Supporting Information

Visible Light-induced Deoxygenation/Coupling Cyclization of Salicylic Acid Derivatives and Aryl Acetylene for Synthesis of Flavonoids

Xiaodong Fan, Chaoyin He, Mengmeng Ji, Xinhui Sun, Huan Luo, Chao Li, Huixin Tong, Weiya Zhang, Zhizhong Sun*, Wenyi Chu*

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China. Corresponding author. Tel.: +86-451-86609135; fax: +86-451-86609135 (E-mail: sunzz@hlju.edu.cn, wenyichu@hlju.edu.cn)

Table of contents

1. General information	
2. Experimental section	S2
3. Characterization of the data	S5
4. NMR spectra	S22
5. References	S76

General Information

All starting materials and the reagents were purchased from TCI and J&K Chemical Company, and the reagents were used without further purification unless specified. The reactions were monitored by thin layer chromatography (TLC), and the products were purified by column chromatography on silica gel ($300 \sim 400$ mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker UltrashieldTM 400 spectrometer operating at 400 MHz and 100 MHz in CDCl₃ or DMSO. Chemical shifts were reported in ppm with tetramethylsilane (TMS) as internal standard. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, m = multiple. Coupling constants (J) were reported in Hertz (Hz). Melting points were recorded on a WRR melting point apparatus. Infrared spectra were recorded with the Perkin-Elmer Spectrum100 Fourier transform infrared spectroscopy. Elemental analyses of C, H and N were performed on a Elementar Vario MICRO cube. High resolutionmass spectrum (HRMS) was accomplished on Agilent1100 (VL) mass spectrometer.

Experimental Section

1. General procedure for the synthesis of 2a

The an oven-dried screw cap reaction tube was charged with a magnetic stir-bar $[Pd(PPh_3)_2Cl_2]$ (0.02 mmol; 14 mg), CuI (0.04 mmol; 7.6 mg) and bromo-substrate (1 mmol). To that, dry THF (1 mL) followed by triethylamine (1.55 mmol; 216 µL) was added under nitrogen atmosphere with stirring at room temperature. Under nitrogen atmosphere, trimethylsilylacetylene (1.25 mmol; 176 µL) was added to the reaction mixture slowly. Gradually the reaction turned dark. The reaction was stirred continuously for 24 h at room temperature. The progress of the reaction was monitored by TLC. Once the reaction was done, the mixture was diluted with 5 mL

EtOAc and filtered through the celite. The filtrate was evaporated under reduced pressure and the compound was isolated through silica column (100-200 mesh).¹

2. General procedure for the synthesis of 3a

The corresponding salicylic acid (1a, 0.2 mmol), Phenylacetylene (2a, 0.24 mmol), Mes-Acr-MeClO₄ (5 mol%), Ph₂S(0.3 mmol), and K₂CO₃(0.04 mmol) were dissolved in 2 mL DMSO/H₂O (4:1) in a sealed quartz tube. Next, the reaction mixture was placed under a blue LED and irradiated at room temperature. After the reaction was completed (monitored by TLC), an appropriate amount of water was added to the mixture, and the mixed solution was extracted with ethyl acetate (15 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated in vacuo and the crude product was obtained. The pure product was obtained by silica gel chromatography using petroleum ether/ ethyl acetate (10:1) as eluent.

3. Optimisation Studies

entry	catalyst	O-transfer reagent []]	base	solvent	Yield(%)⁵
1	[Ir(ppy) ₂ (dtbbpy)]PF ₆	Ph ₂ S	Na ₂ CO ₃	DCM	25
2	Ru(bpy) ₃ (PF6) ₂	Ph ₂ S	Na ₂ CO ₃	DCM	0
3	EY-Na ₂	Ph ₂ S	Na ₂ CO ₃	DCM	0
4	MB-CI	Ph_2S	Na ₂ CO ₃	DCM	12
5	Mes-Acr-MeClO ₄	Ph_2S	Na ₂ CO ₃	DCM	42
6	Mes-Acr-MeClO ₄	Thianthrene	Na ₂ CO ₃	DCM	11
7	Mes-Acr-MeClO ₄	Ph ₃ P	Na ₂ CO ₃	DCM	trace
8	Mes-Acr-MeClO ₄	Ph_2S	Cs_2CO_3	DCM	21
9	Mes-Acr-MeClO ₄	Ph_2S	K ₂ HPO ₄	DCM	35
10	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	DCM	50
11	Mes-Acr-MeClO ₄	Ph_2S	Et ₃ N	DCM	10
12	Mes-Acr-MeClO ₄	Ph_2S	2,4,6-collidine	DCM	40
13	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	CH₃CN	22
14	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	DMF	56
15	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	DMSO	60
16	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	(DCM)/H ₂ O (4:1)	60
17	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	(DMF)/H ₂ O (4:1)	68
18	Mes-Acr-MeClO ₄	Ph_2S	K ₂ CO ₃	(DMSO)/H ₂ O (4:1)	75,0°
19	-	Ph_2S	K ₂ CO ₃	(DMSO)/H ₂ O (4:1)	0
20	Mes-Acr-MeClO ₄	-	K ₂ CO ₃	(DMSO)/H ₂ O (4:1)	0
21	Mes-Acr-MeClO ₄	Ph ₂ S	-	(DMSO)/H ₂ O (4:1)	trace

[a]Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), Mes-Acr-MeClO₄ (5.0 mol%), Ph₂S (1.5 eq.) and K_2CO_3 (0.2 eq.) in (DMSO)/H₂O 2 ml, irradiation with blue light LEDs at 25 °C, the reaction completed (monitored by TLC). [b] isolated yield. [c] Control experiment without blue LEDs.

Characterization of the data

2-Phenyl-4H-chromen-4-one² (3a):

White solid, m.p.: 95-96 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, J = 8.9 Hz, 1H), 7.93 (dd, J = 7.3, 2.2 Hz, 2H), 7.70 (t, J = 8.4 Hz, 1H), 7.55 (dd, J = 16.8, 7.7 Hz, 4H), 7.42 (t, J = 7.5 Hz, 1H), 6.83 (s, 1H) (Figure S1). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.39, 163.31, 156.20, 133.76, 131.69, 131.60, 129.02, 126.24, 125.64, 125.20, 123.94, 118.09, 107.53 (Figure S2). Anal.calcd for: C₁₅H₁₀O₂: C 81.07, H 4.54; Found: C 81.12, H 4.56. IR (KBr) (v_{max}/cm⁻¹): 1645, 1607, 1570, 1133, 770.

2-(*p*-Tolyl)-4*H*-chromen-4-one² (3b):

Yellow solid, m.p.: 109-110 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 2H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 2H), 6.79 (s, 1H), 2.43 (s, 3H) (Figure S3). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.88, 163.88, 156.27, 142.38, 133.81, 129.79, 129.18, 126.30, 125.73, 125.23, 123.82, 118.07, 106.83, 21.76 (Figure S4). Anal.calcd for: C₁₆H₁₂O₂: C 81.34, H 5.12; Found: C 81.35, H 5.14. IR (KBr) (v_{max} /cm⁻¹): 1639, 1465, 1370, 1225, 815, 750, 632.

2-(4-Methoxyphenyl)-4*H*-chromen-4-one³ (3c):

White solid, m.p.: 133-135 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 8.6 Hz, 1H), 7.94-7.90 (m, 2H), 7.55-7.51 (m, 3H), 6.99 (d, J = 10.0 Hz, 2H), 6.78 (s, 1H), 3.94

(s, 3H) (Figure S5). ¹³C NMR (101 MHz, Chloroform-*d*) δ178.54, 163.64, 162.53, 156.28, 133.73, 128.18, 125.72, 125.27, 124.05, 123.95, 118.11, 114.60, 106.20, 55.82 (Figure S6). Anal.calcd for: C₁₆H₁₂O₃: C 76.18, H 4.79; Found: C 76.22, H 4.82. IR (KBr) (*v*_{max}/cm⁻¹): 3425, 2920, 1650, 1610, 1465, 1380, 1131, 826, 769.

2-(4-Chlorophenyl)-4H-chromen-4-one² (3d):

White solid, m.p.: 177-178 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.23 (d, J = 9.3 Hz, 1H), 7.87 (d, J = 8.7 Hz, 2H), 7.71 (t, J = 8.6 Hz, 1H), 7.58-7.40 (m, 4H), 6.79 (s, 1H) (Figure S7). ¹³C NMR (101 MHz, Chloroform-d) & 178.18, 162.13, 156.10, 137.86,

133.90, 130.17, 129.35, 127.50, 125.70, 125.36, 123.87, 118.03, 107.63 (Figure S8). Anal.calcd for: C₁₅H₉ClO₂: C 70.19, H 3.53, Cl 13.81; Found: C 70.21, H 3.54; Cl 13.78. IR (KBr) (v_{max}/cm^{-1}) : 1666, 1376, 1095, 824, 753.

2-(4-Bromophenyl)-4*H*-chromen-4-one⁴ (3e):

Yellow solid, m.p.: 148-151 °C. ¹H NMR (400 MHz, Chloroformd) δ 8.22 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 8.5 Hz, 2H), 7.68 (dt, J= 14.3, 7.7 Hz, 3H), 7.55 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 7.0 Hz,

1H), 6.79 (s, 1H) (Figure S9). ¹³C NMR (101 MHz, Chloroform-d) δ 178.21, 162.23, 156.12, 133.93, 132.34, 130.66, 127.67, 126.31, 125.73, 125.38, 123.89, 118.05, 107.67 (Figure S10). Anal.calcd for: C₁₅H₉BrO₂: C 59.83, H 3.01, Br 26.53; Found: C 59.86, H 3.02; Br 26.51. IR (KBr) (*v*_{max}/cm⁻¹): 1644, 1609, 1471, 1363.

2-(4-Nitrophenyl)-4H-chromen-4-one⁵ (3f):

Yellow solid, m.p.: 232-235 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (d, J = 8.7 Hz, 2H), 8.25 (d, J = 7.9 Hz, 1H), 8.12 (d, J = 8.7 Hz, 2H), 7.76 (t, J = 7.3 Hz, 1H), 7.61 (d, NO₂ J = 8.4 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 6.92 (s, 1H) (Figure S11). ¹³C NMR (101) MHz, Chloroform-d) δ 177.97, 160.58, 156.18, 149.45, 137.66, 134.34, 127.23, 125.89, 125.77, 124.25, 123.93, 118.14, 109.64 (Figure S12). Anal.calcd for: C₁₅H₉NO₄: C 67.42, H 3.39, N 5.24; Found: C 67.44, H 3.43, N 5.22. IR (KBr) $(v_{\text{max}}/\text{cm}^{-1})$: 1660, 1523, 1347, 857.

2-(3-methoxyphenyl)-4H-chromen-4-one² (3g):

White solid, m.p.: 126-128 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, *J* = 7.9 Hz, 1H), 7.70 (d, *J* = 8.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.47-7.41 (m, 3H), 7.09 (d, J = 10.0 Hz, 1H), 6.83 (s, 1H), 3.90 (s,

3H). (Figure S13). ¹³C NMR (101 MHz, Chloroform-d) δ 179.08, 163.36, 160.14,

156.43, 133.94, 133.27, 130.29, 125.84, 125.39, 118.87, 118.27, 117.31, 111.90, 108.04, 55.54 (Figure S14). Anal.calcd for: C₁₆H₁₂O₃: C 76.18, H 4.79; Found: C 76.21, H 4.82. IR (KBr) (*v*_{max}/cm⁻¹): 3078, 3000, 2922, 2842, 1653, 1606, 1572, 1491, 1469, 1446, 1434, 1369, 1346, 1330, 1295, 1275, 1249, 1228, 1213, 1192, 1130.

2-(3-chlorophenyl)-4H-chromen-4-one² (3h):

White solid, m.p.: 117-119 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, J = 9.3 Hz, 1H), 7.91 (s, 1H), 7.80 -7.69 (m, 2H), 7.60 -7.41 (m, 4H), 6.79 (s, 1H) (Figure S15). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.85, 161.37, 155.89,

135.08, 133.87, 133.27, 131.36, 130.22, 126.08, 125.52, 125.30, 124.19, 123.72, 117.99, 107.88 (Figure S16). Anal.calcd for: $C_{15}H_9ClO_2$: C 70.19, H 3.53, Cl 13.81; Found: C 70.21, H 3.54; Cl 13.80. IR (KBr) (v_{max}/cm^{-1}): 3085, 1645, 1565, 1466, 1422, 1372, 1335, 1304, 1261, 1226, 1131.

2-(o-tolyl)-4H-chromen-4-one² (3i):

Yellow solid, m.p.: 104-106 °C. ¹H NMR (400 MHz, Chloroformd) δ 8.25 (s, 1H), 7.72-7.63 (m, 1H), 7.54-7.45 (m, 2H), 7.40 (s, 2H), 7.30 (s, 1H), 6.56-6.41 (m, 1H), 2.48 (s, 3H) (Figure S17). ¹³C NMR (101 MHz, Chloroform-d) δ 178.11, 165.98, 156.40, 136.74, 133.77, 132.54, 131.28, 130.73, 129.17, 126.21, 125.66, 125.21, 123.78, 118.06, 111.89, 20.59 (Figure S18). Anal.calcd for: C₁₆H₁₂O₂: C 81.34, H 5.12; Found: C 81.35, H 5.14. IR (KBr) (v_{max} /cm⁻¹): 2926, 1652, 1571, 1465, 1370, 1220, 1130.

2-(2-chlorophenyl)-4H-chromen-4-one² (3j):

White solid, m.p.: 118-120 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (dd, J = 7.9, 1.4 Hz, 1H), 7.74-7.67 (m, 1H), 7.64 (dd, J =7.4, 1.8 Hz, 1H), 7.57-7.49 (m, 2H), 7.49-7.38 (m, 3H), 6.66 (s, 1H) (Figure S19). ¹³C NMR (101 MHz, CDCl₃) δ 178.04, 162.56, 156.54, 133.93, 132.83, 131.81, 130.79, 130.63, 127.12, 125.68, 125.33, 123.79, 118.20, 112.97 (Figure S20). Anal.calcd for: C₁₅H₉ClO₂: C 70.19, H 3.53, Cl 13.81; Found: C 70.21, H 3.54; Cl 13.78. IR (KBr) (v_{max} /cm⁻¹): 2926, 1652, 1571, 1465, 1370, 1220, 1130.

2-(Furan-2-yl)-4*H*-chromen-4-one⁶ (3k):

White solid, m.p.: 126-128 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 7.7 Hz, 1H), 7.71-7.61 (m, 2H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.14 (d, *J* = 3.4 Hz, 1H), 6.74 (s, 1H),

6.61 (s, 1H) (Figure S21). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.76, 155.79, 155.14, 146.39, 145.77, 133.70, 125.74, 125.16, 124.22, 117.87, 113.02, 112.51, 105.50 (Figure S22). Anal.calcd for: C₁₃H₈O₃: C 73.58, H 3.80; Found: C 73.61, H 3.82. IR (KBr) (*v*_{max}/cm⁻¹): 1649, 1605, 1577, 1130, 775.

2-(Thiophen-2-yl)-4H-chromen-4-one² (3l):

White solid, m.p.: 93-94 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 7.8 Hz, 1H), 7.74 – 7.64 (m, 2H), 7.57 (d, J = 4.8 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 4.0 Hz, 1H), 6.69 (s, 1H) (Figure S23). ¹³C NMR (101 MHz,

Chloroform-*d*) δ 177.86, 159.00, 155.89, 135.12, 133.74, 130.26, 128.49, 128.44, 125.65, 125.25, 123.97, 117.93, 106.17 (Figure S24). Anal.calcd for: C₁₃H₈O₂S: C 68.40, H 3.53, S 14.05; Found: C 68.41, H 3.55, S 14.03. IR (KBr) (v_{max}/cm^{-1}): 3070, 1634, 1462, 1260, 1127.

2-(naphthalen-2-yl)-4H-chromen-4-one² (3m):

Yellow solid, m.p.: 159-161 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (s, 1H), 8.23 (dd, J = 7.9, 1.5 Hz, 1H), 7.97-7.82 (m, 4H), 7.69 (dd, J = 8.6, 7.1, 1.6 Hz, 1H), 7.62 -

7.50 (m, 3H), 7.45-7.36 (m, 1H), 6.91 (s, 1H) (Figure S25). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.35, 163.22, 156.29, 134.63, 133.75, 132.87, 129.03, 128.89, 127.99, 127.80, 127.05, 126.86, 125.70, 125.21, 122.45, 118.09, 107.84 (Figure S26). Anal.calcd for: C₁₉H₁₂O₂: C 83.81, H 4.44; Found: C 83.82, H 4.46. IR (KBr) (*v*_{max}/cm⁻¹): 3070, 1637, 1567, 1503, 1463, 1437, 1380, 1347, 1330, 1283, 1225, 1202, 1131.

2-Methyl-4H-chromen-4-one (3n):

Yellow solid, m.p.: 71-73 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 9.4 Hz, 1H), 7.63 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 6.17 (s, 1H), 2.39 (s, 3H) (Figure S27). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.20, 166.14, 156.47, 133.41, 125.64, 124.89, 123.57, 117.77, 110.57 (Figure S28). HRMS: C₁₀H₈O₂ for [M+H]⁺: 161.0525; Found: 161.0530. Anal.calcd for: C₁₀H₈O₂: C 74.99, H 5.03; Found: C 75.01, H 5.05. IR (KBr) (*v*_{max}/cm⁻¹): 1652.

6-methyl-2-phenyl-4H-chromen-4-one² (3o):

White solid, m.p.: 111-113 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.97-7.87 (m, 2H), 7.49 (dt, *J* = 16.4, 5.7 Hz, 5H), 6.81 (s, 1H), 2.46 (s, 3H) (Figure S29). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 178.43, 163.09, 154.43, 135.11, 134.92, 131.76, 131.45, 128.96, 126.17, 124.95, 123.54, 117.81, 107.30, 20.91(Figure S30). Anal.calcd for: C₁₆H₁₂O₂: C, 81.34; H, 5.12; Found: C, 81.35; H, 5.14. IR (KBr) (v_{max} /cm⁻¹): 3064, 2920, 1645, 1615, 1569, 1494, 1483, 1450, 1431, 1361, 1302, 1255, 1223, 1139.

6-chloro-2-phenyl-4H-chromen-4-one² (3p):

White solid, m.p.: 182-184 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 2.5 Hz, 1H), 7.94-7.90 (m, 2H), 7.65 (dd, J = 8.9, 2.5 Hz, 1H), 7.55 (d, J = 6.9 Hz, 4H), 6.83

(s, 1H) **(Figure S31)**. ¹³C NMR (101 MHz, CDCl₃) δ 177.10, 163.61, 154.50, 133.92, 131.87, 131.31, 131.16, 129.10, 126.28, 125.11, 124.88, 119.81, 107.40 **(Figure S32)**. Anal.calcd for: C₁₅H₉ClO₂: C, 70.19; H, 3.53; Cl, 13.81; Found: C, 70.21; H, 3.54; Cl, 13.78. IR (KBr) (*v*_{max}/cm⁻¹): 3085, 1648, 1615, 1601, 1566, 1494, 1456, 1436, 1353, 1306, 1291, 1272, 1253, 1132.

6-bromo-2-phenyl-4H-chromen-4-one² (3q):

White solid, m.p.: 188-190 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, J = 2.4 Hz, 1H), 7.93-7.90 (m, 2H),
7.79 (dd, J = 8.9, 2.4 Hz, 1H), 7.54 (d, J = 7.4 Hz, 3H), 7.48 (d, J = 8.9 Hz, 1H), 6.84 (s, 1H) (Figure S33). ¹³C NMR (101

MHz, Chloroform-*d*) δ 177.05, 163.72, 154.96, 136.74, 131.92, 131.28, 129.12, 128.33, 126.32, 125.21, 120.05, 118.70, 107.48 (Figure S34). Anal.calcd for: C₁₅H₉BrO₂: C, 59.83; H, 3.01; Br, 26.53; Found: C, 59.86; H, 3.02; Br, 26.52. IR

(KBr) (*v*_{max}/cm⁻¹): 3083, 2920, 1648, 1614, 1597, 1563, 1494, 1456, 1434, 1350, 1304, 1271, 1253, 1210, 1133.

6-hydroxy-2-phenyl-4H-chromen-4-one⁸ (3r):

Yellow solid, m. p.: 231-233 °C. ¹H NMR (400 MHz, DMSOd₆) δ 9.87 (s, 1H), 7.82 (d, J = 5.6 Hz, 2H), 7.44-7.30 (m, 4H), 7.14 (d, J = 2.9 Hz, 1H), 7.05 (dd, J = 8.9, 2.6 Hz, 1H), 6.71 (s, 1H) (Figure S35). ¹³C NMR (101 MHz, DMSO-d₆) δ 177.51, 162.63, 155.34, 149.82, 132.02, 131.75, 129.49, 126.62, 124.65, 123.55, 120.26, 107.95, 106.32 (Figure S36). Anal.calcd for: C₁₅H₁₀O₃: C, 75.62; H, 4.23; Found: C, 75.66; H, 4.25. IR (KBr) (v_{max} /cm⁻¹): 3068, 2949, 2864, 1624, 1593, 1577, 1568, 1494, 1473, 1454, 1400, 1375, 1363, 1328, 1255, 1197, 1184, 1132.

7-methoxy-2-phenyl-4H-chromen-4-one² (3s):

NeOYellow solid, m.p.: 96-98 °C. ¹H NMR (400 MHz,
Chloroform-d) δ 8.09 (d, J = 8.7 Hz, 1H), 7.86 (dd, J = 7.5,
2.0 Hz, 2H), 7.56-7.42 (m, 3H), 7.00-6.86 (m, 2H), 6.72 (s,

1H), 3.90 (s, 3H) (Figure S37). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.78, 164.20, 163.02, 157.99, 131.42, 128.99, 127.01, 126.14, 117.78, 114.43, 107.46, 100.41, 55.85 (Figure S38). Anal.calcd for: C₁₆H₁₂O₃: C, 76.18; H, 4.79; Found: C, 76.22; H, 4.82. IR (KBr) (*v*_{max}/cm⁻¹): 3026, 3002, 2924, 2845, 1653, 1626, 1606, 1494, 1450, 1439, 1348, 1357, 1284, 1247, 1190, 1165, 1131.

7-Hydroxy-2-phenyl-4H-chromen-4-one⁹ (3t):

White solid, m.p.: 265-268 °C. ¹H NMR (400 MHz, DMSO d_6) δ 10.06 (s, 1H), 8.09 (d, J = 6.8 Hz, 2H), 7.67 (d, J = 9.0Hz, 1H), 7.59 (d, J = 6.6 Hz, 3H), 7.36 (d, J = 3.0 Hz, 1H),

7.28 (dd, J = 9.0, 3.0 Hz, 1H), 6.97 (s, 1H) (Figure S39). ¹³C NMR (101 MHz, DMSO) δ 176.33, 162.72, 161.89, 157.48, 131.52, 131.23, 129.03, 126.53, 126.15, 116.13, 115.05, 106.61, 102.53 (Figure S40). Anal.calcd for: C₁₆H₁₂O₃: C, 75.62; H, 4.23; Found: C, 75.65; H, 4.25. IR (KBr) (v_{max} /cm⁻¹): 3000, 1620, 1580, 1550, 1510, 1490, 1450, 1380, 1250.

2-Phenyl-4*H*-benzo[*h*]chromen-4-one⁹ (3u):

Yellow solid, m.p.: 166-168 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61-8.49 (m, 1H), 8.15 (d, J = 8.7 Hz, 1H), 8.04-7.96 (m, 2H), 7.91 (dd, J = 6.7, 2.6 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.71 -7.64 (m, 2H), 7.61 -7.51 (m, 3H), 6.94 (s, 1H) (Figure S41). ¹³C NMR

(101 MHz, Chloroform-*d*) δ 178.23, 162.60, 153.50, 135.99, 131.93, 131.56, 129.25, 129.20, 128.23, 127.16, 126.22, 125.34, 124.11, 122.33, 120.74, 120.26, 108.79 (**Figure S42**). Anal.calcd for: C₁₉H₁₂O₂: C, 83.81; H, 4.44; Found: C, 83.84; H, 4.47. IR (KBr) (*v*_{max}/cm⁻¹):1630, 1560.

2-phenylquinolin-4(1H)-one¹⁰ (3v):

White solid, m.p.: 255-257 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.12 (d, J = 7.5 Hz, 1H), 7.93-7.86 (m, 2H), 7.81 (d, J = 7.7 Hz, 1H), 7.64-7.58 (m, 1H), 7.52 (s, 3H), 7.29 (t, J = 6.2 Hz, 1H), 6.45 (s, 1H) (Figure S43). ¹³C NMR (101 MHz, DMSO) δ 176.95, 150.04, 140.52, 134.20, 131.83, 130.52, 129.04, 127.44, 124.92, 124.75, 123.29, 118.76, 107.34 (Figure S44). Anal.calcd for: C₁₅H₁₁NO: C, 81.43; H, 5.01; N, 6.33; Found: C, 81.47; H, 5.03; N, 6.35. IR (KBr) (v_{max} /cm⁻¹): 3545, 2922, 1692, 1627, 1589, 1502, 756.

7-Methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one¹¹ (3w):

White solid, m.p.: 149-150 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 8.7 Hz, 1H), 7.86 (d, *J* = 8.9 Hz, 2H), 7.08-6.91 (m, 4H), 6.68 (s, 1H), 3.91 (d, *J* = 16.3 Hz, 6H) (Figure S45). ¹³C NMR (101 MHz,

Chloroform-*d*)) δ 177.82, 164.03, 163.04, 162.24, 157.89, 127.82, 127.00, 124.11, 117.77, 114.40, 114.14, 106.09, 100.40, 55.80, 55.47 (Figure S46). Anal.calcd for: C₁₇H₁₄O₄: C, 72.33; H, 5.00; Found: C, 72.36; H, 5.05.IR (KBr) (*v*_{max}/cm⁻¹):3361, 2925, 1626, 1607, 1258, 1180, 1165.

2-(4-Chlorophenyl)-7-methoxy-4*H*-chromen-4-one⁶ (3x):

White solid, m.p.: 128-130 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.00-6.94 (m, 2H), 6.72 (s, 1H), 3.93 (s, 3H) (Figure S47). ¹³C NMR (101 MHz, CDCl₃) δ 177.54, 164.23, 161.69, 157.82, 137.61, 130.21, 129.28, 127.33, 126.99, 117.69, 114.51, 107.54, 100.35, 55.87 (FigureS48). Anal.calcd for: C₁₆H₁₁ClO₃: C, 67.03; H, 3.87; Cl, 12.36; Found: C, 67.07; H, 3.89; Cl, 12.34. IR (KBr) (v_{max} /cm⁻¹): 3425, 1660, 1372, 1092, 832, 750.

2-(4-Bromophenyl)-7-methoxy-4H-chromen-4-one¹² (3y):

White solid, m.p.: 181-183 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 6.5 Hz, 2H), 7.65 (d, J = 7.0 Hz, 2H), 7.05 – 6.90 (m, 2H), 6.73 (s, 1H), 3.94 (s, 3H) (Figure S49). ¹³C NMR (101

MHz, Chloroform-*d*) δ 177.64, 164.30, 161.88, 132.30, 127.57, 127.09, 126.07, 117.77, 114.57, 107.66, 100.40, 55.88 (Figure S50). Anal.calcd for: C₁₆H₁₁BrO₃: C, 58.03; H, 3.35; Br, 24.13; Found: C, 58.05 H, 3.38; Br, 24.10. IR (KBr) (*v*_{max}/cm⁻¹): 3059, 1604,1489,1440,1348, 1274, 1246, 1201, 1166, 1139.

2-(3-chloro-phenyl)-7-methoxy-chromen-4-one (3z):

Yellow solid, m.p.: 124-126 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 8.6 Hz, 1H), 7.92 (s, 1H), 7.77 (d, J = 6.6 Hz, 1H), 7.48 (dt, J = 15.4, 7.6 Hz, 2H), 7.00 (d, J = 11.1 Hz, 2H), 6.76 (s, 1H), 3.95 (s, 3H) (Figure S51).

¹³C NMR (100 MHz, Chloroform-*d*) δ 177.61, 164.39, 161.43, 157.96, 131.33, 130.29, 127.13, 126.25, 124.26, 117.80, 114.72, 108.16, 100.39, 55.90 (Figure S52). HRMS: C₁₆H₁₁ClO₃ for [M+H]⁺: 287.0512; Found: 287.0519. Anal.calcd for: C₁₆H₁₁ClO₃: C, 67.03; H, 3.87; Cl, 12.36; Found: C, 67.04; H, 3.90; Cl, 12.32. IR (KBr) (v_{max} /cm⁻¹): 3074, 2978, 2839, 1635, 1604, 1570, 1539, 1504, 1477, 1438, 1373, 1354, 1273, 1249, 1234, 1195, 1165, 1126, 1087, 1045, 1014.

2-(2-methylphenyl)-7-methoxy-chromen-4-one (3aa):

Yellow solid, m.p.: 119-121 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.9 Hz, 1H), 7.50 (d, J = 7.2Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.31 (d, J = 7.4 Hz, 2H), 6.98 (dd, J = 8.9, 2.3 Hz, 1H), 6.88 (d, J = 2.2 Hz, 1H), 6.42 (s, 1H), 3.90 (s, 3H), 2.48 (s, 3H) (Figure S53). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.67, 165.56, 164.19, 158.23, 136.70, 132.65, 131.22, 130.61, 129.15, 127.07, 126.18, 117.62, 114.46, 111.86, 100.33, 55.82, 20.55. (Figure S54). HRMS: C₁₇H₁₄O₃ for [M+H]⁺: 267.1054; Found: 267.1061. Anal.calcd for: C₁₇H₁₄O₃: C, 76.68; H, 5.30; Found: C, 76.70; H, 5.33. IR (KBr) (*v*_{max}/cm⁻¹): 3070, 2954, 2839, 1631, 1604, 1589, 1504, 1438, 1373, 1350, 1276, 1249, 1238, 1199, 1161, 1083, 1022. 2-(2-chloro-phenyl)-7-methoxy-chromen-4-one (3ab):

Yellow solid, m.p.: 142-144 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.9 Hz, 1H), 7.62 (dd, J = 7.4, 1.8 Hz, 1H), 7.56 -7.50 (m, 1H), 7.38-7.47 (dtd, J = 18.2, 7.4, 1.4 Hz, 2H), 7.00 (dd, J = 8.9, 2.3 Hz, 1H), 6.91 (d, J =

2.3 Hz, 1H), 6.59 (s, 1H), 3.91 (s, 3H) (Figure S55). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.48, 164.31, 131.67, 130.76, 130.63, 127.11, 127.07, 114.70, 112.93, 100.36, 55.85 (Figure S56). HRMS: C₁₆H₁₁ClO₃ for [M+H]⁺: 287.0512; Found: 287.0518. Anal.calcd for: C₁₆H₁₁ClO₃: C, 67.03; H, 3.87; Cl, 12.36; Found: C, 67.04; H, 3.91; Cl, 12.22. IR (KBr) (v_{max} /cm⁻¹): 3070, 2974, 2843, 1643, 1608, 1573, 1504, 1477, 1442, 1373, 1354, 1273, 1249, 1203, 1168, 1126, 1083, 1033, 1026.

2-(4-methoxyphenyl)-6-methyl-4H-chromen-4-one (3ac):

Yellow solid, m.p.: 167-169 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.50-7.47 (m, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.01 (d, J =8.8 Hz, 2H), 6.73 (s, 1H), 3.88 (s, 3H), 2.45 (s, 3H)

(Figure S57). ¹³C NMR (100 MHz, Chloroform-*d*) δ178.5, 163.6, 162.5, 154.5, 135.2, 134.9, 128.1, 125.0, 124.1, 123.4, 117.7, 114.5, 105.9, 55.5, 20.9. (Figure S58). HRMS: C₁₇H₁₄O₃ for [M+H]⁺: 267.1021; Found: 267.1016. Anal.calcd for: C₁₇H₁₄O₃: C, 76.68; H, 5.30; Found: C, 76.70; H, 5.33. IR (KBr) (*v*_{max}/cm⁻¹): 3430, 1638, 1467, 1367, 1228, 822, 630.

2-(4-chlorophenyl)-6-methyl-4H-chromen-4-one² (3ad):

White solid, m.p.: 193-195 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.86 (s, 1H), 7.84 (s, 1H),

7.47 (dd, J = 15.6, 8.6 Hz, 4H), 6.77 (s, 1H), 2.47 (s, 3H) (Figure S59). ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.3, 162.0, 154.4, 137.8, 135.4, 135.1, 130.3, 129.3, 127.5, 125.1, 123.5, 117.8, 107.5, 21.0 (Figure S60). HRMS: C₁₆H₁₁ClO₂ for [M+H]⁺: 271.0526; Found: 271.0522 Anal.calcd for: C₁₆H₁₁ClO₂: C, 70.99; H, 4.10; Cl, 13.10; Found: C, 71.02; H, 4.14; Cl, 13.06. IR (KBr) (v_{max} /cm⁻¹): 3427, 3063, 3028, 2922, 2856, 1642, 1622, 1594, 1577, 1490, 1453, 1407, 1378, 1364, 1285, 1228.

6-methyl-2-(4-nitrophenyl)-4H-chromen-4-one¹³ (3ae):

Yellow solid, m.p.: 276-278 °C. ¹H NMR (400MHz, Chloroform-*d*): δ 8.38 (d, J = 8.7 Hz, 2H), 8.11 (d, J = 9.0 Hz, 2H), 8.03 (s, 1H), 7.54 (m, 2H), 6.89 (s, 1H), 2.49 (s, 3H) (Figure S61). ¹³C NMR (101 MHz, Chloroform-*d*) δ

178.13, 160.42, 154.47, 149.36, 137.78, 135.89, 135.59, 127.19, 125.20, 124.23, 123.57, 117.90, 109.46, 21.00 (Figure S62). Anal.calcd for: C₁₆H₁₁NO₄: C, 68.33; H, 3.94; N 4.98; Found: C, 68.36; H, 3.95; N 4.96. IR (KBr) (v_{max} /cm⁻¹): 1640, 1617, 1523, 1484, 1343.

6-chloro-2-phenylquinazolin-4(3H)-one¹⁴ (3af):

Yellow solid, m.p.: 131-133 °C. 1H NMR (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.94-7.87 (m, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.54-7.42 (m, 4H), 6.78 (s, 1H), 2.47 (s, 3H) (Figure S63). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.32,

161.63, 154.46, 135.47, 135.25, 135.21, 133.73, 131.40, 130.29, 126.34, 125.10, 124.34, 123.58, 117.85, 108.01, 20.95(**Figure S64**). Anal.calcd for: $C_{16}H_{11}ClO_2$: C, 70.99; H, 4.10; Cl, 13.10; Found: C, 71.02; H, 4.14; Cl, 13.06. IR (CC1₄): v = 3080 (w), 3040 (w), 2930 (w), 1660 (s), 1620 (m), 1585 (m), 1570 (m), 1490 (m), 1440 (m), 1360 (s), 1290 (m), 1255 (w), 1230 (m), 1140 (m), 1105 (w), 1085 (m), 1045 (m), 930 (w), 855 (m), 700 (m) cm⁻¹.

6-methyl-2-(2-methylphenyl)-4H-chromen-4-one (3ag):

Yellow solid, m.p.: 132-134 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.54-7.48 (m, 2H), 7.40 (t, *J* = 6.9 Hz, 2H), 7.33 (d, *J* = 7.4 Hz, 2H), 6.47 (s, 1H), 2.48 (s, 6H) (Figure S65). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.42, 165.97, 136.81, 135.24, 134.99, 132.78, 131.25, 130.65, 129.21, 126.20, 125.10, 123.48, 117.82, 111.82, 20.96, 20.55 (Figure S66). HRMS: C₁₇H₁₄O₂ for [M+H]⁺: 251.1134. Found: 251.1142. Anal.calcd for: C₁₇H₁₄O₂: C, 81.58; H, 5.64; Found: C, 81.62; H, 5.68. IR (KBr, v, cm⁻¹): 3020, 2924, 2858, 1639, 1612, 1573, 1558, 1485, 1446, 1365, 1296, 1253, 1219, 1138, 1122, 1033.

2-(2-chlorophenyl)-6-methyl-4H-chromen-4-one¹⁵ (3ah):

Yellow solid. m.p.: 124-126 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.63 (dd, J = 7.5, 1.8 Hz, 1H), 7.56-7.48 (m, 2H), 7.48-7.37 (m, 3H), 6.64 (s, 1H), 2.48 (s, 3H) (Figure S67). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.23,

162.50, 154.89, 135.35, 135.14, 132.94, 132.07, 131.69, 130.79, 130.64, 127.06, 125.08, 117.95, 112.83, 20.96 (Figure S68). Anal.calcd for: C₁₆H₁₁ClO₂: C, 70.99; H, 4.10; Cl, 13.10; Found: C, 71.02; H, 4.14; Cl, 13.06. IR (KBr)(v_{max} /cm⁻¹): 3444, 3070, 1658, 1620, 1485, 1440, 1340, 1224, 1072, 1025, 813, 761.

6-chloro-2-(4-methoxyphenyl)-4H-chromen-4-one (3ai):

Cream yellow solid, m.p.: 186-188 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 2.75 Hz, 1H), 7.87 (d, J = 8.94 Hz, 2H), 7.62 (dd, J = 2.75 and 8.94 Hz, 1H), 7.51 (d, J = 8.94 Hz, 1H), 7.03 (d, J = 8.94 Hz, 2H), 6.75

(s, 1H), 3.90 (s, 3H) (Figure S69). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.1, 163.7, 162.7, 154.5, 133.7, 131.1, 128.1, 125.2, 124.9, 123.6, 119.7, 114.6, 106.0, 55.6 (Figure S70). HRMS: C₁₆H₁₁ClO₃ for [M+H]⁺: 287.0512. Found: 287.0517. Anal.calcd for: C₁₆H₁₁ClO₃: C, 67.03; H, 3.87; Cl, 12.36; Found: C, 67.07; H, 3.91; Cl, 12.31. IR (KBr) (*v*_{max}/cm⁻¹): 3082, 2993, 2843, 1658, 1604, 1566, 1512, 1465, 1438, 1357, 1315, 1269, 1253, 1188, 1122, 1022.

6-chloro-2-(4-chlorophenyl)-4H-chromen-4-one¹⁶ (3aj):

Yellow solid, m.p.: 253-255 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (s, 1H), 7.85 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 7.0 Hz, 3H), 6.79 (s, 1H) (Figure S71). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.01, 162.52, 154.47, 138.21, 134.11, 131.40, 129.87, 129.48, 127.58, 125.24, 124.87, 119.78, 107.60 (Figure S72). Anal.calcd for: C₁₅H₈Cl₂O₂: C, 61.89; H, 2.77; Cl, 24.35; Found: C, 61.93; H, 2.80; Cl, 24.32. IR (KBr) (*v*_{max}/cm⁻¹): 1132, 1253, 1353, 1456, 1566, 1601, 1647, 2361, 2922, 3086.

6-chloro-2-(3-chlorophenyl)-4H-chromen-4-one (3ak):

Yellow solid, m.p.: 209-211 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 2.4 Hz, 1H), 7.91 (s, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.66 (dd, J = 8.9, 2.5 Hz, 1H), 7.58-7.44 (m, 3H), 6.81 (s, 1H) (Figure S73). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 162.07, 154.48, 135.38, 134.20, 133.23, 131.77, 130.41, 126.40, 125.24, 124.88, 124.42, 119.83, 108.08 (Figure S74). HRMS: C₁₅H₈Cl₂O₂ for [M+H]⁺: 291.0054; Found: 291.0060. Anal.calcd for: C₁₅H₈Cl₂O₂: C, 61.89; H, 2.77; Cl, 24.35; Found: C, 61.93; H, 2.81; Cl, 24.31. IR (KBr) (*v*_{max}/cm⁻¹): 3059, 1654, 1600, 1562, 1469, 1446, 1346, 1276, 1230, 1111.

6-chloro-2-(2-methylphenyl)-4H-chromen-4-one (3al):

CI

Yellow solid, m.p.: 133-135 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, J = 2.3 Hz, 1H), 7.63 (dd, J = 8.9, 2.4 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.44 (dd, J = 11.5, 8.2 Hz, 2H), 7.36-7.30 (m, 2H), 6.49 (s, 1H), 2.48 (s, 3H) (Figure

S75). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.06, 154.79, 136.82, 133.99, 132.27, 131.37, 131.23, 130.96, 129.23, 126.31, 125.22, 124.77, 119.82, 111.90, 20.61 (**Figure S76**). HRMS: C₁₆H₁₁ClO₂ for [M+H]⁺: 271.0526; Found: 271.0534 Anal.calcd for: C₁₆H₁₁ClO₂: C, 70.99; H, 4.10; Cl, 13.10; Found: C, 71.02; H, 4.14; Cl, 13.06. IR (KBr) (*v*_{max}/cm⁻¹): 3066, 2931, 1639, 1612, 1465, 1438, 1357, 1288, 1269, 1249, 1211, 1168, 1141, 1122, 1107.

6-chloro-2-(2-chlorophenyl)-4H-chromen-4-one (3am):

Yellow solid, m.p.: 153-155 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, J = 2.4 Hz, 1H), 7.67-7.61 (m, 2H), 7.55 (d, J = 7.8 Hz, 1H), 7.50-7.40 (m, 3H), 6.67 (s, 1H) (Figure S77). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.91, 162.92, 154.90, 134.14, 132.95, 132.00, 131.59, 131.36, 130.88, 130.63, 127.16, 125.22, 119.95, 112.93 (Figure S78). HRMS: C₁₅H₈Cl₂O₂ for [M+H]⁺: 291.0054; Found: 291.0049. Anal.calcd for: C₁₅H₈Cl₂O₂: C, 61.89; H, 2.77; Cl, 24.35; Found: C, 61.92; H, 2.81; Cl, 24.31. IR (KBr) (*v*_{max}/cm⁻¹): 3028, 1647, 1606, 1566, 1469, 1438, 1350, 1296, 1276, 1141, 1107, 1068, 1026.

6-Bromo-2-(4-methoxyphenyl)-4H-chromen-4-one¹⁷ (3an):

Cream yellow solid, m.p.: 185-187 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (d, J = 2.2 Hz, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 2.2 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 6.72 (s, 1H), 3.89 (s,

3H) (Figure S79). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.83, 163.59, 162.60, 154.84, 136.43, 128.25, 128.00, 125.21, 119.89, 118.46, 114.51, 105.99, 55.52 (Figure S80). Anal.calcd for: C₁₆H₁₁BrO₃: C, 58.03; H, 3.35; Br, 24.13; Found: C, 58.06; H, 3.38; Br, 24.10. IR (KBr) (*v*_{max}/cm⁻¹): 3074, 2993, 2843, 1651, 1604, 1562, 1512, 1462, 1438, 1357, 1315, 1269, 1253, 1188, 1138, 1122, 1018.

6-bromo-2-(4-chlorophenyl)-4H-chromen-4-one¹⁸ (3ao):

Yellow solid, m.p.: 191-193 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (d, *J* = 2.3 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.79 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.9 Hz, 1H), 6.79 (s, 1H) (Figure S81).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.81, 162.49, 138.21, 154.90, 138.21, 136.86, 129.83, 129.47, 128.42, 127.56, 125.22, 119.99, 118.85, 107.66 (Figure S82). Anal.calcd for: C₁₅H₈BrClO₂: C, 53.69; H, 2.40; Br, 23.81; Cl, 10.56; Found: C, 53.73; H, 2.41; Br, 23.79; Cl, 10.54. IR (KBr) (v_{max} /cm⁻¹): 1092, 1282, 1357, 1436, 1560, 1601, 1638, 2361, 2919, 3073.

6-Bromo-2-(4-bromophenyl)-4H-chromen-4-one⁴ (3ap):

Yellow solid, m.p.: 245-247 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 7.88-7.59 (m, 5H), 7.46 (d, *J* = 8.8 Hz, 1H), 6.80 (s, 1H) (Figure S83). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.83, 162.58, 154.91, 136.89, 132.45, 130.32, 128.44, 127.72, 126.66, 125.24, 120.01, 118.87, 107.69 (Figure S84).

Anal.calcd for: C₁₅H₈Br₂O₂: C, 47.41; H, 2.12; Br, 42.05; Found: C, 47.43; H, 2.16; Br, 42.01. IR (KBr) (*v*_{max}/cm⁻¹): 3072, 1635, 1560, 1460, 1436, 1355, 1280, 1259, 1136, 1074, 1074, 1033, 1006.

6-bromo-2-(3-chlorophenyl)-4H-chromen-4-one (3aq):

Yellow solid, m.p.: 204-206 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (d, J = 2.3 Hz, 1H), 7.91 (s, 1H), 7.82-7.75 (m, 2H), 7.51 (dd, J = 19.0, 8.4 Hz, 3H), 6.81 (s, 1H) (**Figure S85**). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.79, 162.07, 154.92, 136.96, 135.38, 133.21, 131.78, 130.41,

128.44, 126.39, 125.24, 124.42, 120.05, 118.93, 108.16 (Figure S86). HRMS: C₁₅H₈BrClO₂ for [M+H]⁺: 334.9569; Found: 334.9573. Anal.calcd for: C₁₅H₈BrClO₂: C, 53.69; H, 2.40; Br, 23.81; Cl, 10.56; Found: C, 53.73; H, 2.41; Br, 23.79; Cl, 10.54. IR (KBr) (v_{max} /cm⁻¹): 3062, 1651, 1616, 1600, 1562, 1473, 1465, 1438, 1346, 1276, 1257, 1141, 1107.

6-Bromo-2-(2-methylphenyl)-4H-chromen-4-one (3ar):

Yellow solid, m.p.: 114-116 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (d, J = 2.3 Hz, 1H), 7.77 (dd, J = 8.8, 2.4 Hz, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 8.9 Hz, 1H), 7.33 (d, J = 7.4 Hz, 2H), 6.49 (s, 1H), 2.48

(s, 3H) (Figure S87). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.87, 166.34, 155.23, 136.81, 136.73, 132.27, 131.36, 130.96, 129.22, 128.43, 126.30, 125.16, 120.03, 118.70, 111.98, 20.58 (Figure S88). HRMS: C₁₆H₁₁BrO₂ for [M+H]⁺: 315.0048. Found: 315.0045. Anal.calcd for: C₁₆H₁₁BrO₂: C, 60.98; H, 3.52; Br, 25.35; Found: C, 61.01; H, 3.54; Br, 25.37. IR (KBr) (*v*_{max}/cm⁻¹): 3062, 2931, 1639, 1608, 1597, 1554, 1462, 1435, 1354, 1288, 1246, 1207, 1168, 1141, 1029.

6-Bromo-2-(2-chlorophenyl-)-4H-chromen-4-one (3as):

Yellow solid, m.p.: 196-198 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (d, J = 2.2 Hz, 1H), 7.78 (dd, J = 8.9, 2.2

Hz, 1H), 7.66-7.60 (m, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.51-7.39 (m, 3H), 6.67 (s, 1H) (Figure S89). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.73, 155.33, 136.89, 132.94, 132.01, 130.88, 130.62, 128.41, 127.16, 125.16, 120.17, 118.82, 113.01 (Figure S90). HRMS: C₁₅H₈BrClO₂ for [M+H]⁺: 334.9569. Found: 334.9575. Anal.calcd for: C₁₅H₈BrClO₂: C, 53.69; H, 2.40; Br, 23.81; Cl, 10.56; Found: C, 53.73; H, 2.41; Br, 23.79; Cl, 10.54. IR (KBr) (v_{max} /cm⁻¹): 3028, 2920, 2854, 1651, 1600, 1562, 1465, 1435, 1350, 1292, 1276, 1141.

Chrysin¹⁹:

HC

Yellow solid, m.p.: 283-284 °C. ¹H NMR (400 MHz, DMSO-
d₆)
$$\delta$$
 12.58 (s, 1H), 10.62 (s, 1H), 7.77 (d, $J = 6.6$ Hz, 2H),
7.31 (q, $J = 7.7$, 6.2 Hz, 3H), 6.70-6.56 (m, 1H), 6.25 (s, 1H),
6.05-5.92 (m, 1H) (Figure S91). ¹³C NMR (101 MHz, DMSO-

*d*₆) δ 182.21, 164.82, 163.49, 161.88, 157.82, 132.31, 131.10, 129.46, 126.71, 105.51, 104.39, 99.43, 94.51(**Figure S92**). Anal.calcd for: C₁₅H₁₀O₄: C, 70.86; H, 3.96; Found: C, 70.88; H, 3.97. IR (KBr) (*v*_{max}/cm⁻¹): 3527, 3083, 1656, 1609, 1580, 1556, 1445.

Tectochrysin²⁰:

(100 MHz, Chloroform-*d*) δ 182.42, 165.59, 163.91, 162.16, 157.75, 131.81, 131.28, 129.05, 126.25, 105.81, 105.68, 98.19, 92.63, 55.79. (Figure S94). HRMS: C₁₆H₁₂O₄ for [M+H]⁺: 269.0812. Found: 269.0808. Anal.calcd for: C₁₆H₁₂O₄: C, 71.64; H, 4.51; Found: C, 71.65; H, 4.53. IR (KBr) (v_{max} /cm⁻¹): 3450, 2925, 1654, 1621, 1016.

5,7-Dimethoxyflavone²¹:

Yellow solid, m.p.: 147-149 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (dd, J = 7.1, 2.1 Hz, 2H), 7.50-7.45 (m, 3H), 6.65 (s, 1H), 6.54 (d, J = 2.1 Hz, 1H), 6.34 (d, J = 2.0 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H) (Figure S95). ¹³C NMR (100 MHz, Chloroform-*d*) δ177.58, 164.02, 160.79, 160.55, 159.82, 131.41, 131.16, 128.89, 125.86, 109.18, 108.92, 96.15, 92.79, 56.38, 55.77 (Figure S96). HRMS: C₁₇H₁₄O₄ for [M+H]⁺: 283.1025. Found: 283.1029. Anal.calcd for: C₁₇H₁₄O₄: C, 72.33; H, 5.00; Found: C, 72.37; H, 5.04. IR (KBr) (*v*_{max}/cm⁻¹): 3140, 1645, 1600, 1505.

Diosmetin²²:

Yellow solid, m.p.: 287-289 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.93 (s, 1H), 10.83 (s, 1H), 9.45 (s, 1H), 7.51 (dd, J = 8.5, 2.2 Hz, 1H), 7.41 (d, J = 2.2 Hz, 1H), 7.05 (d, J = 8.6 Hz, 1H), 6.72 (s, 1H), 6.45 (d, J = 2.0 Hz,

1H), 6.19 (d, J = 2.0 Hz, 1H), 3.85 (s, 3H) (Figure S97). ¹³C NMR (100 MHz, DMSO- d_6) δ 182.12, 164.62, 163.93, 161.92, 157.75, 151.54, 147.22, 123.45, 119.12, 113.38, 112.51, 104.21, 103.95, 99.32, 94.34, 56.17 (Figure S98). HRMS: C₁₆H₁₂O₆ for [M+H]⁺: 301.0728. Found: 301.0731. Anal.calcd for: C₁₆H₁₂O₆: C, 64.00; H, 4.03; Found: C, 64.03; H, 4.05. IR (KBr) (v_{max} /cm⁻¹): 3387, 3089, 2940, 2844, 1652, 1610, 1507, 1166.

7,3',4'-Tri-O-methylluteolin²³:

Hz, 1H), 3.98 (d, J = 6.3 Hz, 6H), 3.89 (s, 3H) (Figure S99). ¹³C NMR (100 MHz, Chloroform-*d*) δ 182.37, 165.45, 163.96, 162.17, 152.25, 149.29, 123.77, 120.10, 111.13, 108.75, 104.66, 98.07, 92.66, 56.11, 55.82 (Figure S100). HRMS: C₁₈H₁₆O₆ for [M+H]⁺: 329.1065. Found: 329.1070. Anal.calcd for: C₁₈H₁₆O₆: C, 65.85; H, 4.91; Found: C, 65.88; H, 4.93. IR (KBr) (v_{max} /cm⁻¹): 3045~2900, 2835, 1660, 1625, 1505, 1446, 810.

5,7,3',4'-Tetramethoxyflavone²⁰:

2.0 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 6.61 (s, 1H), 6.55 (d, J = 2.2 Hz, 1H), 6.36 (d, J = 2.2 Hz, 1H), 3.98 -3.91 (m, 12H) **(Figure S101)**. ¹³C NMR (100 MHz, Chloroformd) δ 182.37, 165.45, 163.96, 162.17, 152.25, 149.29, 123.77, 120.10, 111.13, 108.75, 104.66, 98.07, 92.66, 56.11, 55.82 **(Figure S102)**. HRMS: C₁₉H₁₈O₆ for [M+H]⁺: 343.1231. Found: 343.1225. Anal.calcd for: C₁₉H₁₈O₆: C, 66.66; H, 5.30; Found: C, 66.67; H, 5.31. IR (KBr) (ν_{max} /cm⁻¹): 3215, 3108, 3085, 3004, 2942, 2840, 1645, 1604, 1516, 1486, 1461, 1421, 1387, 1356, 1269, 1254, 1120, 1201, 1159, 1139, 1118, 1099, 870, 834, 806.

Diphenyl sulfoxide²⁴(5):

White solid, m.p.: 68-70 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70-7.61 (m, 4H), 7.48-7.40 (m, 6H) (Figure S103). ¹³C NMR (100 MHz, Chloroform-*d*) δ145.52, 131.07, 129.33, 124.19 (Figure S104).

HRMS: $C_{12}H_{10}OS$ for $[M+H]^+$: 203.0553; Found: 203.0559. Anal.calcd for: $C_{12}H_{10}OS$: C, 71.26; H, 4.98; Found: C, 71.28; H, 5.02. IR (KBr) (v_{max}/cm^{-1}): 3020, 1440, 1080, 1030, 685.

1,3,3-triphenylprop-2-en-1-one²⁵ (6):

Yellow solid, m.p.: 77-79 °C. ¹H NMR (400 MHz, Chloroformd) δ 12.28 (s, 1H), 7.93-7.84 (m, 1H), 7.49-7.41 (m, 6H), 7.39-7.34 (m, 3H), 7.26 (dd, J = 7.7, 1.8 Hz, 2H), 7.21 (s, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H) (Figure S105). ¹³C

NMR (100 MHz, Chloroform-*d*) δ 197.19, 162.98, 155.69, 141.27, 138.94, 136.23, 130.81, 129.65, 128.71, 128.63, 128.55, 128.26, 122.61, 120.67, 118.79, 118.39 (Figure S106). HRMS: C₂₁H₁₆O₂ for [M+H]⁺: 301.1214; Found: 301.1220. Anal.calcd for: C₂₁H₁₆O₂: C, 83.98; H, 5.37; Found: C, 83.99; H, 5.39. IR (KBr) (v_{max} /cm⁻¹): 3057, 2925, 1735, 1628, 1568, 1485, 1444, 1349, 1297, 1030, 756, 697, 604.

NMR spectra

Figure S2 ¹³C NMR spectrum of 2-Phenyl-4H-chromen-4-one (3a)

Figure S4 ¹³C NMR spectrum of 2-(*p*-Tolyl)-4*H*-chromen-4-one (3b)

Figure S5 ¹H NMR spectrum of 2-(4-Methoxyphenyl)-4*H*-chromen-4-one (3c)

Figure S6 ¹³C NMR spectrum of 2-(4-Methoxyphenyl)-4*H*-chromen-4-one (3c)

Figure S7 ¹H NMR spectrum of 2-(4-Chlorophenyl)-4H-chromen-4-one (3d)

Figure S8 ¹³C NMR spectrum of 2-(4-Chlorophenyl)-4H-chromen-4-one (3d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S10 ¹³C NMR spectrum of 2-(4-Bromophenyl)-4*H*-chromen-4-one (3e)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S12 ¹³C NMR spectrum of 2-(4-Nitrophenyl)-4H-chromen-4-one (3f)

Figure S13 ¹H NMR spectrum of 2-(3-methoxyphenyl)-4H-chromen-4-one (3g)

Figure S14 ¹³C NMR spectrum of 2-(3-methoxyphenyl)-4H-chromen-4-one (3g)

823 823 77.91 77.79 77.79 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.45 77.75 77.45 77.7

Figure S16¹³C NMR spectrum of 2-(3-chlorophenyl)-4H-chromen-4-one (3h)

Figure S18 ¹³C NMR spectrum of 2-(o-tolyl)-4H-chromen-4-one (3i)

Figure S20 ¹³C NMR spectrum of 2-(3-chlorophenyl)-4H-chromen-4-one (3j)

Figure S22 ¹³C NMR spectrum of 2-(Furan-2-yl)-4*H*-chromen-4-one (3k)

Figure S23 ¹H NMR spectrum of 2-(Thiophen-2-yl)-4H-chromen-4-one (3l)

Figure S24 ¹³C NMR spectrum of 2-(Thiophen-2-yl)-4H-chromen-4-one (3l)

Figure S26 ¹³C NMR spectrum of 2-(naphthalen-2-yl)-4H-chromen-4-one (3m)

Figure S28 ¹³C NMR spectrum of 2-Methyl-4H-chromen-4-one (3n)

Figure S30 ¹³C NMR spectrum of 6-methyl-2-phenyl-4H-chromen-4-one (30)

Figure S32 ¹³C NMR spectrum of 6-chloro-2-phenyl-4H-chromen-4-one (3p)

Figure S34 ¹³C NMR spectrum of 6-bromo-2-phenyl-4H-chromen-4-one (3q)

Figure S36 ¹³C NMR spectrum of 6-Hydroxy-2-phenyl-4H-chromen-4-one (3r)

Figure S38 ¹³C NMR spectrum of 7-methoxy-2-phenyl-4H-chromen-4-one (3s)

Figure S40 ¹³C NMR spectrum of 7-Hydroxy-2-phenyl-4H-chromen-4-one (3t)

Figure S42 ¹³C NMR spectrum of 2-Phenyl-4*H*-benzo[*h*]chromen-4-one (3u)

Figure S44 ¹³C NMR spectrum of 2-phenylquinolin-4(1H)-one (3v)

Figure S45 ¹H NMR spectrum of 7-Methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (3w)

Figure S46 ¹³C NMR spectrum of 7-Methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (3w)

Figure S47 ¹H NMR spectrum of 2-(4-Chlorophenyl)-7-methoxy-4*H*-chromen-4-one (3x)

Figure S48 ¹³C NMR spectrum of 2-(4-Chlorophenyl)-7-methoxy-4*H*-chromen-4-one (3x)

Figure S50 ¹H NMR spectrum of 2-(4-Bromophenyl)-7-methoxy-4H-chromen-4-one (3y)

Figure S52 ¹³C NMR spectrum of 2-(3-chloro-phenyl)-7-methoxy-chromen-4-one (3z)

Figure S53 ¹H NMR spectrum of 2-(2-methylphenyl)-7-methoxy-chromen-4-one (3aa)

Figure S54 ¹³C NMR spectrum of 2-(2-methylphenyl)-7-methoxy-chromen-4-one (3aa)

Figure S55 ¹H NMR spectrum of 2-(2-chloro-phenyl)-7-methoxy-chromen-4-one (3ab)

Figure S56 ¹³C NMR spectrum of 2-(2-chloro-phenyl)-7-methoxy-chromen-4-one (3ab)

Figure S57 ¹H NMR spectrum of 2-(4-Methoxyphenyl)-6-methyl-4*H*-chromen-4-one (3ac)

Figure S58 ¹³C NMR spectrum of 2-(4-Methoxyphenyl)-6-methyl-4*H*-chromen-4-one (3ac)

Figure S60 ¹³C NMR spectrum of 2-(4-chlorophenyl)-6-methyl-4H-chromen-4-one (3ad)

Figure S62 ¹³C NMR spectrum of 6-methyl-2-(4-nitrophenyl)-4H-chromen-4-one (3ae)

Figure S64 ¹³C NMR spectrum of 2-(4-chlorophenyl)-6-methyl-4H-chromen-4-one (3af)

Figure S66 ¹³C NMR spectrum of 6-methyl-2-(2-methylphenyl)-4H-chromen-4-one (3ag)

Figure S68 ¹³C NMR spectrum of 2-(2-chlorophenyl)-6-methyl-4H-chromen-4-one (3ah)

Figure S70 ¹³C NMR spectrum of 6-chloro-2-(4-methoxyphenyl)-4H-chromen-4-one (3ai)

8.19 7.86 7.84 7.52 7.52 7.51 6.79

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S72 ¹³C NMR spectrum of 6-chloro-2-(4-chlorophenyl)-4H-chromen-4-one (3aj)

Figure S74 ¹H NMR spectrum of 6-chloro-2-(3-chlorophenyl)-4H-chromen-4-one (3ak)

Figure S76 ¹³C NMR spectrum of 6-chloro-2-(2-methylphenyl)-4H-chromen-4-one (3al)

Figure S78 ¹³C NMR spectrum of 6-chloro-2-(2-chlorophenyl)-4H-chromen-4-one (3am)

Figure S80 ¹³C NMR spectrum of 6-Bromo-2-(4-methoxyphenyl)-4H-chromen-4-one (3an)

Figure S82 ¹³C NMR spectrum of 6-bromo-2-(4-chlorophenyl)-4H-chromen-4-one (3ao)

Figure S84 ¹³C NMR spectrum of 6-Bromo-2-(4-bromophenyl)-4H-chromen-4-one (3ap)

Figure S86 ¹³C NMR spectrum of 6-bromo-2-(3-chlorophenyl)-4H-chromen-4-one (3aq)

Figure S88 ¹³C NMR spectrum of 6-Bromo-2-(2-methylphenyl)-4H-chromen-4-one (3ar)

Figure S89 ¹H NMR spectrum of 6-Bromo-2-(2-chlorophenyl-)-4H-chromen-4-one (3as)

Figure S90 ¹³C NMR spectrum of 6-Bromo-2-(2-chlorophenyl-)-4H-chromen-4-one (3as)

Figure S96 ¹³C NMR spectrum of 5,7-Dimethoxyflavone

Figure S98 ¹³C NMR spectrum of Diosmetin

Figure S100 ¹³C NMR spectrum of 7,3',4' -Tri-methylluteolin

Figure S102 ¹³C NMR spectrum of 5,7,3',4'-Tetramethoxyflavone

Figure S104 ¹³C NMR spectrum of 1,1'-sulfinylbisbenzene

Figure S106 ¹³C NMR spectrum of 1,3,3-triphenylprop-2-en-1-one

References

- Dutta, U.; Maity, S.; Kancherla, R.; Maiti, D., Aerobic oxynitration of alkynes with ^tBuONO and TEMPO. Organic Letters 2014, 16, 6302-6305.
- 2 Liu, J.; Song, W.; Yue, Y.; et al, Pd(OAc)₂/S=PPh₃ accelerated activation of gem-dichloroalkenes for the construction of 3-arylchromones. *Chem. Commun.* 2015, **51**, 17576-17579.
- 3 Khoobi, M.; Alipour, M.; Shafiee, A.; et al, A facile route to flavone and neoflavone backbones via a regioselective palladium catalyzed oxidative Heck reaction. *Chem. Commun.* 2012, **48**, 2985-2987.
- 4 Golshani, M.; Khoobi, M.; Ariafard, A.; et al, A Transition-Metal-Free Fast Track to Flavones and 3-Arylcoumarins. *Chem. Commun.* 2017, **53**, 10676-10679.
- 5 Rai, V. K.; Verma, F.; Sahu, G. P.; et al, One-Pot Allan–Robinson/Friedländer Route to Chromen-/Quinolin-4-ones through the Domino Acetylative Cyclisation of 2-Hydroxy-/2-Aminobenzaldehydes. *Eur. J. Org. Chem.*2018, **2018**, 537-544.
- 6 Banerjee, D.; Kayal, U.; Maiti, G. An Efficient Oxidative Conversion of 2-Aryl-2H-chromenes to the Corresponding Flavones by tert-Butylhydroperoxide and Copper Bromide. *Tetrahedron Lett.* 2016, **57**, 1667-1671.
- Soto, M.; Soengas, R. G.; Silva, A.; et al, Temperature Controlled Stereodivergent Synthesis of 2, 2' Biflavanones Promoted by Samarium Diiodide. *Chemistry A European Journal*. 2019, 25, 13104-13108.
- 8 Tang, L. J.; Zhang, S. F.; Yang, J. Z.; et al, synthesis of ring-a hydroxulated flavones by sodium hydroxidecatalyzed cyclization of 1,3-diketones in water. *Org. Prep. Proced. Int.* 2004, *36*, 453-457.
- 9 McGarry, L. W.; Detty, M. R., Synthesis of highly functionalized flavones and chromones using cycloacylation reactions and C-3 functionalization. A total synthesis of hormothamnione. *J. Org. Chem.* 1990, **55**, 4349-4356.
- 10 Singh, S.; Nerella, S.; Pabbaraja, S.; et al, Access to 2-Alkyl/Aryl-4-(1H)-Quinolones via Orthogonal "NH₃" Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Org. Lett. 2020, 22, 1575-1579.
- 11 Yoshida, M.; Fujino, Y.; Doi, T., Synthesis of γ-benzopyranone by TfOH-promoted regioselective cyclization of o-alkynoylphenols. *Org. Lett.* 2011, **13**, 4526-4529.
- 12 Yang, W.; Jo, J.; Oh, H.; et al, Peptoid Helix Displaying Flavone and Porphyrin: Synthesis and Intramolecular Energy Transfer. J. Org. Chem. 2020, **85**, 1392-1400.
- 13 Dekermendjian, K.; Kahnberg, P.; Witt, M.; et al, Structure–Activity Relationships and Molecular Modeling Analysis of Flavonoids Binding to the Benzodiazepine Site of the Rat Brain GABAA Receptor Complex. J. Med. Chem. 1999, **42**, 4343-4350.
- 14 Adam, W.; Golsch, D.; Patonay, T.; et al, Epoxidation of flavones by dimethyldioxirane. J. Org. Chem. 1991, 56, 7292-7297.
- 15 Karim, N.; Khan, I.; Abdelhalim, A.; et al, Involvement of selective GABA-A receptor subtypes in amelioration of cisplatin-induced neuropathic pain by 2'-chloro-6-methyl flavone (2'-Cl-6MF). *Naunyn-Schmiedeberg's Archives of Pharmacology*. 2021, **394**, 929-940.
- 16 Zhao, J.; Zhao, Y.; Fu, H., Transition-Metal-Free Intramolecular Ullmann-Type O-Arylation: Synthesis of Chromone Derivatives. *Angewandte Chemie International Edition*. 2021, **50**, 3769-3773.
- 17 Ono, M.; Yoshida, N.; Nakayama, M., Radioiodinated Flavones for in Vivo Imaging of β-Amyloid Plaques in the Brain. *J. Med. Chem.* 2005, **48**, 7253-7260.
- 18 Fitzmaurice, R. J.; Derek, N.; Caddick, S., Microwave enhanced palladium catalysed coupling reactions: A diversity-oriented synthesis approach to functionalised flavones. *Chem. Commun.* 2006, 46, 4814-4816.
- 19 Seijas, J. A.; Vázquez-Tato, M. P.; Carballido-Reboredo, R., Solvent-Free Synthesis of Functionalized Flavones under Microwave Irradiation. J. Org. Chem. 2005, **70**, 2855-2858.
- 20 Sipos, Z.; Kónya, K.; Synthesis of benzopyran-fused flavone derivatives via microwave-assisted intramolecular C-H activation. *Synthesis.* 2018, **50**, 1610-1620.
- 21 Rao, Y. K.; Fang, S. H.; Tzeng, Y. M. Synthesis, growth inhibition, and cell cycle evaluations of novel flavonoid derivatives. *Bioorg. Med. Chem.* 2005, **13**, 6850.
- 22 Ren, Y.; Acuña, U. M.; Jiménez, F.; et al, Cytotoxic and NF-κB inhibitory sesquiterpene lactones from Piptocoma rufescens. *Tetrahedron*. 2012, **68**, 2671-2678.
- 23 Tang, J.; Li, H.-L.; Li, Y.-L.; Zhang, W. D. et al, Flavonoids from rhizomes of Veratrum dahuricum. *Chem. Nat. Compd.* 2007, **43**, 696–697.
- 24 Yang, Z.; Xu, W.; Wu, Q.; Xu, J. Aminoxidation of Arenethiols to N-Chloro-N-sulfonyl Sulfinamides. J. Org. Chem. 2016, 81, 3051–3057.
- 25 Tanaka, S.; Kunisawa, T.; Hattori, T.; et al, Acylation of Alkenes with the Aid of AlCl₃ and 2,6-Dibromopyridine. *Org. Lett.* 2019, **21**, 8509-8513.