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S1. The Sigma Profile 

This section briefly examines the concept of the sigma profile (σ-profile) and summarizes the 

database developed by Mullins et al.,1 which was used throughout this work. Although some of the 

properties of the σ-profile are illustrated in this section, a complete and detailed description of the 

COSMO and COSMO-RS theories is beyond the scope of this work and the interested reader is 

directed to seminal works in the field.2,3 

S1.1 Sigma Profiles as Molecular Descriptors 

A σ-profile is an unnormalized histogram of the screened surface charge of a molecule. It is defined 

as:2,3 

𝜎-𝑃𝑟𝑜𝑓𝑖𝑙𝑒 = 𝑃(𝜎) ∙ 𝐴 =
𝑛𝑖(𝜎)

𝑛
∙ 𝐴        (S1) 

where 𝑛𝑖(𝜎) is the number of area segments with screened charge 𝜎, 𝑛 is the total number of area 

segments of the molecule, and 𝐴 is the total area of the molecule. Some confusion arises in the 

literature due to the term σ-profile being used interchangeably to mean either the normalized 

probability distribution (𝑃(𝜎) =
𝑛𝑖(𝜎)

𝑛
) or the unnormalized histogram (𝑃(𝜎) ∙ 𝐴). Throughout this 

work, the term σ-profile always refers to the unnormalized histogram (𝑃(𝜎) ∙ 𝐴). 

The screened charges mentioned in the previous paragraph are calculated using quantum chemistry 

methods, in particular density-functional theory (DFT). Briefly, a cavity representing the surface of a 

molecule is constructed and embedded in a continuum solvent with infinite permittivity (COSMO 

solvation model). The geometry of this molecule is then optimized and, at each step, the screened 

charge of each area segment is computed. Because the molecule is optimized in a continuum 

solvent, rather than vacuum, its σ-profile is a more faithful representation of its geometry, polarity, 

and potential for non-covalent interactions in condensed phases. 

In the main text of this work, some claims were made regarding the advantages of σ-profiles as 

molecular descriptors in deep learning. These claims are now examined in more detail. To illustrate 

the type of chemical information encoded in σ-profiles, the σ-profiles of ethane, acetaldehyde, and 

ethanol, taken from the Mullins et al.1, are depicted in Figure S1. Note that the three compounds 

form a series with increasing polarity but similar structural backbones. Also note that P(σ)∙A values 

located at σ values lower than -0.0082 e/Å2 are usually regarded as the positive polarity of the 

molecule, whereas those located at σ values larger than 0.0082 e/Å2 represent the negative polarity 

of the molecule.2,4 Consequently, P(σ)∙A values for σ values located between -0.0082 and 0.0082 

e/Å2 are representative of the apolar surface of the molecule. 
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Figure S1. Chemical structures (left) and σ-profiles (right) of ethane (green, full line), acetaldehyde (yellow, 

dashed line), and ethanol (blue, dotted line). Vertical dashed lines represent σ = -0.0082 e/Å2 and σ = 0.0082 

e/Å2. Data taken from Mullins et al.1 

The σ-profile of ethane, being a fully apolar molecule, is located at σ values around 0 e/Å. Going 

from ethane to acetaldehyde, which represents the replacement of one proton by an oxygen, a new 

σ-profile region arises for σ values larger than 0.0082 e/Å2. This is to be expected, since the oxygen 

adds a significant negatively charged surface area (or, in other words, a positive screened charge) to 

the molecule. Perhaps more interesting is the deviation of the main apolar peak, which for ethane is 

located around a σ value of 0 e/Å while for acetaldehyde is located around -0.006 e/Å. This is the 

result of electron density asymmetry in the carbon-oxygen double bond; because oxygen is more 

electronegative than carbon, a dipole is formed due to electron transfer, with the carbon becoming 

slightly more positive than its ethane counterpart. Finally, a new peak in the positive area of the 

molecule (σ < -0.0082 e/Å2) arises for ethanol, as expected, while the apolar peak is located at a 

position intermediate of that of ethane and acetaldehyde. Note that the oxygen peak is located at a 

larger σ value, indicating a more pronounced negative polarity, which is due to a pronounced 

electron density transfer across the O-H bond. 

The previous paragraph illustrates some of the chemical properties encoded within the σ-profile, 

including subtle effects such as electron density asymmetries. Because of this, the σ-profile captures 

quite well the polarity of each local substructure of the molecule, which is the reason behind its high 

performance in describing non-covalent interactions. Having demonstrated the type of chemical 

information captured by the σ-profile, its usefulness with regards to a fixed input size for machine 

learning methodologies is now discussed. Figure S2 depicts the σ-profiles, taken from the Mullins et 

al.,1 of three alkanes with different size: decane (10 carbons), pentadecane (15 carbons), and icosane 

(20 carbons). 
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Figure S2. Sigma profiles of decane (green, full line, n=8), pentadecane (yellow, dashed line, n=13), and icosane 

(blue, dotted line, n=18). The generical chemical structure of these alkanes is provided as inset. Vertical dashed 

lines represent σ = -0.0082 e/Å2 and σ = 0.0082 e/Å2.Data taken from Mullins et al.1 

Figure S2 shows that the main difference between the σ-profiles of decane, pentadecane, and 

icosane is the size of their apolar peak (the σ-profile peak around a σ value of 0 e/Å). This is quite 

important for machine learning methodologies. The size of most of the molecular descriptors 

mentioned in the main text (SMILES and SELFIES strings, fingerprints, graph representations, etc.) 

increases with the size of the molecule.5 Due to the inherent architecture of neural networks (and 

other machine learning methodologies), the size of their input must be fixed. Thus, if the size of the 

molecular descriptor increases with increasing size of the molecule, the neural network input size 

must be fixed and equal to the largest molecule available. However, if the σ-profile is used as a 

feature set in deep learning, the size constraint of this input is no longer the structural size of the 

molecule, as this is captured by the value of the σ-profile at each σ value. In other words, because 

the screened charges of virtually all neutral molecules are contained in the range between σ = -0.025 

e/Å2 and σ = 0.025 e/Å2, the size of a σ-profile input to a neural network depends only on the 

resolution chosen for the σ-profile (i.e., number of points selected from the σ-profile plot). 

S1.2 Sigma Profile Database 

All σ-profiles used in this work were obtained from the database developed by Mullins et al.1 This 

database contains the σ-profiles for 1432 different compounds, including, among others, alkanes, 

alkenes, alkynes, alcohols, ketones, amines, carboxylic acids, esters, aromatics, and halogenated 

compounds. While most of the database consists of organic compounds, some inorganic acids, 

bases, and gases are also included, as well as water. In their work, Mullins et al.1 computed all σ-

profiles using the software package DMoL. In particular, DFT was used with the DNP v4.0.0 basis set, 

GGA/VWN−BP functional, and the COSMO continuum solvent model with infinite permittivity. This 

procedure can be carried out, at present, using fully open-source software. 
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The data contained in the Mullins et al.1 database was read using an in-house Python script and 

converted into a single csv file, which is included in the GitHub repository associated with this work. 

This Python script calculates the molar mass of each compound and validates its database entry by 

cross-checking with the Chemical Identifier Resolver (CIR) database, through its Python wrapper 

(CIRpy).6 All changes to the original database were registered and are listed in the GitHub repository. 

In particular, the following typos were identified: 

 Index 78: CAS number changed from “4390-04-09 00:00:00” to “4390-04-9” 

 Index 158: CAS number changed from “6094-06-2” to “6094-02-6” 

 Index 162: CAS number changed from “7642-10-06 00:00:00” to “7642-10-6” 

 Index 426: CAS number changed from “15798-64-8” to “4170-30-3” 

 Index 1000: CAS number changed from “288761” to “2690-08-6” 

 Index 1057: CAS number changed from “136911” to “2274-11-5” 

 Index 1077: CAS number changed from “2148878” to “7783-06-4” 

 Index 1080: CAS number changed from “2125683” to “7719-12-2” 

 Index 1106: CAS number changed from “2125597” to “7719-09-7” 

 Index 1240: CAS number changed from “2998-08-05 00:00:00” to “2998-08-5” 

 Index 1259: CAS number changed from “4445-07-02 00:00:00” to “4445-07-2” 

 Index 1692: CAS number changed from “91352” to “2150-02-9” 

Each σ-profile extracted from the database developed by Mullins et al.1 is composed of 51 data 

points. These represent the σ-profile values at 51 different σ values, from σ = -0.025 e/Å2 to σ = 

0.025 e/Å2, in intervals of 0.001 e/Å2. All 51 σ-profile values were used as the input for the 

convolutional neural networks developed in this work. This is illustrated in Figure S3 for three 

assorted compounds (6-aminohexanol, chlorosulfonic acid, and metylamine). 

 

Figure S3. Sigma profiles of 6-aminohexanol (green diamonds), chlorosulfonic acid (yellow triangles), and 

methylamine (blue circles), highlighting the 51 data points of each σ-profile, which are used in this work as the 

input to convolutional neural networks. Data taken from Mullins et al.1 
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As usual in the machine learning literature, the input data to a neural network should be normalized, 

as it enhances the convergence smoothness of the training of the network and allows for the use of 

advanced fitting techniques such as regularization. This means that the σ-profile data at each σ value 

must be normalized. However, these data do not follow a typical normal distribution, as illustrated in 

Figure S4. 

 
Figure S4. Histograms, in the form of probability density functions (PDF), for the σ-profile at σ values of -0.010 

e/Å2 (top left corner), -0.001 e/Å2 (top right corner), +0.001 e/Å2 (bottom left corner), and +0.010 e/Å2 (bottom 

right corner). Lines represent fitted log-normal (black, full) or normal (red, dashed) probability distributions. 

Figure S4 illustrates the distribution of the σ-profile at different σ values, showing that the data 

follows more closely log-normal probability distributions than normal distributions. This means that 

the logarithm of the data, not the data itself, follows a normal distribution. Thus, the data are 

normalized in this work using log-standardization: 

𝑝(𝜎)𝐴′ =
ln[𝑝(𝜎)𝐴+10−3]−〈ln[𝑝(𝜎)𝐴+10−3]〉

𝑠ln[𝑝(𝜎)𝐴+10−3]

        (S2) 

where 𝑝(𝜎)𝐴′ represents a normalized σ-profile series for a specific σ, whereas 〈ln[𝑝(𝜎)𝐴 + 10−3]〉 

and 𝑠ln[𝑝(𝜎)𝐴+10−3] are the average and standard deviation of the ln[𝑝(𝜎)𝐴 + 10−3] data for a 
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specific σ value. Note that the σ-profile can take the value of zero at any σ value; as such, a small 

buffer (10-3) is added to allow for the logarithmization of the data. The data depicted in Figure S4 are 

now presented in Figure S5 after being normalized using Equation S2. 

 
Figure S5. Histograms, in the form of probability density functions (PDF), for the normalized σ-profiles, as per 

Equation S2, at σ values of -0.010 e/Å2 (top left corner), -0.001 e/Å2 (top right corner), +0.001 e/Å2 (bottom left 

corner), and +0.010 e/Å2 (bottom right corner). Red dashed lines represent fitted standard probability 

distributions. 

As Figure S5 clearly shows, the normalization procedure represented by Equation S2 works well for 

σ-profile series at small σ values but not for larger σ values. However, this normalization procedure 

is still more accurate than standardization alone and was, thus, employed throughout this work. 
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S2. Physicochemical Properties 

This section examines the physicochemical properties used in this work, particularly their 

distributions and normalization procedures. The properties studied in this work are: 

- Molar mass 

- Normal boiling temperature 

- Vapor pressure at 25 ºC 

- Density (at 20 ºC or temperature-dependent) 

- Refractive index at wavelength 589 nm (at 20 ºC or temperature-dependent) 

- Aqueous solubility (at 25 ºC or temperature-dependent) 

Except for molar mass, which was calculated from the molecular structure of each compound, the 

data for all properties were taken, when available, from the CRC Handbook of Chemistry and Physics 

(Internet version).7 Note that density, refractive index, and aqueous solubility are available at 

different temperatures. In a first instance of this work, these three properties were selected at a 

specific temperature (20 ºC and 25 ºC). Then, for these three properties, the entire dataset was 

used, and temperature was explored as a feature in the neural networks developed in this work. 

S2.1 No Temperature Input 

The properties listed above were chosen to demonstrate the ability of σ-profiles to encode the 

necessary information to accurately fit and predict several different material properties. In 

particular, molar mass was chosen because i) it is available for all compounds included in the σ-

profile database and ii) it shows that σ-profiles also encode molecule structure information that can 

be retrieved (this is not a trivial result, given how the position of different polarity peaks changes 

with the local structural environment of the molecule, as demonstrated in Figure S2). The sizes and 

data ranges of the datasets for each fixed-temperature property are reported in Table S1. The 

datasets are depicted as histograms in Figure S6, in a similar fashion to the analysis performed in the 

previous section for the σ-profile dataset. 

Table S1. Summary (size and range) of the datasets used in this work to train convolutional neural networks (no 

temperature input). 

Property Size Range 

Molar Mass 1432 2 – 447 g/mol 

Normal Boiling Temperature 1208 -192 – 463 ºC 

Vapor Pressure (25 ºC) 594 10-6 – 103 kPa 

Density (20 ºC) 711 0.6 – 3.3 g/mL 

Refractive Index (20 ºC) 834 1.26 – 1.87 

Aqueous Solubility (25 ºC) 327 10-7 - 104 g/kg 
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Figure S6. Histograms, in the form of probability density functions (PDF), for the temperature-independent 

properties studied in this work, namely molar mass (a), normal boiling temperature (b), vapor pressure at 25 ºC 

(c), density at 20 ºC (d), refractive index at 20 ºC (e), and aqueous solubility at 25 ºC (f). Lines represent fitted 

log-normal (black, full) or normal (red, dashed) probability distributions. 

Besides summarizing the structure of the datasets available, Figure S6 sheds light on the best 

normalization procedures for each property. Because these properties are well described by normal 

distributions, with the exceptions of vapor pressure and aqueous solubility, they were normalized 

using standardization: 

𝑋′ =
𝑋−〈𝑋〉

𝑠𝑋
           (S3) 

where 𝑋 and 𝑋′ represent a generic property and its normalized version, respectively, while 〈𝑋〉 and 

𝑠𝑋 are the average and standard deviation of the dataset of 𝑋. Because vapor pressure and aqueous 

solubility are more accurately described by a log-normal probability distribution, they were 

normalized using log-standardization, akin to the procedure carried out for the σ-profile datasets but 

without using a non-zero buffer: 

𝑋′ =
ln(𝑋)−〈ln(𝑋)〉

𝑠ln(𝑋)
          (S4) 

where 〈ln(𝑋)〉 and 𝑠ln(𝑋) represent the average and standard deviation of the logarithmized dataset 

of 𝑋. The normalized data using these procedures (Equations S3 and S4) are depicted in Figure S7. 
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Figure S7. Histograms, in the form of probability density functions (PDF), for the normalized, temperature-

independent properties studied in this work, namely molar mass (a), normal boiling temperature (b), vapor 

pressure at 25 ºC (c), density at 20 ºC (d), refractive index at 20 ºC (e), and aqueous solubility at 25 ºC (f). Red 

dashed lines represent fitted standard probability distributions. 

Figure S7 shows that the normalization methods used on the datasets available are appropriate, as 

they are all well described by the standard probability distribution. It is particularly interesting to 

note the diversity of vapor pressure and aqueous solubility data, which was not as easy to see in 

Figure S6 given the fact that their values span across several orders of magnitude. 

S2.2 Temperature as an Additional Feature 

As mentioned in the previous section, some physicochemical properties (density, refractive index, 

and aqueous solubility) were also studied at all temperatures available in the CRC Handbook of 

Chemistry and Physics (Internet version).7 The data are summarized in Table S2 and Figure S8, while 

the results of the normalization procedure are depicted in Figure S9. Not surprisingly, the data 

depicted in Figure S8 follow the same pattern as the data in Figure S6. 

Table S2. Summary (size and ranges) of the datasets used in this work to train convolutional neural networks 

using temperature as an additional feature. 

Property Size Property Range Temperature Range 

Density 1146 0.4 – 3.3 g/mL -200 – 240 ºC 

Refractive Index 1053 1.17 – 1.87 -100 – 134 ºC 

Aqueous Solubility 518 10-7 – 104 g/kg -3 – 40 ºC 
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Figure S8. Histograms, in the form of probability density functions (PDF), for the temperature-dependent 

properties studied in this work and their corresponding temperatures, namely density (a and b), refractive index 

(c and d), and aqueous solubility (e and f). Lines represent fitted log-normal (black, full) or normal (red, dashed) 

probability distributions. 

 
Figure S9. Histograms, in the form of probability density functions (PDF), for the normalized, temperature-

dependent properties studied in this work and their corresponding normalized temperatures, namely density (a 

and b), refractive index (c and d), and aqueous solubility (e and f). Red dashed lines represent fitted standard 

probability distributions.  
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S3. Computational Details 

This section provides details regarding the deep learning methodologies used throughout this work. 

The Python code mentioned in this section can be accessed through the GitHub repository. The 

Keras module of the open source Python package TensorFlow (V. 2.6.0)8 is the main machine 

learning engine used in this work. 

S3.1 Neural Network Architecture 

As mentioned in the main text, given the relatively small size of the datasets used in this work, a 

typical densely connected deep neural network could not be used, as this would lead to neural 

networks with an enormous number of fitting parameters. Thus, convolutional neural networks 

were used instead. Convolution is a technique useful for large inputs where data are somewhat 

ordered, such as temporal plots, where the values around a given time instance are highly 

correlated, or images, where pixels in each region of the image are also highly correlated.9 The 

generic architecture of each convolutional neural network (CNN) developed is depicted in Figure 1 of 

the main text. Note that a different CNN was developed to fit and predict each different property. 

This subsection provides details about their general architecture. 

The main input of each CNN is a 1-dimensional vector composed of 51 entries (the 51 σ-profile data 

points of each molecule). This input is passed through two sets of convolution (TensorFlow module 

Conv1D) and pooling layers (TensorFlow module AveragePooling1D or MaxPool1D). The number of 

filters, kernel size, and number of strides in each convolution layer are hyperparameters to be tuned, 

as will be discussed in section S3.3. The pool size of the pooling layers also is set as a 

hyperparameter to be tuned and the number of strides is set to be the same as the pool size. In both 

convolution and pooling layers, padding is allowed (TensorFlow keyword same). Thus, if the ratio 

between the input size of the layer and its kernel or pool size is not an integer, zeros are evenly 

added at the beginning and end of the input until this ratio becomes a whole number. After the two 

sets of convolution and pooling layers, the output is flattened and passed through two densely 

connected layers (TensorFlow module Dense). The number of nodes on each of these layers is a 

hyperparameter to be tuned. 

The activation function of all nodes, be it in a convolution or dense layer, is set as a hyperparameter 

to be tuned. Because the work here developed is regression deep learning, rather than classification, 

two types of activation functions were examined: ReLU and Swish. Swish is a novel activation 

function that mitigates some of the well-known disadvantages of the ReLU activation function, 

outperforming it in most deep learning methodologies.10 
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S3.2 Neural Network Fitting 

To ensure an efficient fitting of the networks and to maximize their generalization capability, several 

techniques were used, namely stratified data splitting, regularization, and early stopping, as detailed 

below. 

The dataset of each property was initially split into a fitting dataset (90%) and a testing dataset 

(10%). This testing dataset was never used in any of the tuning or fitting procedures described 

below. Instead, it was employed to independently evaluate the final model obtained for each 

property. The fitting dataset of each property was further split into training (80%) and validation 

(20%) sets using stratified splitting. The stratification was based on the value of the labels. In each 

data split performed, the labels of the dataset were divided into equidistant bins. The number of 

bins was selected as the minimum number which ensured that each bin possessed at least five data 

points. There were no restrictions regarding the maximum number of data points per bin. Finally, 

the splitting was performed such that the training/validation ratio for each bin corresponds 

approximately to the same overall ratio (80/20). This procedure ensures that data lying in the edges 

of each dataset range is still well represented in the validation set. 

L2 regularization was employed on all layers that contain trainable parameters (convolution and 

dense layers) for both the weights and biases. The lambda parameter of the regularization was left 

as a hyperparameter to be tuned. The use of L2 regularization is a great asset to prevent overfitting 

of the neural networks and to maximize their generalization capability. In particular, L2 

regularization, as opposed to L1 regularization, is better suited to feature sets that present a high 

degree of multicollinearity (local correlation), such as those used in this work (σ-profiles). 

The Adam optimizer11 with a mean-squared-error loss function was used to fit all neural networks 

developed in this work. The learning rate and its exponential decay rates (β1 and β2) were left as 

hyperparameters to be tuned. Each neural network was fitted for an arbitrary number of epochs, 

and early-stopping was used with a patience of 500 epochs (number of epochs with no improvement 

after which training is stopped) to halt the fitting when the mean-absolute-error of the validation set 

stopped improving. Note that the batch size during fitting was also left as an hyperparameter to be 

tuned. Finally, the initial values of the biases were set to zero and the initial guesses for all weights 

of each CNN were obtained using the methodology developed by He et al.12 (TensorFlow keyword 

HeUniform), which is particularly efficient at initializing the weights of convolutional neural 

networks. 
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S3.3 Hyperparameter Optimization 

The hyperparameters of the convolutional neural networks to be optimized, which were mentioned 

throughout the previous two sections, are listed in Table S3. The hyperparameter tuning was 

performed using the open source Python package Sherpa (V. 1.0.6).13 Because of the tremendous 

number of possible hyperparameter combinations, which renders any attempt to test each 

combination computationally infeasible, a two-fold tuning strategy was adopted by first using 

Bayesian optimization and then a local search algorithm, as will be detailed below. Regardless of the 

tuning algorithm, the objective function (𝑓) was defined as follows: 

{
𝑓 = − ln(𝑅2) , 𝑖𝑓 𝑅2 > 0.1 𝑎𝑛𝑑 𝑁 <

𝑁𝐷

3

𝑓 = − ln(0.1) , 𝑖𝑓 𝑅2 ≤ 0.1 𝑜𝑟 𝑁 >
𝑁𝐷

3
   

         (S5) 

where 𝑅2 is the coefficient of determination of the validation set, 𝑁 is the total number of trainable 

parameters of the CNN (not to be confused with hyperparameters), and 𝑁𝐷  is total number of data 

points in the training set. Note that this objective function greatly limits the number of trainable 

parameters of the CNN, which is a technique here employed to prevent overfitting and maximize 

generalization capability. 

Table S3. List of the hyperparameters, segmented into architecture and fitting hyperparameters, optimized for 

each convolutional neural network developed in this work, along with their possible values. 

Hyperparameter Range 

Architecture Hyperparameters 

Activation Function ReLU | Swish 

Conv. Layer 1: Number of Filters 1 – 10 

Conv. Layer 1: Kernel Size 1 – 10 

Conv. Layer 1: Number of Strides 1 – 10 

Pooling Layer 1: Type Average | Maximum 

Pooling Layer 1: Pool Size 1 – 10 

Conv. Layer 2: Number of Filters 0 – 10a) 

Conv. Layer 2: Kernel Size 1 – 10 

Conv. Layer 2: Number of Strides 1 – 10 

Pooling Layer 2: Type Average | Maximum 

Pooling Layer 2: Pool Size 1 – 10 

Dense Layer 1: Number of Nodes 1 – 10 

Dense Layer 2: Number of Nodes 0 – 10b) 

Fitting Hyperparameters 

Adam Optimizer: Learning Rate 10-5 – 10-1 

Adam Optimizer: β1 0.9 – 0.999 

Adam Optimizer: β2 0.9 – 0.9999 

L2 Regularization: λ 10-5 – 10-1 

Batch Size 8 – 64 
a) If the number of filters is zero, the 2nd convolution layer is not used. 
b) If the number of nodes is zero, the 2nd dense layer is not used. 
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As stated above, the first stage of the hyperparameter tuning is Bayesian optimization. During this 

step, the fitting hyperparameters were fixed (a learning rate of 10-3, β1=0.99, β2=0.999, λ=10-3, and a 

batch size of 16) and the architecture hyperparameters were tuned. A schematic representation of 

this procedure is depicted in Figure S10. 

 

Figure S10. Schematic representation of the Bayesian optimization procedure employed to tune the 

architecture hyperparameters of the convolutional neural networks developed in this work. 

The Bayesian optimization procedure depicted in Figure S10 utilizes roughly 2000 trials (2000 

different hyperparameter combinations) and repeats each trial three times. Because this is an initial 

hyperparameter tuning, no effort is made to control the inherent randomness of the process. That 

is, the splitting of the fitting dataset into training and validation sets as well as the weight 

initialization were performed at random for each trial repetition. The objective function returned to 

the algorithm is the average of the two best trials. The Bayesian optimization, as implemented in the 

Sherpa Python package,13 employs a Gaussian process model and an expected improvement 

acquisition function. Finally, to reduce computation time, the algorithm was run using parallel 

computation, and up to 30 trials are run in parallel with local penalization. 

A Local Search algorithm was employed after the initial Bayesian optimization step. This algorithm 

takes a configuration seed (a hyperparameter set that has been pre-optimized) and makes small, 

stepwise changes to its parameters, trying to find a slightly different configuration that performs 

better. This algorithm was first applied to the architecture hyperparameter space using the best 

Bayesian optimization hyperparameter set as the configuration seed. Then, the results of this first 

iteration were used as the next configuration seed, and the fitting hyperparameters were tuned. This 

process was repeated back and forth five times, as illustrated in Figure S11. During this entire 

process, all random processes were fixed using seeds. 
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Figure S11. Schematic representation of the Local Search optimization procedure employed to tune the 

architecture hyperparameters of the convolutional neural networks developed in this work. 

Finally, once the best architecture and fitting parameters were found, the random seed was allowed 

to change, and several attempts were performed to fit the final network. 
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S4. Additional Results 

This section presents the intermediate results of this work, including the results of the 

hyperparameter tuning and the performance of the convolutional neural networks. The results are 

divided between those relating to the temperature-independent datasets and those relating to the 

networks where temperature is used as a feature. 

S4.1 No Temperature Input 

The results of the Bayesian optimization (the first step in the hyperparameter optimization) for the 

temperature independent datasets are reported in Figure S12. 

 
Figure S12. Convergence plots of the Bayesian optimization (Metric vs Trial) performed to optimize the 

hyperparameters of the convolutional neural networks developed for the temperature-independent datasets 

studied in this work, namely molar mass (a), normal boiling temperature (b), vapor pressure at 25 ºC (c), 

density at 20 ºC (d), refractive index at 20 ºC (e), and aqueous solubility at 25 ºC (f). 

As explained in section S3.3, the best result of the Bayesian optimization for each dataset was used 

as the initial configuration seed for the Local Search algorithm. The results of this hyperparameter 

tuning step are reported in Figure S13. 
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Figure S13. Convergence plots of the Local Search Algorithm (Metric vs Trial) performed to optimize the 

hyperparameters of the convolutional neural networks developed for the temperature-independent datasets 

studied in this work, namely molar mass (a), normal boiling temperature (b), vapor pressure at 25 ºC (c), 

density at 20 ºC (d), refractive index at 20 ºC (e), and aqueous solubility at 25 ºC (f). The Architecture Local 

Search and Fitting Local Search steps are highlighted in black and red, respectively. 

The best hyperparameter set, obtained using the aforementioned procedures, are reported in 

Table S4 for each CNN developed. The performances of each CNN are depicted in Figure 2 of the 

main text and Figure S14. Note that the performance of the CNN for density in the testing set is 

particularly biased due to an outlier. If this outlier is removed, the coefficient of determination 

changes from 0.68 to 0.79 and the mean absolute error changes from 0.09 g/mL to 0.07. 

 

Figure S14. Performance (predicted property vs experimental property) of the convolutional neural networks 

developed in this work for density at 20 ºC (left), refractive index at 20 ºC (middle), and aqueous solubility at 25 

ºC (right). Black, red, and blue colors represent the results for the training, validation, and testing sets, 

respectively. The coefficient of determination (R2) and mean absolute error (MAE) are also included. 
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Table S4. List of the final optimized hyperparameters, segmented into architecture and fitting 

hyperparameters, of each convolutional neural network developed in this work for the temperature-

independent datasets studied in this work, namely molar mass (a), normal boiling temperature (b), vapor 

pressure at 25 ºC (c), density at 20 ºC (d), refractive index at 20 ºC (e), and aqueous solubility at 25 ºC (f). 

Hyperparameter a) b) c) d) e) f) 

Number of Trainable Parameters 175 359 87 152 145 63 

Architecture Hyperparameters 

Activation Function Swish Swish Swish Swish Swish Swish 

Conv. Layer 1: Number of Filters 7 7 2 10 1 1 

Conv. Layer 1: Kernel Size 8 7 8 4 3 10 

Conv. Layer 1: Number of Strides 4 5 2 3 4 5 

Pooling Layer 1: Type avg avg max avg max avg 

Pooling Layer 1: Pool Size 2 2 5 8 1 8 

Conv. Layer 2: Number of Filters 2 0b) 4 4 4 3 

Conv. Layer 2: Kernel Size 8 ───b) 7 10 5 8 

Conv. Layer 2: Number of Strides 1 ───b) 4 6 1 4 

Pooling Layer 2: Type avg ───b) avg avg avg avg 

Pooling Layer 2: Pool Size 8 ───b) 10 9 10 5 

Dense Layer 1: Number of Nodes 3 6 4 3 6 2 

Dense Layer 2: Number of Nodes 0a) 4 0a) 1 4 4 

Fitting Hyperparameters 

Adam Optimizer: Learning Rate 0.001 0.00144 0.0008 0.0012 0.00096 0.00077 

Adam Optimizer: β1 0.99 0.99 0.99 0.99 0.99 0.9 

Adam Optimizer: β2 0.999 0.999 0.9 0.999 0.999 0.9 

L2 Regularization: λ 0.001 0.00096 0.001 0.001 0.001 0.00020 

Batch Size 16 16 8 8 16 8 

a) 2nd dense layer is not used. 
b) 2nd convolution layer is not used. 
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S4.2 Temperature as an Additional Feature 

The results of the Bayesian optimization (the first step in the hyperparameter optimization) for the 

convolutional neural networks that use temperature as an additional input are reported in 

Figure S15. 

 
Figure S15. Convergence plots of the Bayesian optimization (Metric vs Trial) performed to optimize the 

hyperparameters of the convolutional neural networks developed for the temperature-dependent datasets 

studied in this work, namely density (a), refractive index (b), and aqueous solubility (c). 

Akin to the procedure carried out in the previous section, the best result of the Bayesian 

optimization for each dataset was used as the initial configuration seed for the Local Search 

algorithm. The results of this hyperparameter tuning step are reported in Figure S16. 

 

Figure S16. Convergence plots of the Local Search Algorithm (Metric vs Trial) performed to optimize the 

hyperparameters of the convolutional neural networks developed for the temperature-dependent datasets 

studied in this work, namely density (a), refractive index (b), and aqueous solubility (c). The Architecture Local 

Search and Fitting Local Search steps are highlighted in black and red, respectively. 

The best hyperparameter set, obtained using the aforementioned procedures, are reported in 

Table S5 for each CNN developed. 
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Table S5. List of the final optimized hyperparameters, segmented into architecture and fitting 

hyperparameters, of each convolutional neural network developed in this work for the temperature-dependent 

datasets studied in this work, namely density (a), refractive index (b), and aqueous solubility (c). 

Hyperparameter a) b) c) 

Number of Trainable Parameters 273 211 96 

Architecture Hyperparameters 

Activation Function Swish Swish Swish 

Conv. Layer 1: Number of Filters 10 2 3 

Conv. Layer 1: Kernel Size 9 4 4 

Conv. Layer 1: Number of Strides 4 3 3 

Pooling Layer 1: Type avg avg avg 

Pooling Layer 1: Pool Size 9 9 10 

Conv. Layer 2: Number of Filters 4 10 0a) 

Conv. Layer 2: Kernel Size 6 8 ───a) 

Conv. Layer 1: Number of Strides 4 7 ───a) 

Pooling Layer 2: Type avg avg ───a) 

Pooling Layer 2: Pool Size 2 7 ───a) 

Dense Layer 1: Number of Nodes 5 7 4 

Dense Layer 2: Number of Nodes 10 6 0b) 

Fitting Hyperparameters 

Adam Optimizer: Learning Rate 0.0008 0.0012 0.000922  

Adam Optimizer: β1 0.99 0.9 0.99 

Adam Optimizer: β2 0.999 0.999 0.99999 

L2 Regularization: λ 0.001 0.0012 0.002074 

Batch Size 32 16 32 

a) 2nd convolution layer is not used. 
b) 2nd dense layer is not used. 
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