflux

Ar: 2,6-dimethyl-4-tert-butylphenyl
5
Figure S12. Proposed synthesis of the five-membered ring helicene-fused porphyrin 5.

III. 1 Synthesis of the 2-(4-bromo-2,5-dimethoxystyryl)benzo[c]phenanthrene

Under argon, NaH (60% in mineral oil) ($220 \mathrm{mg}, 5.49 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added to a solution of diethyl 4-bromo-2,5-dimethoxybenzylphosphonate ($2.02 \mathrm{~g}, 5.49 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in freshly distilled THF (50 mL). After 15 min of stirring at room temperature, a solution of benzo[c]phenanthrene-2carbaldehyde ($1.28 \mathrm{~g}, 4.99 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in freshly distilled THF (30 mL) was added dropwise and the resulting solution was heated at $50^{\circ} \mathrm{C}$ for 16 h . The solution was allowed to cool to room temperature and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added. The solvents were evaporated under reduced pressure and the resulting solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The resulting solution was washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, and filtered. Subsequent purification of the crude product by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $40 / 60$ to $50 / 50$) afforded the desired product as a yellow solid ($2.23 \mathrm{mg}, 4.74 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=9.17\left(\mathrm{dd}, \mathrm{J}=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 9.15\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, 8.04 (dd, J = 8.0, 1.5 Hz, 1H H9), $8.01\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.96-7.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}+2{ }^{*} \mathrm{H}_{5-8}\right), 7.85-$ $7.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5-8}\right), 7.74$ (ddd, $\left.J=8.5,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.65\left(\mathrm{ddd}, \mathrm{J}=8.0,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 7.61$ (d, J = $16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$), $7.38\left(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 7.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{o}\right), 7.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 3.97(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3-m}), 3.89 (s, 3H, OCH O_{3-o}).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}}(\mathrm{ppm})=151.6,150.4,135.6,133.7,133.2,131.5,130.8,130.5,130.2$ (CH), 129.1 (CH), 128.8 (CH), 128.0 (CH), 127.7 (CH), $127.52(\mathrm{CH}), 127.49,127.3(\mathrm{CH}), 127.1(\mathrm{CH})$, 127.0 (CH), 126.5, 126.3 (CH), 126.0 (CH), 123.4 (CH), 123.3 (CH), 116.8 (CH), 111.2, 109.9 (CH), 57.2 $\left(\mathrm{OCH}_{3}\right), 56.6\left(\mathrm{OCH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ([M+K+]) 507.0357; found 507.0329.

Figure $\mathbf{S 1 3}:{ }^{1} \mathrm{H}$ spectrum of the 2-(4-bromo-2,5-dimethoxystyryl)benzo[c]phenanthrene in CDCl_{3} at $298 \mathrm{~K}\left(300 \mathrm{MHz}\right.$, at 5.3 and 1.5 ppm : residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and aromatic area.

Figure S14: ${ }^{13} \mathrm{C}$ spectrum of the 2-(4-bromo-2,5-dimethoxystyryl)benzo[c]phenanthrene in CDCl_{3} at 298 K (126 MHz).

Figure S15: ${ }^{13} \mathrm{C}$ DEPT spectrum of the 2-(4-bromo-2,5-dimethoxystyryl)benzo[c]phenanthrene in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

III. 2 Synthesis of the 2-bromo-1,4-dimethoxyhexahelicene (\pm)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{BrO}_{2}$ Exact Mass: 466.0568
Molecular Weight: 467.3620

A solution of 2-(4-bromo-2,5-dimethoxystyryl)benzo[c]phenanthrene ($1.12 \mathrm{~g}, 2.56 \mathrm{mmol}, 1$ eq.) and iodine ($\simeq 0.015$ eq.) in cyclohexane (400 mL) was irradiated in a photoreactor equipped with an immersion lamp (150 W) for 10 h . Sodium thiosulfate (5 g) was added and the solution was stirred overnight. The solvent was evaporated, and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $\left.40 / 60\right)$ to afford the 2-bromo-1,4dimethoxyhexahelicene (\pm) as a yellow solid ($580 \mathrm{mg}, 1.24 \mathrm{mmol}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\right.$ CDCl $\left._{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.39\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.10-7.87\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{6}+\mathrm{H}_{7}\right.$ $+\mathrm{H}_{8}+\mathrm{H}_{9}+\mathrm{H}_{10}+\mathrm{H}_{11}+\mathrm{H}_{12}$) 7.81 (dd, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}$), $7.28-7.20$ (ddd, J = 8.0, 6.8, 1.1 Hz, 1H, H_{14}), 7.07 (dd, J = 8.5, 1.1 Hz, 1H, H_{16}), $6.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 6.60$ (ddd, $J=8.5,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}$), 4.02 (s, 3H, OCH ${ }_{3 \text { out }}$), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text { in }}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=151.9,147.8,132.6,132.19,132.17,130.8,129.12,129.09$, 128.1 (CH), 127.9 (CH), 127.5 (CH), 127.4 (CH), 126.3 (CH), 126.2 (CH), 126.1 (CH), 125.9 (CH), 125.6 , 125.33 (CH), 125.29 (CH), 124.7, 124.1, 123.7, 123.3 (CH), 121.4 (CH), 114.4, 109.9 (CH), $58.4\left(\mathrm{OCH}_{3}\right)$, $56.4\left(\mathrm{OCH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ($\left[\mathrm{M}+\mathrm{Na}^{+}\right]$) 489.0461; found 489.0465.
Crystal data: From $\mathrm{CHCl}_{3}, \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{BrO}_{2}, \mathrm{M}=467.34 \mathrm{~g} . \mathrm{mol}^{-1}$, monoclinic space group P $21 / \mathrm{c}$, $\mathrm{a}=$ 14.6897 (5) $\AA, b=14.0457$ (6) $\AA, c=20.6528$ (7) $\AA, \alpha=90.0^{\circ}, \beta=104.4410^{\circ}, \gamma=90.0^{\circ}, V=4126.6$ (3) $\AA^{3}, Z=8, T=120 \mathrm{~K}, \mathrm{MoK} \backslash \alpha=0.71073,2.43<\theta<27.89$, 31304 reflections measured, $\mathrm{R}_{1}=2.94 \%$, $w R_{2}=7.6 \%, G o F=1.00626 . C C D C: 2092869$

Figure S16. X-Ray structure of the 1,4-dimethoxy-2-bromo-[6]helicene

Figure S17: ${ }^{1} \mathrm{H}$ spectrum of the 2-bromo-1,4-dimethoxyhexahelicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(500$ MHz) and aromatic area (bottom).

Figure S18: ${ }^{13} \mathrm{C}$ spectrum of the 2-bromo-1,4-dimethoxyhexahelicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(126$ MHz).

Figure S19: ${ }^{13} \mathrm{C}$ DEPT spectrum of the 2-bromo-1,4-dimethoxyhexahelicene (\pm) in CDCl_{3} at 298 K (126 MHz).

III. 3 Synthesis of the 2-formyl-1,4-dimethoxyhexahelicene (\pm)

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{3}$
Exact Mass: 416.1412
Molecular Weight: 416.4760

Under argon at $-78{ }^{\circ} \mathrm{C}$, a solution of n-BuLi (1.6 M in hexanes) ($0.74 \mathrm{~mL}, 1.18 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added to a solution of 2-bromo-1,4-dimethoxyhexahelicene (\pm) ($500 \mathrm{mg}, 1.07 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in distilled THF (20 mL). After 1 h of stirring at this temperature, dry DMF ($0.3 \mathrm{~mL}, 3.2 \mathrm{mmol}, 3 \mathrm{eq}$.) was added, the solution was allowed to warm to room temperature and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The solution was concentrated under reduced pressure and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The organic layer was washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and the solvents were removed under reduced pressure. The crude solid was purified by column chromatography $\left(\mathrm{SiO}_{2}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $\left.40 / 60\right)$ to afford the 2-formyl-1,4dimethoxyhexahelicene (\pm) as a yellow solid ($355 \mathrm{mg}, 0.85 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR (CDCl $3,500 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=9.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.46\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.14(\mathrm{~d}, \mathrm{~J}$ $\left.=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 8.11\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 8.04\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 8.03\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-8}\right)$, $7.99\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-8}\right), 7.91\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.88\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right), 7.75$ (dd, J=8.0, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}$), 7.11 (ddd, $J=8.0,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14}$), $7.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.02(\mathrm{dd}, \mathrm{J}=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H_{16}), 6.55 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H H_{15}), $4.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text {-out) }} 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text {-in }}\right.\right.$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=190.1(\mathrm{CH}), 156.9,152.0,132.7,132.2,131.9,130.7,129.5$ (CH), 129.4, 129.1, 129.0, 128.2 (CH), 128.0 (CH), 127.9 (CH), 127.5 (CH), 126.51 (CH), 126.48 (CH), 126.0 (CH), 125.6 (CH), 125.5, 125.4 (CH), 125.0, 124.5, 124.4, 123.6 (CH), 121.5 (CH), 100.9 (CH), $60.9\left(\mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ($\left[\mathrm{M}+\mathrm{K}^{+}\right]$) 455.1044; found 455.1041.

Figure S2O: ${ }^{1} \mathrm{H}$ spectrum of the 2-formyl-1,4-dimethoxyhexahelicene (\pm) in CDCl_{3} at 298 K (500 MHz) and aromatic area.

Figure S21: ${ }^{13} \mathrm{C}$ spectrum of the 2-formyl-1,4-dimethoxyhexahelicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(126$ MHz).

Figure S22: ${ }^{13} \mathrm{C}$ DEPT spectrum of the 2-formyl-1,4-dimethoxyhexahelicene (\pm) in CDCl_{3} at 298 K (126 MHz).

III. 4 Synthesis of the porphyrin 3 (\pm)

Chemical Formula: $\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{2}$
Exact Mass: 1176.63
Molecular Weight: 1177.59

A solution of 2,6-dimethyl-4-tert-butylbenzaldehyde ($137 \mathrm{mg}, 0.72 \mathrm{mmol}, 3$ eq.), 1,4-dimethoxy-2-formyl-[6]helicene ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 1$ eq.) and pyrrole ($67 \mu \mathrm{~L}, 0.96 \mathrm{mmol}, 4$ eq.) in $\mathrm{CHCl}_{3}(50 \mathrm{~mL}$) was degassed in the dark for 30 minutes by argon bubbling. Under argon, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(25 \mu \mathrm{~L}, 5.7 \mathrm{mM})$) was added and the solution was stirred in the dark at room temperature for $1 \mathrm{~h} . p$-chloranil (177 $\mathrm{mg}, 0.72 \mathrm{mmol}, 3 \mathrm{eq}$.) was added and the solution was heated to reflux for an additional hour. The solution was filtered through a silica pad and evaporated to dryness. The desired porphyrin was isolated by column chromatography (silica gel, cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 8 / 2$ to $6 / 4$) followed by precipitation from an acetone/hexane/methanol mixture to afford the porphyrin $6(25 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 9 \%$) as a purple solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=8.81\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.62-8.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right)$, 8.53 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$, 8.50 (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$), 8.29 ($\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$), 8.20 (d, $J=8.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 8.10\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 8.05-8.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrr }}+\mathrm{H}_{10}\right), 7.87(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{13}\right), 7.77\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 7.70-7.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}+\mathrm{H}_{14}+\mathrm{H}_{16}+\mathrm{H}_{7}\right), 7.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right) 7.52(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$), $7.43\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.42-7.35\left(\mathrm{~m}, 4 \mathrm{H}, 2^{*} \mathrm{H}_{\mathrm{Ar}}+\mathrm{H}_{11}+\mathrm{H}_{12}\right), 7.30(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $H_{\text {ar }}$), 7.26 (d, J = $4.7 \mathrm{~Hz}, \mathrm{H}_{\text {pyrr }}$) 7.17 (ddd, $J=8.4,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}$), $4.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text { out }}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3 A r}$), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.69\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{tbu}}\right)$, $1.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 A \mathrm{r}}\right), 1.57\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{tBu}}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{Bu}}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text { in }}\right),-2.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$.
${ }^{13}$ C NMR (126 MHz, CDCl 3): $\delta_{\mathrm{c}}(\mathrm{ppm})=151.4,151.2,151.0,150.9,149.2,139.3,139.2,139.1,139.00$, $139.95,138.8,138.6,138.4,138.3,132.7,132.33,132.31,132.2,131.4,129.7,129.1$ (CH), 128.6, 127.52 (CH), 127.48 (CH), 127.3 (CH), 127.1 (CH), 126.5, 126.4 (CH), 125.8 (CH), 125.7 (CH), 125.4, 125.33, 125.26, 125.1, 124.74 (CH), 124.67 (CH), 124.1 (CH), 124.03 (CH), 123.98 (CH), 123.94 (CH), $123.91(\mathrm{CH}), 123.88(\mathrm{CH}), 122.2(\mathrm{CH}), 117.82,117.80,117.7,115.9,112.7(\mathrm{CH}), 58.0\left(\mathrm{OCH}_{3}\right), 56.4$ $\left(\mathrm{OCH}_{3}\right), 35.0,34.8,34.7,32.0(t \mathrm{Bu}), 31.84(t \mathrm{Bu}), 31.77(t \mathrm{Bu}), 22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.24\left(\mathrm{CH}_{3}\right), 22.18$ $\left(\mathrm{CH}_{3}\right), 22.16\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-HR-MS (m/z): Calcd for ($\left[\mathrm{M}+\mathrm{H}^{+}\right]$) 1177.6354; found 1177.6405.
UV-vis ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\lambda_{\max }=422 \mathrm{~nm}\left(\varepsilon=345000 \mathrm{L.cm}^{-1} . \mathrm{mol}^{-1}\right)$, 519 (21900), 531 (6900) 552 (4700), 593 (6000), 649 (3900).

Figure S23: HR-ESI-TOF spectrum of $\mathbf{3}$ and simulation (bottom).

Crystal data: From $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, \mathrm{C}_{84} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{2}, \mathrm{M}=1177.52 \mathrm{~g}$.mol ${ }^{-1}$, monoclinic space group P 21/c, $a=13.2857$ (5) $\AA, b=15.5135$ (6) $\AA, c=35.8022$ (15) $\AA, \alpha=90.0^{\circ}, \beta=95.347^{\circ}, \gamma=90.0^{\circ}$, $V=7347.0(5) \AA^{3}, Z=4, T=120 \mathrm{~K}, \mathrm{CuK} \backslash \alpha \lambda=1.54178,2.48<\theta<66.33,86405$ reflections measured, $\mathrm{R}_{1}=6.49 \%, w \mathrm{R}_{2}=23.2 \%, \mathrm{GoF}=1.21705$. CCDC: 2157003

Figure S24. X-ray structure of the porphyrin 3. H atoms and meso substituents were omitted for clarity.

Figure S25: ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{3}$ in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz}$) and aromatic area (bottom).

Figure S26: ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{3}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S27: ${ }^{13} \mathrm{C}$ DEPT spectrum of $\mathbf{3}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Chemical Formula: $\mathrm{C}_{84} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{NiO}_{2}$ Exact Mass: 1232.5478
Molecular Weight: 1234.2674

A solution containing the free-base porphyrin $\mathbf{3}$ ($20 \mathrm{mg}, 17 \mu \mathrm{~mol}, 1$ eq.) and $\mathrm{Ni}(\mathrm{acac})_{2}(22 \mathrm{mg}, 85$ $\mu \mathrm{mol}, 5 \mathrm{eq}$.) in toluene (20 mL) was refluxed overnight. The mixture was filtered through an alumina pad. The solvent was evaporated under vacuum and the resulting solid was further purified by precipitation from an acetone/hexane/methanol mixture to afford the desired metallo-porphyrin 4 ($219 \mathrm{mg}, 0.18 \mathrm{mmol}, 99 \%$) as a red solid.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.68\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.48-8.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right)$, 8.38 (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}$) 8.34 (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$), 8.31 (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}$), 8.16 (d, J = $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$, $8.08\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.99\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right), 7.96\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ 12), 7.93 (d, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$), $7.81-7.69\left(\mathrm{~m}, 3 \mathrm{H}, 2^{*} \mathrm{H}_{7-12}+\mathrm{H}_{13}\right), 7.61\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right), 7.55$ $-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}+\mathrm{H}_{14}\right), 7.48\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 7.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.40\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right)$, 7.35 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}$), 7.32 (br s, 1H, $\mathrm{H}_{\text {Ar }}$), 7.31 (br s, 1H, $\mathrm{H}_{\text {Ar }}$), 7.21 (br s, $2 \mathrm{H}, \mathrm{H}_{\text {Ar }}$), 7.17 (br s, $\left.1 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 7.12$ (d, $\left.J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 7.01$ (ddd, $\left.J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{30 u t}\right)$, $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 A r}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 A r}\right), 1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.56\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3 A r}+\mathrm{H}_{t \mathrm{tu}}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right)$, $1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{tu}}\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{tu}}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{in}}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=151.0,150.9,150.8,149.3,143.1,142.6,142.5,142.44$, $142.42,142.37,142.0,138.82,138.79,138.62,138.60,138.4,137.7,137.5,137.4,134.2$ (CH), 132.7, $132.31,132.29,131.43$ (CH), 131.39 (CH), 131.20 (CH), 131.18 (CH), 131.11 (CH), 131.09, 131.0 (CH), 130.4 (CH), 129.5, 128.8 (CH), 128.7, 127.6 (CH), 127.5 (CH), 127.3 (CH), 127.1 (CH), 126.5 (CH), 126.3 (CH), 125.9 (CH), 125.7 (CH), 125.4, 125.3, 125.2, 125.0 (CH), 124.9, 124.5 (CH), 124.05 (CH), 123.97 $(\mathrm{CH}), 123.94(\mathrm{CH}), 123.87(\mathrm{CH}), 122.1(\mathrm{CH}), 117.07,117.04,115.4,112.9(\mathrm{CH}), 58.3\left(\mathrm{OCH}_{3}\right), 56.4$ $\left(\mathrm{OCH}_{3}\right), 34.9,34.74,34.71,31.9(t \mathrm{Bu}), 31.8(t \mathrm{Bu}), 31.7(t \mathrm{Bu}), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.81$ $\left(\mathrm{CH}_{3}\right), 21.78\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-HR-MS (m / z): Calcd for ($\left[\mathrm{M}+\mathrm{H}^{+}\right]$) 1233.5551; found 1233.5568.
 (1800).

Figure S28: ${ }^{1} \mathrm{H}$ spectrum of 4 in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$.

Figure S29: ${ }^{13} \mathrm{C}$ spectrum of 4 in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S30: ${ }^{13} \mathrm{C}$ DEPT spectrum of 4 in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

IV Synthesis of the six-membered ring helicene-fused porphyrin

i) n-BuLi, THF, $1 \mathrm{~h},-78^{\circ} \mathrm{C}$ ii) DMF (dry), 1 h, r.t.

i) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CHCl} 3,1$ h, r.t.
ii) p-chloranil, 1 h , reflux

Ar: 2,6-dimethyl-4-tert-butylphenyl
8

Figure S29. Synthesis of the six-membered ring helicene-fused porphyrin 8.

IV. 1 Synthesis of the 2-(2-bromo-5-methoxystyryl)benzo[c]phenanthrene

Under argon, NaH (60% in mineral oil) ($552 \mathrm{mg}, 13.8 \mathrm{mmol}, 1.0$ eq.) was added to a solution of diethyl 2-bromo-5-methoxybenzylphosphonate ($4.65 \mathrm{~g}, 13.8 \mathrm{mmol}, 1.0$ eq.) in freshly distilled THF $(50 \mathrm{~mL})$. After 15 min of stirring at room temperature, a solution of 2-formyl-[4]helicene (3.18 g , $12.4 \mathrm{mmol}, 0.9$ eq.) in freshly distilled THF (35 mL) was added dropwise. The resulting solution was heated at $50^{\circ} \mathrm{C}$ for 16 h . The solution was allowed to cool to room temperature and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added. The solution was concentrated under reduced pressure. The resulting solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the solution was washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, and filtered. Subsequent purification of the crude product by column chromatography afforded the desired product as a yellow solid ($5.26 \mathrm{~g}, 12.0 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=9.21\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 9.17\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}\right)$, $8.11-8.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5-8}+\mathrm{H}_{9}\right), 7.96-7.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{5-8}+\mathrm{H}_{3}\right), 7.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5-8}\right), 7.74$ (ddd, J = 8.5, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}$), $7.69-7.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {alkene }}+\mathrm{H}_{10}\right), 7.51\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 7.35$ $-7.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {alkene }}+\mathrm{H}_{o}\right), 6.75\left(\mathrm{dd}, \mathrm{J}=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{p}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}}(\mathrm{ppm})=159.2,137.9,134.9,133.8(\mathrm{CH}), 133.7,133.4,132.1(\mathrm{CH})$, $131.5,130.7,130.4,129.2$ (CH), 128.8 (CH), 128.1 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 127.32 (CH), 127.29, 127.0 (CH), 126.5 (CH), 126.1 (CH), 123.6 (CH), 115.3 (CH), 115.2, 111.9 $(\mathrm{CH}), 55.8\left(\mathrm{OCH}_{3}\right)$.

Figure S30: ${ }^{1} \mathrm{H}$ spectrum of the 2-(2-bromo-5-methoxystyryl)benzo[c]phenanthrene in CDCl_{3} at 298 $\mathrm{K}(500 \mathrm{MHz})$ and aromatic area (bottom).

Figure S31: ${ }^{13} \mathrm{C}$ spectrum of the 2-(2-bromo-5-methoxystyryl)benzo[c]phenanthrene in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$ with residual cyclohexane.

Figure S32: ${ }^{13} \mathrm{C}$ DEPT spectrum of the 2-(2-bromo-5-methoxystyryl)benzo[c]phenanthrene in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

IV. 2 Synthesis of the 1-methoxy-4-bromo-[6]helicene (\pm)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{BrO}$
Exact Mass: 436.0463
Molecular Weight: 437.3360

A solution of 2-(2-bromo-5-methoxystyryl)benzo[c]phenanthrene ($1.00 \mathrm{~g}, 2.56 \mathrm{mmol}, 1 \mathrm{eq}$.) and iodine ($\simeq 0.015 \mathrm{eq}$.) in a mixture of cyclohexane (390 mL) and propylene oxide (10 mL) was irradiated in a photoreactor equipped with an immersion lamp (150 W) for 10 h . Sodium thiosulfate $(5 \mathrm{~g})$ was added and the solution was stirred overnight. The solvent was evaporated, and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $\left.40 / 60\right)$ to afford the 1 -methoxy-4-bromo-[6]helicene (\pm) as a yellow solid ($511 \mathrm{mg}, 1.10 \mathrm{mmol}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=8.36\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.09\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ ${ }_{12}$), $8.04\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right), 8.02-7.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{6}+2 \mathrm{H}_{7-12}\right.$), $7.93\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right), 7.86$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}$), 7.77 (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}$), 7.49 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$), 7.16 (ddd, $J=$ $\left.8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 7.06$ (dd, $J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}$), 6.60 (ddd, $J=8.5,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}$), $5.97\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}}(\mathrm{ppm})=154.8,132.1,132.0,131.9,131.3,130.6,130.1$ (CH), 129.0, 128.5 (CH), 128.3, 127.9 (CH), 127.4 (CH), 127.1 (CH), 126.9 (CH), 126.6 (CH), 126.4 (CH), 126.30 (CH), 126.29 (CH), 125.5 (CH), 125.3, 124.2, 123.90 (CH), 123.87, 113.3, $106.0(\mathrm{CH}), 54.0\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-MS (m/z): Calcd for ([M•+]) 436.0457; found 436.0436.

Figure S33: ESI-HR exper. mass spectrum (top) and simulations of M^{+}and $\mathrm{M}+\mathrm{H}^{+}$(bottom).

Crystal data: From $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{27} \mathrm{H}_{17} \mathrm{BrO}, \mathrm{M}=437.32 \mathrm{~g} . \mathrm{mol}^{-1}$, monoclinic space group, $\mathrm{P} 21 / \mathrm{c}, \mathrm{a}=8.4721$ (3) $\AA, b=16.1858$ (7) $\AA, c=14.3123$ (6) $\AA, \alpha=90.0^{\circ}, \beta=105.9750^{\circ}, \gamma=90.0^{\circ}, V=1886.82$ (13) \AA^{3}, Z $=4, \mathrm{~T}=120$ (2) K, MoK $\backslash \alpha=0.71073,1.943<\theta<29.192,68068$ reflections measured, $\mathrm{R}_{1}=2.78 \%$, $w R_{2}=6.9 \%, G o F=1.061 . C C D C: 2157002$

Figure S34. X-Ray structure of the 1-methoxy-4-bromo-[6]helicene.

Figure S35: ${ }^{1} \mathrm{H}$ spectrum of the 1-methoxy-4-bromo-[6]helicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$.

Figure S36: ${ }^{13} \mathrm{C}$ spectrum of the 1-methoxy-4-bromo-[6]helicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

\circ
$\stackrel{+}{4}$
1

160	140	120	100	80	60	40	20

Figure S37: ${ }^{13} \mathrm{C}$ DEPT spectrum of the 1-methoxy-4-bromo-[6]helicene (\pm) in CDCl_{3} at 298 K (126 MHz).

IV. 3 Synthesis of the 1-methoxy-4-formyl-[6]helicene (\pm)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{2}$ Exact Mass: 386.1307
Molecular Weight: 386.4500

Under argon at $-78{ }^{\circ} \mathrm{C}$, a solution of n-BuLi (1.6 M in hexanes) ($2.21 \mathrm{~mL}, 3.54 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to a solution of 1-methoxy-4-bromo-[6]helicene ($1.29 \mathrm{~g}, 2.95 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in distilled THF (30 mL). After 1 h of stirring at this temperature, dry DMF ($0.82 \mathrm{~mL}, 8.85 \mathrm{mmol}, 3$ eq.) was added, the solution was allowed to warm to room temperature and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. The solution was concentrated under reduced pressure and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added. The organic layer was washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and the solvents were removed under reduced pressure. The desired compound was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane 40/60) to afford the desired product as a yellow solid ($784 \mathrm{mg}, 2.03 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=10.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.45\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.14(\mathrm{~d}$, $\left.\mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 8.10\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right), 8.06-7.99\left(\mathrm{~m}, 2 \mathrm{H}, 2^{*} \mathrm{H}_{7-12}\right), 7.97(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, H_{7-12}), 7.93 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}$), 7.86 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}$), 7.78 (dd, J = 8.0, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{13}$), 7.72 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$), 7.15 (ddd, J = 8.0, 6.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14}$), 7.09 (dd, J = $8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}$), 6.53 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H, H15), 6.18 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), $2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=192.7(\mathrm{CH}), 160.1,138.0(\mathrm{CH}), 132.2,132.03,131.99,131.8$, $130.5,130.3$ (CH), 129.2, 128.3, 127.9 (CH), 127.5 (CH), 127.2 (CH), 127.1 (CH), 126.9 (CH), 126.51 (CH), 126.47 (CH), 126.4 (CH), 125.6 (CH), 125.4, 124.3, 123.97 (CH), 123.96, 123.3 (CH), 122.4, 104.4 $(\mathrm{CH}), 54.4\left(\mathrm{CH}_{3}\right)$.

ESI-TOF-MS (m/z): Calcd for ([M + H+]) 387.1380; found 387.1376.

Figure S38: Experimental HR ESI-TOF spectrum (top) and simulation (bottom).

Crystal data: From $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{M}=386.42 \mathrm{~g} . \mathrm{mol}^{-1}$, monoclinic space group, $\mathrm{P} 21 / \mathrm{n}, \mathrm{a}=11.5972$ (4) $\AA, b=12.8994$ (5) $\AA, c=13.7902$ (5) $\AA, \alpha=90.0^{\circ}, \beta=114.2170^{\circ}, \gamma=90.0^{\circ}, V=1881.43$ (12) \AA^{3}, Z $=4, \mathrm{~T}=120$ (2) K, MoK $\backslash \alpha=0.71073,2.262<\theta<27.921$, 71287 reflections measured, $\mathrm{R}_{1}=3.75 \%$, $w R_{2}=10.3 \%, G o F=1.01708 . C C D C: 2157005$

Figure S39. X-Ray structure of the 1-methoxy-4-formyl-[6]helicene (\pm).

Figure S40: ${ }^{1} \mathrm{H}$ spectrum of the 1-methoxy-4-formyl-[6]helicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$ and aromatic area.

Figure S41: ${ }^{13} \mathrm{C}$ spectrum of the 1-methoxy-4-formyl-[6]helicene (\pm) in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S42: ${ }^{13} \mathrm{C}$ DEPT spectrum of the 1-methoxy-4-formyl-[6]helicene (\pm) in CDCl_{3} at 298 K (126 MHz).

IV. 4 Synthesis of the free-base porphyrin 6 (\pm)

Chemical Formula: $\mathrm{C}_{83} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}$ Exact Mass: 1146.6176 Molecular Weight: 1147.5640

Ar:

A solution of 2,6-dimethyl-4-tert-butylbenzaldehyde ($1.18 \mathrm{~g}, 6.22 \mathrm{mmol}, 3 \mathrm{eq}$.$) , 1-methoxy-4-$ formyl-[6]helicene ($0.80 \mathrm{~g}, 2.07 \mathrm{mmol}, 1$ eq.) and pyrrole ($0.58 \mathrm{~mL}, 8.29 \mathrm{mmol}, 4 \mathrm{eq}$.) in CHCl_{3} (260 mL) was degassed in the dark for 30 minutes by argon bubbling. Under argon, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.18 \mathrm{~m} \mathrm{~mL}$, $0.74 \mathrm{mmol}, 5.7 \mathrm{mM}$) was added and the solution was stirred in the dark at room temperature for 1 h. p-chloranil ($1.53 \mathrm{~g}, 6.22 \mathrm{mmol}, 3 \mathrm{eq}$.) was added and the solution was heated to reflux for an additional hour. The solution was filtered through a silica pad and evaporated to dryness. The desired porphyrin 6 was isolated by column chromatography (silica gel, cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 8 / 2$ to $6 / 4$) followed by precipitation from an acetone/hexane/methanol mixture to afford ($0.22 \mathrm{~g}, 0.19$ mmol, 9\%) of a purple solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=9.12\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{pyrr}}\right), 8.79(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, $H_{\text {pyrr }}$), $8.72-8.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{pyrr}}\right), 8.56\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{pyrr}}\right), 8.39\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{pyrr}}\right), 8.09(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}-\mathrm{H}_{12}$), $8.08-8.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}-\mathrm{H}_{12}\right), 8.02\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}-\mathrm{H}_{12}\right), 8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{5}-\mathrm{H}_{12}$), $7.97-7.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 7.89\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 7.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 1 H,$), 7.48-7.38\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{5}-\mathrm{H}_{12}+6^{*} \mathrm{H}_{\mathrm{Ar}}\right), 7.33\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5-12}\right), 7.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 6.52(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), $2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.94(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}$), 1.92 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}$), 1.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}$), 1.60 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{Bu}}$), 1.59 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{Bu}}$), 1.55 ($\mathrm{s}, 9 \mathrm{H}$, $\left.H_{t B u}\right),-2.34(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=155.6,151.09,151.07,151.0,139.2,139.13,139.07,139.0$, $138.4,138.31,138.30,136.29,133.27$ (CH), 132.4, 132.1, 131.5, 131.2, 131.1, 129.0, 128.9, 128.1 $(\mathrm{CH}), 127.5,127.4(\mathrm{CH}), 127.21(\mathrm{CH}), 127.17(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{CH}), 126.4(\mathrm{CH})$, 126.0, 125.6 (CH), $124.5(\mathrm{CH}), 124.2(\mathrm{CH}), 124.1(\mathrm{CH}), 124.00(\mathrm{CH}), 123.96(\mathrm{CH}), 121.3,118.4,118.30$, $\left.\left.\left.\left.118.27,117.4,103.7(\mathrm{CH}), 54.2\left(\mathrm{OCH}_{3}\right), 34.84,34.79,31.95 \mathrm{CH}_{3}\right), 31.81 \mathrm{CH}_{3}\right), 22.34 \mathrm{CH}_{3}\right), 22.28 \mathrm{CH}_{3}\right)$, $22.2 \mathrm{CH}_{3}$).
ESI-TOF-MS (m/z): Calcd for ([M + $\left.\mathrm{H}^{+}\right]$) 1147.6176; found 1147.6248.
UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=423 \mathrm{~nm}\left(\varepsilon=326000 \mathrm{L.cm}^{-1} . \mathrm{mol}^{-1}\right), 521$ (20000), 556 (5100), 597 (6000), 650 (5200).

Figure S43:HR ESI-TOF spectrum of 6 and simulation.

Figure S44: ${ }^{1} \mathrm{H}$ spectrum of 6 in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$ and aromatic area.

Figure S45: ${ }^{13} \mathrm{C}$ spectrum of 6 in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S46: ${ }^{13} \mathrm{C}$ DEPT spectrum of 6 in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

IV. 5 Synthesis of the $\mathrm{Ni}($ II)-porphyrin 7 (\pm)

Chemical Formula: $\mathrm{C}_{83} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{NiO}$
Exact Mass: 1202.5373
Molecular Weight: 1204.2414

Ar:

A solution containing the free-base porphyrin $6(210 \mathrm{mg}, 0.18 \mathrm{mmol}, 1 \mathrm{eq}$.$) and \mathrm{Ni}(\mathrm{acac})_{2}(235 \mathrm{~g}$, $0.92 \mathrm{mmol}, 5 \mathrm{eq}$.) in toluene (50 mL) was refluxed overnight. The mixture was filtered through an alumina pad. The solvent was evaporated under vacuum and the resulting solid was further purified by precipitation from an acetone/hexane/methanol mixture to afford the desired metallo-porphyrin 7 ($219 \mathrm{mg}, 0.18 \mathrm{mmol}, 99 \%$) as a red solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}(\mathrm{ppm})=9.01\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}\right), 8.67(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $H_{\text {pyrr }}$), $8.61-8.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 8.46$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr) }}$), 8.33 (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}$), $8.10-8.00$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{7-12}$), $7.97\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7-12}\right.$), $7.93-7.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}+\mathrm{H}_{7-12}+\mathrm{H}_{13}\right), 7.64(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{16}\right), 7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.48-7.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{14}+\mathrm{H}_{\text {Ar }}\right), 7.32\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {ar }}\right), 7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, 7.13 (ddd, $\left.J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 6.45\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.99(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3 A \mathrm{r}}$), $1.94\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3 A \mathrm{r}}\right), 1.88\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3 A r}\right), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 A \mathrm{r}}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.55(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{H}_{\text {tвu }}\right), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{Bu}}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{tBu}}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}(\mathrm{ppm})=155.4,151.0,150.9,144.22,144.17,142.80,142.77,142.71$, $142.69,142.67,138.8,138.74,138.68,138.6,137.5,137.44,137.41,135.7,132.7$ (CH), 132.6 (CH), 132.39 (CH), 132.36, 132.0, 131.6, 131.54 (CH), 131.52 (CH), 131.3 (CH), 131.1 (CH), 131.0, 130.4, 129.0, 128.8, 127.9 (CH), 127.4 (CH), 127.3 (CH), 127.16 (CH), 127.14 (CH), $127.0(\mathrm{CH}), 126.7(\mathrm{CH})$, 126.5 (CH), 126.4 (CH), 126.0, 125.6 (CH), 124.4 (CH), 124.2, 124.1 (CH), 124.03 (CH), 123.99 (CH), 123.96 (CH), 121.3, 117.6, 117.5, 117.4, 116.7, 103.8 (CH), $54.1\left(\mathrm{OCH}_{3}\right), 34.8,34.7,31.81\left(\mathrm{CH}_{3}\right), 31.77$ $\left(\mathrm{CH}_{3}\right), 22.10\left(\mathrm{CH}_{3}\right), 22.08\left(\mathrm{CH}_{3}\right), 22.05\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$
ESI-TOF-MS (m / z): Calcd for ($\left[\mathrm{M}+\mathrm{H}^{+}\right]$) 1202.5367; found 1202.5315.
UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=419 \mathrm{~nm}\left(\varepsilon=263000 \mathrm{~L} . \mathrm{cm}^{-1} \cdot \mathrm{~mol}^{-1}\right), 530(22700), 563(3700)$.

Figure S47:HR ESI-TOF spectrum of 7 and simulation.

Figure S48: ${ }^{1} \mathrm{H}$ spectrum of $7 \mathrm{in} \mathrm{CDCl}_{3}$ at $298 \mathrm{~K}(500 \mathrm{MHz})$.

Figure S49: ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{7}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S50: ${ }^{13} \mathrm{C}$ DEPT spectrum of $\mathbf{7}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

IV. 6 Synthesis and characterisation of the helicene-fused porphyrin 8 (\pm)

Chemical Formula: $\mathrm{C}_{83} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{NiO}$
Exact Mass: 1200.5216
Molecular Weight: 1202.2254

Ar:

A solution of the $\mathrm{Ni}(\mathrm{II})$-porphyrin $7(15.0 \mathrm{mg}, 13.6 \mathrm{mmol}, 1 \mathrm{eq}$.$) in chlorobenzene (6 \mathrm{~mL}$) was degassed for 30 min by argon bubbling. A solution of anhydrous iron (III) chloride ($22 \mathrm{mg}, 136 \mathrm{mmol}$, 10 eq.) in $\mathrm{MeNO}_{2}(1 \mathrm{~mL})$ was degassed by argon bubbling for 30 min and added to the former solution. The resulting dark green solution was heated to $50^{\circ} \mathrm{C}$ while maintaining an argon bubbling for 4 h . The mixture was allowed to cool to room temperature and $\mathrm{NEt}_{3}(3 \mathrm{~mL})$ was added, followed by $\mathrm{MeOH}(5 \mathrm{~mL}) . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added. The organic layer was isolated, washed twice with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated under vacuum. The resulting crude solid was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $15 / 85$ to $40 / 60)$ to afford the helicene-fused porphyrin $8(13.3 \mathrm{mg}, 12.1 \mathrm{mmol}, 89 \%)$ as a green solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=9.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 9.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}+\mathrm{H}_{\mathrm{pyrr}}\right), 8.67(\mathrm{~d}, \mathrm{~J}=$ $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 8.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrr }}\right), 8.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{pyrr}}\right), 8.26\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 8.15(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$) , $8.04\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9-12}\right.$), $8.00\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9-12}\right), 7.96\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9-12}\right)$, $7.92\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9-12}\right), 7.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}+\mathrm{H}_{14}\right), 7.58\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.58-7.54(\mathrm{~m}, J=$ $\left.8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 7.50\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.45\left(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.39-7.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.31$ $-7.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 7.25\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right.$), $7.23\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.77$ (ddd, $J=8.3,6.8$, $\left.1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 6.51\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right)$, $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}\right), 1.62\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{Bu}}\right), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{t \mathrm{Bu}}\right), 1.51\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}+\mathrm{H}_{t \mathrm{Bu}}\right)$, 1.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ar}}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}(\mathrm{ppm})=154.9,151.0,150.90,150.87,143.0,142.9,142.4,142.1$, $141.3,140.8,140.2,139.2,139.1(\mathrm{CH}), 139.0,138.83,138.76,138.6,138.51,138.47,137.1,137.0$, 136.9, $134.8(\mathrm{CH}), 132.8(\mathrm{CH}), 132.5,132.3,132.2,132.1(\mathrm{CH}), 131.7(\mathrm{CH}), 131.6(\mathrm{CH}), 131.5(\mathrm{CH})$, $130.9,130.0,129.6,128.6,128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH})$, $126.6(\mathrm{CH}), 126.5(\mathrm{CH}), 126.2,126.1,125.9,125.4(\mathrm{CH}), 124.9,124.5(\mathrm{CH}), 124.3(\mathrm{CH}), 124.2(\mathrm{CH})$, $124.1(\mathrm{CH}), 123.9(\mathrm{CH}), 123.6,120.7(\mathrm{CH}), 118.2,117.1,116.3,111.8,107.3(\mathrm{CH}), 106.3,105.6,54.4$ $\left(\mathrm{OCH}_{3}\right), 34.9,34.8,34.7,31.9\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{3}\right), 22.21\left(\mathrm{CH}_{3}\right), 22.20\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.8$ $\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$.
ESI-TOF-MS (m/z): Calcd for ([M + $\left.\mathrm{H}^{+}\right]$) 1200.5216; found 1200.5167.
UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=466 \mathrm{~nm}\left(\varepsilon=63000 \mathrm{~L}_{\mathrm{cm}}{ }^{-1} . \mathrm{mol}^{-1}\right), 496$ (106000), 594 (12000), 663 (39000).

Figure S51:HR ESI-TOF spectrum of 8 and simulation.

Figure S52: ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{8}$ in CDCl_{3} at $298 \mathrm{~K}(500 \mathrm{MHz})$ and aromatic area.

Figure S53: ${ }^{13} \mathrm{C}$ spectrum of $8 \mathrm{in} \mathrm{CDCl}_{3}$ at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S54: ${ }^{13} \mathrm{C}$ DEPT spectrum of $\mathbf{8}$ in CDCl_{3} at $298 \mathrm{~K}(126 \mathrm{MHz})$.

Figure S55: ${ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY spectrum of $\mathbf{8}$ in CDCl_{3} at 298 K , aromatic area.

Figure S56: Electronic spectra of nickel(II) porphyrin 7 and nickel(II) fused porphyrin 8.

Figure S57. Cyclic voltammetry of compound $\mathbf{7}$ (bottom) and fused compound $\mathbf{8}$ (top): in dichloromethane, $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{PF}_{6}$, glassy carbon electrode, $100 \mathrm{mV} / \mathrm{s}$.

V Resolution of enantiomers by chiral HPLC

V. 1 Porphyrin 4

Analytical chiral HPLC separation for compound 4

- The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
(S,S)-Whelk-01	Heptane / dichloromethane $(80 / 20)$	$7.23(-)$	1.45	$9.50(+)$	2.22	1.53	4.89

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.23	986	51.05	1.45		
9.50	945	48.95	2.22	1.53	4.89
Sum	1931	100.00			

Preparative separation for compound 4

- Sample preparation: About 2.0 mg of compound 4 are dissolved in 1.8 mL of a mixture of dichloromethane and hexane (50/50).
- Chromatographic conditions: (S, S)-Whelk-O1 ($250 \times 10 \mathrm{~mm}$), hexane / dichloromethane (80/20) as mobile phase, flow-rate $=5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm .
- Injections (stacked): 12 times $160 \mu \mathrm{~L}$, every 10.8 minutes.
- First fraction: 0.8 mg of the first eluted enantiomer with ee $>99.5 \%$

DAD1 E, $\mathrm{Sig}=254,4 \mathrm{Ref}=\mathrm{off}$

RT [min]	Area	Area\%
7.27	420	100.00
Sum	420	100.00

- Second fraction: 0.9 mg of the second eluted enantiomer with ee $>99.5 \%$

DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area\%
9.57	1010	100.00
Sum	1010	100.00

Intermediate: 0.2 mg
DAD1 E, Sig=254,4 Ref=off

Electronic Circular Dichroism

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC- 423 to maintain the temperature at $25.0 \pm 0.2^{\circ} \mathrm{C}$. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.
The baseline was always measured for the same solvent and in the same cell as the samples.
The spectra are presented without smoothing and further data processing.

4, first eluted on (S, S)-Whelk-O1: green solid line, concentration $=0.074$ mmol. L^{-1} in dichloromethane.
4, second eluted on (S, S)-Whelk-O1: red dotted line, concentration $=0.077$ mmol. L^{-1} in dichloromethane.
Acquisition parameters: 0.1 nm as intervals, scanning speed $50 \mathrm{~nm} / \mathrm{min}$, band width 2 nm , and 3 accumulations per sample.

V. 2 Porphyrin 7

Analytical chiral HPLC separation for compound 7

- The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
(S,S)-Whelk-01	Heptane / dichloromethane $(80 / 20)$	$6.54(-)$	1.22	$7.94(+)$	1.69	1.39	3.74

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.54	1873	50.11	1.22		
7.94	1864	49.89	1.69	1.39	3.74
Sum	3737	100.00			

Preparative separation for compound 7:

- Sample preparation: About 12 mg of compound $\mathbf{7}$ are dissolved in 1.5 mL of dichloromethane.
- Chromatographic conditions: (S, S)-Whelk-O1 ($250 \times 10 \mathrm{~mm}$), hexane / dichloromethane ($80 / 20$) as mobile phase, flow-rate $=5 \mathrm{~mL} / \mathrm{min}$, UV detection at 310 nm .
- Injections (stacked): 60 times $25 \mu \mathrm{~L}$, every 8.2 minutes.
- First fraction: 6.4 mg of the first eluted enantiomer with ee $>99.5 \%$

- Second fraction: 5.4 mg of the second eluted enantiomer with ee > 97.5%

Intermediate: 0.7 mg

Electronic Circular Dichroism

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC- 423 to maintain the temperature at $25.0 \pm 0.2^{\circ} \mathrm{C}$. A CD quartz cell of 1 mm of optical
pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.
The baseline was always measured for the same solvent and in the same cell as the samples.
The spectra are presented without smoothing and further data processing.
7, first eluted on (S, S)-Whelk-O1: green solid line, concentration $=0.055$ mmol. L^{-1} in dichloromethane.
7, second eluted on (S, S)-Whelk-O1: red dotted line, concentration $=0.066 \mathrm{mmol} . \mathrm{L}^{-1}$ in dichloromethane.
Acquisition parameters: 0.1 nm as intervals, scanning speed $50 \mathrm{~nm} / \mathrm{min}$, band width 2 nm , and 3 accumulations per sample.

V. 3 Porphyrin 8

Analytical chiral HPLC separation for compound 8

- The sample is dissolved in dichloromethane,
 injected on the chiral column, and detected with a
UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
(\mathbf{S}, \mathbf{S})-Whelk-O1	Heptane $/$dichloromethane $(80 / 20)$	$10.18(-)$	2.45	$12.87(+)$	3.36	1.37	3.67

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
10.18	545	49.81	2.45		
12.87	549	50.19	3.36	1.37	3.67
Sum	1094	100.00			

Preparative separation for compound 8:

- Sample preparation: About 10 mg of compound 8 are dissolved in 1.8 mL of a mixture of dichloromethane and hexane $(50 / 50)$.
- Chromatographic conditions: (S, S)-Whelk-O1 ($250 \times 10 \mathrm{~mm}$), hexane / dichloromethane ($80 / 20$) as mobile phase, flow-rate $=5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm .
- Injections (stacked): 18 times $100 \mu \mathrm{~L}$, every 15.5 minutes.
- First fraction: 4.2 mg of the first eluted enantiomer with ee > 99.5%

- Second fraction: 4.3 mg of the second eluted enantiomer with ee > 98.5%

Intermediate: 0.6 mg
DAD1 E, Sig=254,4 Ref=off

Electronic Circular Dichroism

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC- 423 to maintain the temperature at $25.0 \pm 0.2^{\circ} \mathrm{C}$. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.
The baseline was always measured for the same solvent and in the same cell as the samples.
The spectra are presented without smoothing and further data processing.
8, first eluted on (S, S)-Whelk-O1: green solid line, concentration $=0.149$ mmol. L^{-1} in dichloromethane.
8, second eluted on (S, S)-Whelk-O1: red dotted line, concentration $=0.137$ mmol. L^{-1} in dichloromethane.
Acquisition parameters: 0.1 nm as intervals, scanning speed $50 \mathrm{~nm} / \mathrm{min}$, band width 2 nm , and 3 accumulations per sample.

