Supporting Information

Palladium-Catalyzed Carboxylative Cyclization of Propargylic Amine with Aryl Iodides, CO₂ and CO at Ambient Pressure

Shuai-Fang Cai^a, Li-Qi Qiu^b, Wen-Bin Huang^b, Hong-Ru Li^{a,b*}, Liang-Nian He^{b*}

^a College of Pharmacy, Nankai University, Tianjin, P. R. China.

^b State Key Laboratory and Institute of Elemento-Organic Chemistry, College of

Chemistry, Nankai University, Tianjin, P. R.

Table of Contents

- 1. General Information
- 2. Synthesis and Characterization of Substrates
- 3. General Procedures and Reaction Optimization
- 4. Control Experiments
- 5. Gram-Scale Experiment
- 6. Characterization of Products
- 7. ¹H and¹³C Spectra of all Products
- 8. X-Ray Crystal Structure of 3aa
- 9. References

1. General Information

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under a carbon dioxide and carbon monoxide atmosphere. All reagents were purchased from Aldrich, Macklin, DB, Across, Alfa Aesar, Heowns and TCI without further purification.

NMR spectra were recorded on ¹H NMR, 400 MHz, ¹³C NMR, 101 MHz, spectrometer in CDCl₃ at ambient temperature and chemical shifts are expressed in parts per million (δ , ppm). Proton chemical shifts are referenced to 7.26 ppm (CDCl₃) and carbon chemical shifts are referenced to 77.0 ppm (CDCl₃). Data reporting uses the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; hept, heptet, and J, coupling constant in Hz. High resolution mass spectra (HRMS) were recorded on a Q-TOF mass spectrometry equipped with Z-spray ionization source. Fourier transform infrared (FT-IR) spectra were recorded on a Bruker Tensor 27 FT-IR spectrophotometer with KBr pellets. X-ray single crystal diffraction was detected with Rigaku 007 Saturn 70. The moles of CO₂ and CO in the balloon were analyzed by gas chromatography (GC, FuLi 9790II) with a TCD detector and capillary column to determine.

2. Synthesis and Characterization of Substrates

General Procedure for the Synthesis of Propargylamines (1a-1l, 5a-5i)¹

$$R^{1}_{NH_{2}} + X \xrightarrow{R^{2}} R^{2} \xrightarrow{0 \circ C \sim r.t.} R^{1}_{H} \xrightarrow{R^{2}} R^{2}_{H}$$

For the preparation of propargyl amines, the propargyl halide (1 equiv.) was added dropwise to the corresponding amine (6 equiv.) at 0 °C. Upon complete addition, the reaction was allowed to warm to room temperature and stirred for 16 h. Then, aqueous 1 M NaOH (4 mL/mmol) and EtOAc (4 mL/mmol) were added and the layers were separated. After extraction of the aqueous layer with EtOAc (2 x 4 mL/mmol), the combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (silica gel, Petrolether/EtOAc).

Procedure for the Synthesis of 1m²

Prop-2-yn-1-amine (1.3 mL, 21 mmol) was dissolved in DCM (50 mL) and the solution was cooled to 0 °C. To this solution triethylamine (7 mL, 50 mmol) and p-toluenesulfonyl chloride (3.8 g, 20 mmol) were added sequentially. Then the mixture was allowed to warm to room temperature and stirred overnight. After that, the reaction mixture was dissolved in Et_2O (200 mL), first washed with a solution of HCl (1M) and then with a satured solution of NH₄Cl. The organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated, leading to 4-methyl-N-(prop-2-yn-1-yl) benzene-1-sulfonamide as a white powder.

Procedure for the Synthesis of 1n^{3,4}

To a solution of 4-Dimethylaminopyridine (DMAP) (37 mg, 0.3 mmol) in CH_2Cl_2 (3 mL), aqueous 3-butyn-2-ol (7.5 M, 1.5 mL, 11.3 mmol), aqueous NaOH (25%, 2 mL) and tosyl chloride (1.90 g, 10 mmol) were successively added at 0 °C, and then the mixture was stirred at rt for 2 h. After addition of H₂O (30 mL), the reaction mixture was extracted with CH_2Cl_2 (30 mL×3). Combined organic layer was washed with H_2O (50 mL×3) and then dried over anhydrous MgSO₄. Evaporation of

the solvent gave the corresponding 3-butyn-2-yl tosylate (1.97 g, 88%), which was used for next step without further purification.

A solution of Cu (OTf)₂ (0.0794 mmol) in 6.0 mL of 1,4-dioxane was cooled to 10 °C and treated with 1.2 mL of benzylamine (11 mmol). After 15 min, a solution of the tosyl alcohol (5 mmol) in 1,4-dioxane (6.0 mL) was slowly added. The reaction mixture was warmed to room temperature, stirred for 3 h, and extracted with 1 N HCl. The aqueous layer was neutralized with NaOH and then extracted with EtOAc. The organic extracts were dried (Na₂SO₄) and concentrated. The resulting greenish oil was purified by column chromatography on SiO₂ (hexanes/EtOAc 8:2) to afford the desired secondary amine as a yellow oil.

Procedure for the Synthesis of 10⁵

To the solution of DMAP (20 mol%, 4 mmol) and 2-methyl-3-butyn-2-ol (1.0 equiv., 20 mmol) in CH_2Cl_2 (40 mL), Et_3N (3.0 equiv., 60 mmol) and Ac_2O (1.0 equiv., 20 mmol) were added, and the mixture was stirred at room temperature for 12 h. Upon completion, the solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂, eluent: CHCl₃) to give 2-methylbut-3-yn-2-yl acetate as a colorless oil.

N-benzyl-2-methylbut-3-yn-2-amine was synthesized according to the procedure of the literature. To the solution of CuCl (20 mol%, 2 mmol) in THF (20 mL), propargyl acetate (1.0 eq., 10 mmol) and benzylamine (2.0 eq., 20 mmol) were added, and the mixture was refluxed for 3 h. After cooling to room temperature, the mixture was diluted with EtOAc and acidified with 2 N HCl. The aqueous layer was then neutralized with 1 N NaOH and extracted three times with CH₂Cl₂. The combined organic layers were washed with brine and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (SiO₂, eluent: EtOAc/ petroleum ether) to give *N*-benzyl-2-methylbut-3-yn-2- amine as a colorless solid.

The characterization data of substrates are in good agreement with literature value 1,2,3,4,5,6,7,8,9,10

N-benzylprop-2-yn-1-amine (1a), pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.24 (m, 5H), 3.87 (s, 2H), 3.41 (s, 2H), 2.25 (s, 1H), 1.49 (s, 1H).¹³C NMR (101 MHz, CDCl₃): 139.4, 128.4, 127.1, 82.0, 71.5, 52.2, 37.3.

H₃C N H

CH₃

N-(3-methylbenzyl) prop-2-yn-1-amine (1b), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.05 (m, 4H), 3.84 (s, 2H), 3.43 (d, *J* = 2.4 Hz, 2H), 2.34 (s, 3H), 2.26 (t, *J* = 2.4 Hz, 1H), 1.60 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): 139.3, 138.1, 129.1, 128.3, 127.9, 125.4, 82.1, 71.5, 52.3, 37.3, 21.3.

N-(2-methylbenzyl) prop-2-yn-1-amine (1c), pale yellow oil, ¹H **NMR** (400 MHz, CDCl₃) δ 7.23 (dd, J = 51.7, 3.3 Hz, 4H), 3.86 (s, 2H), 3.45 (d, J = 2.5 Hz, 2H), 2.37 (s, 3H), 2.26 (t, J = 2.5 Hz, 1H), 1.53 (s, 1H). ¹³C **NMR** (101 MHz, CDCl₃) δ 137.3, 136.6, 130.1, 128.7, 127.2, 82.2, 71.5, 49.9, 37.6, 18.9.

^tBu N-(4-(tert-butyl) benzyl) prop-2-yn-1-amine (1d), yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 4H), 3.85 (s, 2H), 3.43 (s, 2H), 2.26 (s, 1H), 1.80 (s, 1H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 136.2, 128.1, 125.3, 82.0, 71.5, 51.8, 37.3, 34.4, 31.4, 31.3.

H₃CO N-(4-methoxybenzyl) prop-2-yn-1-amine (1e), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 8.1, 2H), 6.86 (d, J = 8.3, 2.0 Hz, 2H), 3.81 (d, J = 8.9 Hz, 5H), 3.40 (s, 2H), 2.26 (t, 1H), 1.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 131.4, 129.5, 113.78, 82.0, 71.4, 55.2, 51.5, 37.1.

F N

F N-(4-fluorobenzyl) prop-2-yn-1-amine (1f), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 8.5, 5.6 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 3.85 (s, 2H), 3.41 (d, J = 2.4 Hz, 2H), 2.26 (t, J = 2.4 Hz, 1H), 1.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 160.8, 135.0, 130.0, 129.9, 115.3, 115.1, 81.9, 71.6, 51.4, 37.2.

CI H N-(4-chlorobenzyl) prop-2-yn-1-amine (1g), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 4H), 3.83 (s, 2H), 3.39 (s, 2H), 2.26 (s, 1H), 1.49

(s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.8, 132.7, 129.6, 128.4, 81.8, 71.7, 51.3, 37.1.

F₃C N-(4-(trifluoromethyl) benzyl) prop-2-yn-1-amine (1i), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.44 (m, 4H), 3.95 (s, 2H), 3.42 (dd, J = 5.9, 2.4 Hz, 2H), 2.28 (q, J = 2.8 Hz, 1H), 1.85 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 129.3, 128.6, 125.4, 125.3, 81.6, 78.4, 73.4, 71.9, 56.5, 51.6, 42.0, 37.3.

Ν́ Η

N-(1-phenylethyl) prop-2-yn-1-amine (1j), pale yellow oil, ¹H **NMR** (400 MHz, CDCl₃) δ 7.38 – 7.21 (m, 5H), 4.01 (q, J = 6.6 Hz, 1H), 3.26 (ddd, J= 77.5, 17.1, 2.3 Hz, 2H), 2.21 (t, J = 2.4 Hz, 1H), 1.65 (s, 1H), 1.36 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 128.5, 127.3, 127.2, 126.9, 82.2, 71.2, 56.3, 35.9, 23.9.

 N-benzhydrylprop-2-yn-1-amine (1k), white solid, ¹H NMR (400

 MHz, CDCl₃) δ 7.59 – 7.24 (m, 10H), 5.17 (s, 1H), 3.43 (s, 2H), 2.32 (s, 1H), 1.95 (s, 1H).

 ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 128.5, 127.4, 127.2, 82.0, 71.6, 65.2, 36.1.

H N-(prop-2-yn-1-yl) butan-1-amine (11), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 3.38 (d, J = 2.4 Hz, 2H), 2.67 – 2.61 (m, 2H), 2.17 (t, J = 2.4 Hz, 1H), 1.43 (dt, J = 14.1, 6.9 Hz, 2H), 1.31 (dd, J = 15.1, 7.2 Hz, 2H), 0.87 (t, J = 7.3Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 82.2, 71.0, 48.3, 38.1, 31.8, 20.3, 13.9. Ts N

^H **4-methyl-N-(prop-2-yn-1-yl) benzenesulfonamide (1m),** white power, ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.12 (s, 1H), 3.82 (d, J = 3.1 Hz, 2H), 2.43 (s, 2H), 2.10 (t, J = 2.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 82.2, 71.0, 48.3, 38.1, 31.8, 20.3, 13.9. ¹³C NMR (101 MHz, CDCl₃)

CH₃

N-benzyl-2-methylbut-3-yn-2-amine (10), white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.29 (m, 5H), 3.91(s, 2H), 2.41 (s, 1H), 1.47 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 104.5, 128.4, 127.0, 88.9, 69.9, 50.0, 48.9, 29.5.

CH₃ N-benzylbut-2-yn-1-amine (5a), colourless oil,¹H NMR (400 MHz, CDCl₃): δ 7.25-7.16 (m, 5H), 3.76 (s, 2H), 3.28 (s, 2H), 1.75 (s, 3H), 1.43 (s, 1H).¹³C NMR (101 MHz, CDCl₃): 139.7, 128.4, 127.0, 79.2, 76.1, 52.5, 37.9, 3.5.

H₃C N H CH₃ N-(4-methylbenzyl) but-2-yn-1-amine (5b), yellow oil, ¹H

NMR (400 MHz, CDCl₃) δ 7.16 (dd, *J* = 40.1, 8.1 Hz, 4H), 3.78 (s, 2H), 3.33 (s, 2H), 2.31 (s, 3H), 1.82 (s, 3H), 1.68 (s, 1H). ¹³C **NMR** (101 MHz, CDCl₃): 136.4, 128.9, 128.1, 78.9, 52.0, 37.6, 20.9, 3.3.

^H₃CO ^{CH3} N-(4-methoxybenzyl) but-2-yn-1-amine (5c), yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 3.78 (s, 5H), 3.35 (s, 2H), 1.83 (s, 3H), 1.70 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): 158.6, 131.7, 129.5, 113.7, 79.0, 55.1, 51.8, 37.6, 3.4.

CI CH₃ N-(4-chlorobenzyl) but-2-yn-1-amine (5d), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 4H), 3.82 (s, 2H), 3.35 (q, J = 2.4 Hz, 2H), 1.84 (t, J = 2.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 132.6, 129.6, 128.4, 79.3, 51.6, 37.6.

^N ^{CH₃} N-butylbut-2-yn-1-amine (5e), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 3.31 (s, 2H), 2.60 (t, J = 6.9 Hz, 2H), 1.77 (s, 3H), 1.52 – 1.37 (m, 2H), 1.36 – 1.24 (m, 2H), 0.87 (t, J = 7.1 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 78.5, 77.3, 48.4, 38.5, 31.9, 20.3, 13.8, 2.3.

N H

^(h) ^(h)

N-benzyloct-2-yn-1-amine (5g), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.22 (m, 5H), 3.86 (s, 2H), 3.40 (s, 2H), 2.20 (t, *J* = 7.0 Hz, 2H), 1.70 (s, 1H), 1.52 (p, *J* = 7.0 Hz, 2H), 1.36 (ddt, *J* = 20.4, 14.2, 7.1 Hz, 4H), 0.91 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 128.4, 127.0, 84.0, 77.8, 52.4, 37.8, 35.4, 31.1, 28.6, 22.2, 18.7, 14.1, 14.0.

Ph N-benzyl-3-phenylprop-2-yn-1-amine (5h), yellow oil, ¹H
 NMR (400 MHz, CDCl₃) δ 7.45-7.23 (m, 10H), 3.94 (s, 2H), 3.64 (s, 2H), 1.64(s, H).
 ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 131.6, 128.4, 128.2, 128.0, 127.1, 123.2, 87.5, 83.7, 52.5, 38.2.

N-benzylpent-2-yn-1-amine (5i), yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 5H), 3.85 (s, 2H), 3.39 (s, 2H), 2.22 (q, *J* = 7.6, 6.9 Hz, 2H), 1.15 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 128.3, 127.0, 85.3, 52.4, 37.8, 14.1 12.4.

Aryl iodides were commercially available.

3. General Procedures and Optimization of the Reaction Conditions General procedures

For the reactions incorporating terminal propargylic amines, an oven-dried Schlenk tube with a stir bar was charged with 1 (0.25 mmol), 2 (3.0 equiv.), Et₃N (2.6 equiv.), Pd(PPh₃)₂Cl₂ (10 mol%) and 2.5 mL *N*,*N*-dimethylformamide (DMF). Then freeze-thaw was performed three times to expel the air in the system and the Schlenk tube was then connected with a balloon containing mixture of CO₂ and CO with a molar ratio 1:2. (the molar ratio of CO₂ to CO was determined by GC). Afterward, the reaction mixture was stirred at 60 °C for 12 h. After that, the solvent was evaporated under reduced pressure and the resulting crude product was purified by flash column chromatography (silica gel, Petrolether/EtOAc).

For the reactions that were performed under pressured CO₂ and CO mixture, a 25 mL glass lined autoclave with a stirring bar was used. Firstly, 1 (0.25 mmol), 2 (3.0 equiv.), Et₃N (2.6 equiv.), Pd(PPh₃)₂Cl₂ (10 mol%) and 2.5 mL DMF were added into the autoclave and air in the system is evacuated. Then, CO₂ and CO were filled into the autoclave sequentially and the molar ratio of CO₂ to CO was calculated by the partial pressure of these two gases. Afterwards, the autoclave was heated to 60 °C and this temperature was kept for 12 h. Then the reaction was terminated by cooling to room temperature and releasing the pressure. Subsequently, the solvent was evaporated under reduced pressure and the resulting crude product was purified by flash column chromatography (silica gel, Petrolether/EtOAc).

For the reactions incorporating internal propargylic amines, an oven-dried Schlenk tube with a stir bar was charged with 4 (0.25 mmol), 5 (1.5 equiv.), 1,5,7-triazabicyclo [4,4,0] dec-5-ene (TBD) (1.5 equiv.), Pd(PPh₃)₂Cl₂ (5 mol%), and 2.5 mL DMF. Then freeze-thaw was performed three times to expel the air in the system and the Schlenk tube was connected with a balloon containing CO₂ and CO mixture

with a molar ratio 1:2. (the molar ratio of CO_2 to CO was determined by GC). The reaction mixture was stirred at 40 °C for 24 h and the solvent was then evaporated under reduced pressure. The resulting crude product was purified by flash column chromatography (silica gel, Petrolether/EtOAc).

Optimization of the Reaction Conditions

Bn. _N H H	+ CO_2 +	+ Bn-N
1a	2a 60 °C, 12 h 3aa	4aa
Entry	[L] (20 mol %)	Yield of 3aa (%) ^b
1	dppf	n.d.
2	DPPP	trace
3	XantPhos	n.d.
4	DPE phos	n.d.
5	P(o-tol) ₃	37
6	$(n-\mathrm{Bu})_3\mathrm{P}$	28
7	TFP	33
8	$P(p-anis)_3$	62
9	P(o-anis) ₃	68
10	PPh ₃	75

Table S1 Screening of Ligand for Terminal Propargylic Amine ^a

^{*a*}Reaction conditions: **1a** (36.3 mg, 0.25 mmol), **2a** (84 μ L, 3.0 equiv.), PdCl₂ (4.4 mg, 10 mol%), Et₃N (90 μ L, 2.6 equiv), DMF (2.5 mL), CO₂/CO balloon, 60 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. n.d.= not detected.

Bn·N H 1a	+ CO_2 +	Bn-N 3aa 4aa
Entry	Base (equiv.)	Yield of 3aa (%) ^b
1	DABCO (2.6)	50
2	Et ₃ N (2.6)	75
3	$Cs_2CO_3(2.6)$	n.d.
4	K ₂ CO ₃ (2.6)	n.d.
5	DBU (2.6)	n.d.
6	Et ₂ NH (2.6)	n.d.
7	TBD (2.6)	33
8	NaO ^t Bu (2.6)	29
9	Et ₃ N (1)	34
10	Et ₃ N (1.5)	48
11	Et ₃ N (3)	60
12		n.d

Table S2 Screening of Bases for Terminal Propargylic Amine^a

^{*a*}Reaction conditions: **1a** (36.3 mg, 0.25 mmol), **2a** (84 μL, 3.0 equiv.), Pd(PPh₃)₂Cl₂ (17.6 mg, 10 mol%), DMF (2.5 mL), CO₂/CO balloon, 60 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. n.d.= not detected. DBU=1,8-Diazabicyclo [5.4.0] undec-7-ene, DABCO=Triethylenediamine.

Table S3 Screen the amount of Iodobenzene for Terminal Propargylic Amine ^a

Bn. _N H 1a	+ CO_2 + CO_2 + CO Et_3N, DMF 2a $60 \text{ °C}, 12 \text{ h}$	Bn-N O 3aa	Bn-N O 4aa
Entry	2a (equiv)		Yield of 3aa (%) ^b
1	1.5		53
2	3		75

^{*a*} Reaction conditions: **1a** (36.3 mg, 0.25 mmol), Pd(PPh₃)₂Cl₂ (17.6 mg, 10 mol%), Et₃N (90 μ L, 2.6 equiv), DMF (2.5 mL), CO₂/CO balloon, 60 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Bn.N.H.+ ($\begin{array}{c} 1 \\ + & CO_2 + CO \\ & Et_3N, Solvent \\ & 60 \ ^{\circ}C, 12 \ h \end{array}$	Bn-N 3aa 4aa
Entry	Solvent	Yield of 3aa (%) ^b
1	MeCN	46
2	Toluene	28
3	DMSO	40
4	DMF	75
5	DMAC	53

Table S4 Screening of Solvent for Terminal Propargylic Amine ^a

^{*a*}Reaction conditions: **1a** (36.3 mg, 0.25 mmol), **2a** (84 μ L, 3.0 equiv.), Pd(PPh₃)₂Cl₂ (17.6 mg, 10 mol%), Et₃N (90 μ L, 2.6 equiv.), Solvent (2.5 mL), CO₂/CO balloon, 60 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Table S5 Screening of Time and Temperature for Terminal Propargylic Amine ^a

5 Ser cening of	1 mile and	remperature for re-	i illinai i i opai gyne i
Bn. _N H 1a	+ + CO ₂ + C 2a	$ \begin{array}{c} $	
Entry	Time (h)	Temperature (°C)	Yield of 3aa (%) ^b
1	8	60	63
2	12	60	75
3	16	60	76
4	12	25	60
5	12	40	64
6	12	80	42

^{*a*}Reaction conditions: **1a** (36.3 mg, 0.25 mmol), **2a** (84 μ L, 3.0 equiv.), Pd(PPh₃)₂Cl₂ (17.6 mg, 10 mol%), Et₃N (90 μ L, 2.6 equiv.), DMF (2.5 mL), CO₂/CO balloon, ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Table S6 Screening of Total Pressure and Molar ratio of CO2 and CO for Terminal Propargylic Amine ^a

Bn.N.+ H	$ \begin{array}{c} $	Jacla Bn-N MF 12 h 3aa	Bn-N daa
Entry	Total pressure/bar	CO ₂ /CO ^b	Yield of 3aa (%) ^c
1	1	1 1	48
2	10	1 1	53
3	30	1 1	54
4	1	1 2	75
5	6	2 1	50
6	6	1 5	68
7	1	0 1	n.d
8	1	1 0	n.d

^{*a*}Reaction conditions: **1a** (36.3 mg, 0.25 mmol), **2a** (84 μ L, 3.0 equiv.), Pd(PPh_3)₂Cl₂ (17.6 mg, 10 mol%), Et₃N (90 μ L, 2.6 equiv.), DMF (2.5 mL), 60 °C, 12 h. ^{*b*}When the total pressure is higher than 1 bar, the reaction was performed in an autoclave and the molar ratio of CO₂ to CO was determined by their partial pressure. When CO₂/CO balloon was used, the molar ratio of CO₂ to CO was determined by GC. ^{*c*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. n.d.= not detected.

Figure S1 Typical gas chromatogram of the CO₂ and CO mixture.

Before the reaction, the gas (1 mL) in the balloon containing mixture of CO_2 and CO were taken using a syringe, and then analyzed by gas chromatography (GC, FuLi 9790II) with a TCD detector and capillary column to determine the moles of CO_2 and CO.

$$\frac{n_{CO_2}}{n_{co}} = \frac{\frac{S_{CO_2}}{S_{CO_2(1 mL)}}}{\frac{S_{CO_2(1 mL)}}{S_{CO(1 mL)}}}$$

wherein S_{CO2} and S_{CO} are the peak areas of CO₂ and CO in the gas chromatogram for gaseous mixture. $S_{CO2}(1\text{mL})$ and $S_{CO}(1\text{mL})$ are the peak areas of 1 mL pure CO₂ and pure CO in the gas chromatogram respectively.

Table S7 Effect of Additive on the Reaction ^a

Bn.N.H.H.	+ CO ₂ + CO Et ₃ N, DMF		
1a	2a	3aa	4aa
Entry	Additive (eq	uiv.)	Yield of 3aa (%) <i>^b</i>
1	O ₂		n.d
2	H ₂ O (4)		65

^{*a*} Reaction conditions: **1a** (36.3 mg, 0.25 mmol), **2a** (84 μ L, 3.0 equiv.), Pd(PPh₃)₂Cl₂ (17.6 mg, 10 mol%), Et₃N (90 μ L, 2.6 equiv.), DMF (2.5 mL), CO₂/CO balloon, 60 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Table S8 Screening of Catalyst for Internal Propargylic Amine " o

Bn N N H	СН ₃ 5а	+ CO ₂ + CO 2a	Cataly NaO ^t Bu, I 40 °C, 12	∕st Bn DMF 2 h	-N CH ₃ O 6aa
	Entry	Catalyst (m	nol%)	Yield of 6	aa (%) ^b
	1 <i>c</i>	Pd(PPh ₃) ₂ C	$l_{2}(5)$	n.c	1.
	2	Pd(PPh ₃) ₂ C	$l_{2}(5)$	35	5
	3	Pd(PPh ₃)	(5)	tra	ce
	4	Pd(OAc) ₂ /PPł	n ₃ (5/10)	23	3
	5	Pd/C/PPh ₃ ((5/10)	n.c	1.
	6	Pd(PPh ₃) ₂ C	$_{2}(10)$	39)

^{*a*} Reaction conditions: **5a** (39.8 mg, 0.25 mmol), **2a** (42 μ L, 1.5 equiv.), NaO'Bu (1.5 equiv.), DMF (2.5 mL), CO₂/ CO balloon, 40 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. n.d.= not detected. ^{*c*}Et₃N (1.5 equiv.).

Table S9 Screening of the Amount of Iodobenzene for Internal Propargylic Amine ^a

Bn`N H 5a	H_3^+ H_3^+ $CO_2^+ CO$ H_3^+ H_3^+ H_3^+ H_3^+ H_3^+ H_3^+ H_3^+ $H_3^ H_3^ H_3^-$	h ₃) ₂ Cl ₂ J, DMF , 12 h 6aa
Entry	2a (equiv.)	Yield of 6aa (%) <i>^b</i>
1	1	39
2	1.5	30
3	3	36

^{*a*}Reaction conditions: **5a** (39.8 mg, 0.25 mmol), $Pd(PPh_3)_2Cl_2$ (8.8 mg, 5 mol%), NaO'Bu (36 mg, 1.5 equiv.), DMF (2.5 mL), CO₂/ CO balloon, 40 °C, 12 h. ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Table S10 Screening of Bases for Internal Propargylic Amine ^a

Br	¹ N CH ₃ 5a	+ CO ₂ + CO	Pd(PPh ₃) ₂ Cl ₂ Base, DMF 40 °C, 12 h 6aa
	Entry	Base (equiv.)	Yield of 6aa (%) ^b
	1	Et ₃ N (1.5)	n.d.
	2	NaO ^t Bu (1.5)	35
	3	$Cs_2CO_3(1.5)$	n.d.
	4	DBU (1.5)	11
	5	Et ₂ NH (1.5)	n.d.
	6	$K_2CO_3(1.5)$	n.d.
	7	TBD (1.5)	52
	8	KO ^t Bu (1.5)	30
	9	DABCO (1.5)	22
	10	TBD (1)	50
	11	TBD (3)	n.d.

 a Reaction conditions: **5a** (39.8 mg, 0.25 mmol), **2a** (42 μ L, 1.5 equiv.), Pd(PPh_3)_2Cl_2 (8.8 mg, 5 mol%), DMF (2.5 mL), CO_2/ CO balloon, 40 °C, 12 h. b Determined by 1 H NMR with 1,3,5-trimethoxybenzene as internal standard. n.d.= not detected.

Bn N CH3 ⁺	1 + CO ₂ + CO 2a	Pd(PPh ₃) ₂ Cl ₂ TBD, Solvent 40 °C, 12 h	Bn-N CH ₃ 6aa
Entry	Solvent	Yiel	d of 6aa (%) ^b
1	MeCN		46
2	Toluene		24
3	THF		trace
4	DMF		52
5	DMAC		45

Table S11 Screening of Solvent for Internal Propargylic Amine ^a

^{*a*}Reaction conditions: **5a** (39.8 mg, 0.25 mmol), **2a** (42 μ L, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (8.8 mg, 5 mol%), TBD (52.2 mg, 1.5 equiv.), Solvent (2.5 mL), CO₂/CO balloon, 40 °C, 12 h. ^{*b*} Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

Table S12 Screening of Time and Temperature for Internal Propargylic Amine ^a

Bn、N H	CH ₃ ⁺ + +	CO ₂ + CO TBD, DMF T °C, t h	Bn-N CH ₃ 6aa
Entry	Time (h)	Temperature (°C)	Yield of 6aa (%) ^b
1	12	40	52
2	16	40	59
3	24	25	44
4	24	40	66 (57 ^c)
5	24	60	21

^{*a*}Reaction conditions: **5a** (39.8 mg, 0.25 mmol), **2a** (42 μ L, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (8.8 mg, 5 mol%), TBD (52.2 mg, 1.5 equiv.), DMF (2.5 mL), CO₂/CO balloon, ^{*b*}Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. ^{*c*}Isolated yield.

4. Control Experiments

Figure S2 ¹³C NMR investigation for interaction among 1a (36.3mg, 0.25 mmol), Et₃N (90 μ L, 3 equiv), and bubbled CO₂ in CDCl₃ (0.5 mL).

5. Gram-Scale Experiment

For the gram-scale experiment, an oven-dried Schlenk bottle with a stir bar was charged with 1a (1.02 g, 7 mmol), 2 (7.6 mL, 3.0 equiv.), Et₃N (2.5 mL, 2.6 equiv.), Pd(PPh₃)₂Cl₂ (0.49 g, 10 mol%) and 50 mL DMF. Then freeze-thaw was performed three times to expel the air in the system and the Schlenk bottle was then connected with a balloon containing mixture of CO₂ and CO with a molar ratio 1:2. (the molar ratio of CO₂ to CO was determined by GC). Afterward, the reaction mixture was stirred at 60 °C for 12 h. After that, the solvent was evaporated under reduced pressure and the resulting crude product was purified by flash column chromatography (silica gel, Petrolether/EtOAc).

Scheme S1. Gram-Scale Experiment

6. Characterization of Products

3-benzyl-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-one (3aa), pale yellow solid, m.p. 140~142 °C. $R_f = 0.4$ (EtOAc/ petroleum ether = 1:2).¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.48 (t, J =7.6 Hz, 2H), 7.35 (dd, J = 15.4, 8.2 Hz, 3H), 7.28 (d, J = 7.3 Hz, 2H), 6.48 (s, 1H), 4,70 (s, 1H), 4.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): 193.4, 155.3, 135.8, 135.3, 133.8, 133.7, 129.0, 128.8, 128.3, 128.2, 128.0, 113.0, 47.7, 35.7. **IR**: 3732, 3651, 3632, 3301, 2920, 2849, 1750, 1689, 1595, 1447, 1396, 1384, 1265, 1214, 1068, 750, 701, 688, 571, 550 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₈H₁₃NO₃Na⁺ [M+Na⁺] 316.0944, found: 316.0948.

3-benzyl-5-(2-oxo-2-(p-tolyl) ethyl) oxazol-2(3H)-one (3ab),

yellow solid, m.p. 134-136 °C. R_f =0.4 (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.1 Hz, 2H), 7.36-7.29(m, 7H), 6.46 (s, 1H), 4,70 (s, 1H), 4.06 (s, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 193.1, 155.3, 144.8, 135.3, 133.9, 133.3, 129.5, 129.0, 128.3, 128.2, 128.0, 113.0, 47.6, 35.5, 21.6. **IR**: 2953, 2924, 2851, 1751,1686, 1607, 1363, 1183, 1082, 1012, 962, 810, 741, 704, 687 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₉H₁₈NO₃⁺ [M+H⁺] 308.1281, found: 308.1284.

3-benzyl-5-(2-(4-methoxyphenyl)-2-oxoethyl) oxazol-2(3H)-one (3ac), pale yellow solid, m.p.146-147 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 8.8 Hz, 2H), 7.40 – 7.25 (m, 5H), 6.95 (d, J = 8.8 Hz, 2H), 6.46 (s, 1H), 4.70 (s, 2H), 4.04 (s, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 191.9, 164.0, 155.3, 135.4, 134.0, 130.7, 129.0, 128.8, 128.2, 128.0, 114.0, 112.8, 55.5, 47.7, 35.4. **IR:** 2934, 2837, 1751, 1689, 1611, 1514, 1448, 1407, 1249, 1178, 1030, 1001, 759, 689 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₉H₁₈NO₄⁺ [M+H⁺] 324.1230, found:324.1230.

3-benzyl-5-(2-(4-fluorophenyl)-2-oxoethyl) oxazol-2(3H)-one (3ad), white solid, m.p.123-124 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 8.3, 5.5 Hz, 2H), 7.23 (d, J = 9.6 Hz, 2H), 7.20 – 7.14 (m, 3H), 7.05 (t, J = 8.5 Hz, 2H), 6.35 (s, 1H), 4.60 (s, 2H), 3.95 (s, 2H). ¹³C **NMR** (101 MHz, CDCl₃): 191.9, 167.4, 164.8, 155.2, 135.3, 133.4, 131.1, 131.0, 129.0, 128.3, 128.0, 116.2, 115.9, 113.1, 47.7, 35.7. **IR**: 3067, 3033, 2925, 1801, 1752, 1688, 1958, 1507, 1410, 1234, 1157, 1071, 1012, 962, 810, 741, 704, 687 cm⁻¹. **HRMS (ESI)** m/z calcd for $C_{18}H_{15}FNO_3^+$ [M+H⁺] 312.1030, found: 312.1028.

2(3H)-one (3ae), pale yellow solid, m.p.131-133 °C. R_f =0.4 (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.41 – 7.25 (m, 5H), 6.49 (s, 1H), 4.71 (s, 2H), 4.12 (s, 2H).¹³C NMR (101 MHz, CDCl₃): 192.5, 155.1, 138.4, 135.3, 132.9, 129.0, 128.6, 128.3, 128.0, 113.3, 47.7, 36.1. **IR:** 3136, 3067, 3034, 2936, 1753, 1698, 1607, 1581, 1512, 1497, 1455, 1441, 1410, 1325, 1169, 1129, 1066, 1011, 960, 833, 747, 704, 604 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₉H₁₅F₃NO₃⁺ [M+H⁺] 362.0999, found: 362.0993.

3-benzyl-5-(2-oxo-2-(o-tolyl) ethyl) oxazol-2(3H)-one (3af), yellow oil. $R_f = 0.4$ (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 7.7 Hz, 1H),7.42-7.28 (m, 8H), 6.44 (s, 1H), 4.70 (s, 2H), 4.01 (s, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 196.7, 155.2, 138.9, 135.3, 133.9, 132.2, 132.1, 128.9, 128.7, 128.2, 127.9, 125.8, 112.9, 47.6, 38.2, 21.4. IR: 2959, 2925, 1799, 1752, 1675, 1606, 1455, 1409, 1363, 1009, 889, 739, 703 cm⁻¹. HRMS (ESI) m/z calcd for $C_{19}H_{18}NO_3^+$ [M+H⁺] 308.1281, found: 308.1279.

3-benzyl-5-(2-oxo-2-(m-tolyl) ethyl) oxazol-2(3H)-one(3ag),

pale yellow solid, m.p.124-126 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.5 Hz, 2H), 7.44 – 7.24 (m, 7H), 6.48 (s, 1H), 4.69 (s, 2H), 4.06 (s, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 155.1, 138.5, 135.6, 135.3, 134.4, 133.6, 128.8, 128.6, 128.6, 128.5, 128.1, 127.8, 125.4, 125.3, 113.0, 47.5, 35.6, 21.2. IR: 3136, 3062, 2923, 1750, 1689, 1604, 1585, 1497, 1454, 1441, 1397, 1365, 1262, 1245, 1161, 1083, 1070, 1029, 1014, 961, 745, 704, 688, 637, 613 cm⁻¹. HRMS (ESI) m/z calcd for C₁₉H₁₈NO₃⁺ [M+H⁺] 308.1281, found: 308.1276.

3-benzyl-5-(2-(2-fluorophenyl)-2-oxoethyl) oxazol-2(3H)-one

(3ah), pale yellow solid, m.p.108-109 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (t, J = 8.5 Hz, 1H), 7.56 (q, J = 6.5, 5.4 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.27 (dd, J = 8.6, 5.1 Hz, 3H), 7.15 (dd, J = 11.4, 8.3 Hz, 1H), 6.47 (s, 1H), 4.72 (s, 2H), 4.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 162.2, 160.6, 155.3, 135.40, 133.5, 130.9, 129.0, 128.3, 127.9, 124.8, 124.7, 116.8, 116.6, 113.1, 47.6, 40.4, 40.3. IR: 3135, 3070, 3035, 1751, 1692, 1609, 1497, 1480, 1453, 1406, 1366, 1342, 1278, 1200, 1154, 1102, 1084, 1069, 995, 961, 764, 744, 704 cm⁻¹. HRMS (ESI) m/z calcd for C₁₈H₁₅FNO₃⁺ [M+H⁺] 312.1030, found: 312.1026.

BnN **o 3-benzyl-5-(2-oxo-2-(thiophen-2-yl) ethyl) oxazol-2(3H)-one (3ai),** pale yellow solid, m.p.102-103 °C. R_f =0.4 (EtOAc/petroleum ether = 1:1). ¹**H** NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 3.7 Hz, 2H), 7.70 (d, *J* = 4.9 Hz, 2H), 7.41-7.32(m, 3H), 7.31-7.25(m, 2H), 7.16(t, *J* = 4.4 Hz, 1H), 6.45 (s, 1H), 4.71 (s, 2H), 4.01 (s, 2H). ¹³**C** NMR (101 MHz, CDCl₃): 186.2, 155.2, 142.8, 135.0, 133.2, 133.0, 129.0, 128.4, 128.3, 128.0, 113.0, 112.8, 47.7, 36.4. **IR:** 2955, 2923, 2851, 1751, 1665, 1509, 1458, 1407, 1074, 737, 703 cm⁻¹. **HRMS(ESI)** m/z calcd for C₁₆H₁₄NO₃S⁺ [M+H⁺] 300.0689, found: 300.0687.

3-benzyl-5-(2-(naphthalen-1-yl)-2-oxoethyl) oxazol-2(3H)-one (3aj), yellow solid. $R_f = 0.5$ (EtOAc/petroleum ether = 1:1). ¹H NMR (400 MHz, CDCl₃): δ 8.61 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.88 (t, J = 7.2 Hz, 2H), 7.53 (ddd, J = 26.0, 15.2, 6.6 Hz, 3H), 7.30 (dd, J = 30.4, 6.7 Hz, 5H), 6.47 (s, 1H), 4.69 (s, 2H), 4.14 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): 196.9, 155.2, 135.3, 133.9, 133.8, 133.6, 130.1, 128.9, 128.5, 128.3, 128.2, 127.9, 126.6, 125.5, 124.2, 113.0, 47.6, 38.7. IR: 3138, 3082, 2929, 1752, 1685, 1593, 1572, 1507, 1455, 1439, 1399, 1363, 1233, 1175, 968, 942, 803, 775, 739, 703 cm⁻¹. HRMS(ESI) m/z calcd for $C_{22}H_{18}NO_3^+$ [M+H⁺] 344.1281, found: 344.1280.

H₃C (3-methylbenzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-one (3ba), pale yellow solid, m.p.100-102 °C. R_f =0.5 (EtOAc/petroleum ether = 1:2).¹H **NMR** (400 MHz, CDCl₃): δ 7.71 (d, J = 7.7 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.24 (t, J = 7.6 Hz, 2H), 7.01 (dd, J = 13.6, 6.1 Hz, 1H), 6.87 (dd, J = 18.2, 8.9 Hz, 3H), 6.25 (s, 1H), 4.42 (s, 2H), 3.85 (s, 2H), 2.10 (3H). ¹³C NMR (101 MHz, CDCl₃): 193.4, 155.2, 138.7, 135.7, 135.2, 133.7, 133.5, 128.9, 128.7, 128.6, 124.9, 113.0, 47.5, 35.6, 21.2. **IR**: 3139, 3058, 2920, 1798, 1751, 1691, 1608, 1448, 1408, 1214, 1185, 1077, 1014, 959, 687, 754, 709, 689 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₉H₁₈NO₃⁺[M+H⁺] 308.1281, found: 308.1280.

3-(2-methylbenzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-one (3ca), pale yellow solid, m.p.106-107 °C. $R_f = 0.5$ (EtOAc/petroleum ether = 1:2).¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 7.3 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.35 – 7.21 (m, 4H), 6.41 (s, 1H), 4.76 (s, 2H), 4.13 (s, 2H), 2.36 (3H). ¹³C NMR (101 MHz, CDCl₃): 193.4, 155.0, 136.7, 133.8, 133.7, 133.1, 130.1, 129.0, 128.8, 128.6, 128.3, 126.4, 112.7, 45.7, 35.6, 19.0. IR: 3062, 3027, 2933, 1802, 1757, 1682, 1622, 1448, 1409, 1362, 1267, 1215, 1181, 1067, 1011, 896, 748, 696 cm⁻¹. HRMS (ESI) m/z calcd for C₁₉H₁₈NO₃⁺ [M+H⁺] 308.1281, found: 308.1278.

^t^{Bu} **3-(4-(tert-butyl) benzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)one (3da),** white solid, m.p.173-175 °C. R_f =0.5 (EtOAc/petroleum ether = 1:2). ¹H **NMR** (400 MHz, CDCl₃): δ 7.95 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.4 Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 6.49 (s, 1H),4.68(s, 2H), 4.09 (s, 2H), 1.31 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃): 193.5, 155.2, 151.3, 135.7, 133.8, 133.4, 132.3, 128.8, 128.2, 127.7, 125.8, 113.1, 47.3, 35.7, 34.5, 31.2. **IR:** 2959, 1786, 1742, 1689, 1680, 1594, 1446, 1392, 1362, 1266, 1244, 1142, 1073, 1003, 956, 908, 886, 744, 731, 684 cm⁻¹. **HRMS (ESI)** m/z calcd for C₂₂H₂₄NO₃⁺ [M+H⁺] 350.1751, found: 350.1749.

3-(4-methoxybenzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-

one (3ea), white solid, m.p.107-108 °C. $R_f = 0.5$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.95(d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.9 Hz, 2H), 7.49(t, J = 7.6 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.46 (s, 1H), 4.08 (s, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 193.5, 159.6, 155.2, 135.8, 133.8, 133.5, 129.5, 128.8, 128.3, 127.4, 114.3, 112.9, 55.3, 47.2, 35.7. IR: 2955, 2922,

2850, 1744, 1689, 1514, 1448, 1247, 1212, 1177, 1080, 1030, 818, 754, 687, 669 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₉H₁₈NO₄⁺ [M+H⁺] 324.1231, found: 324.1228.

3-(4-fluorobenzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-one

(3fa), white solid, m.p.116-118 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.27 (m, 2H), 7.04 (t, J = 8.6 Hz, 2H), 6.51 (s, 1H),4.68(s, 2H), 4.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): 193.4, 163.8, 161.3, 155.1, 135.7, 133.8, 133.7, 131.2, 129.8, 129.7, 127.7, 128.8, 128.2, 116.0, 115.8, 112.9, 46.9, 35.6. IR: 3139, 3067, 2936, 1797, 1751, 1691, 1605, 1511, 1448, 1408, 1364, 1221, 1157, 1076, 1013, 1001, 958, 888, 824, 754, 689 cm⁻¹. HRMS (ESI) m/z calcd for C₁₈H₁₅FNO₃⁺ [M+H⁺]312.1030, found: 312.1030.

3-(4-chlorobenzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-

one (3ga), white solid, m.p.117-118 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 6.8 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.38-7.20 (m, 4H), 6.50 (s, 1H), 4.68 (s, 2H), 4.11 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): 193.3, 155.1, 141.6, 135.7, 134.3, 133.9, 129.3, 129.2, 128.8, 128.2, 112.9, 47.0, 35.6. **IR**: 3137, 3063, 2914, 1750, 1691, 1605, 1597, 1492, 1448, 1397, 1216, 1078, 1015, 959, 889, 802, 754, 688, 624 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₈H₁₅ClNO₃⁺ [M+H⁺] 328.0735, found: 328.0733.

3-(4-bromobenzyl)-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-

one (3ha), yellow solid, m.p.134-135 °C. $R_f = 0.3$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 6.9 Hz, 1H), 7.50 (d, J = 5.4 Hz, 4H), 7.19 (d, J = 7.0 Hz, 2H), 6.52 (s, 1H), 4.68 (s, 2H), 4.12 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): 193.3, 155.1, 135.7, 134.4, 133.8, 132.1, 129.6, 128.8, 128.2, 122.4, 112.9, 47.0, 35.6. IR: 3138, 3062, 2936, 1797, 1751, 1690, 1605, 1596, 1579, 1489, 1448, 1398, 1215, 1070, 1012, 958, 888, 842, 798, 753, 688 cm⁻¹.HRMS (ESI) m/z calcd for C₁₈H₁₅BrNO₃⁺ [M+H⁺] 372.0230, found: 372.0229.

5-(2-oxo-2-phenylethyl)-3-(4-(trifluoromethyl) benzyl)

oxazol-2(3H)-one (3ia), pale yellow solid, m.p. 116-117 °C. $R_f = 0.4$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.3 Hz, 2H), 7.62 (d, J = 8.0 Hz, 3H), 7.49 (t, J = 7.7 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 6.54 (s, 1H), 4.77 (s, 2H), 4.12 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): 193.3, 155.1, 139.4, 135.7, 134.1, 133.9, 128.9, 128.2, 128.1, 126.0, 125.9, 113.0, 47.2, 36.1. IR: 3136, 3061, 2915, 1752, 1692, 1597, 1581, 1449, 1409, 1366, 1325, 1275, 1261, 1216, 1164, 1124, 1112, 1066, 1018, 1001, 954, 907, 845, 819, 750, 687 cm⁻¹. HRMS (ESI) m/z calcd for C₁₉H₁₅F₃NO₃⁺ [M+H⁺] 362.0999, found: 362.0995.

5-(2-oxo-2-phenylethyl)-3-(1-phenylethyl) oxazol-2(3H)-one(3ja),

yellow oil, $R_f = 0.5$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.0 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.34 (dt, J = 13.9, 7.0 Hz, 5H), 6.55 (s, 1H), 5.30 (q, J = 7.1 Hz, 1H), 4.09 (d, J = 6.5 Hz, 2H), 1.69 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): 193.5, 154.7, 139.7, 135.7, 133.7, 133.5, 128.8, 128.2, 128.0, 126.5, 110.7, 52.5, 35.7, 19.2. **IR:** 3135, 3062, 3032, 2981, 2937, 1749, 1692, 1597, 1580, 1495, 1449, 1385, 1341, 1275, 1261, 1214, 1173, 1159, 1103, 1080, 1025, 1000, 954, 915, 887, 750, 699, 660 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₉H₁₈NO₃⁺ [M+H⁺] 308.1281, found: 308.1276.

3-butyl-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-one (3ja), yellow oil, $R_f = 0.5$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 7.7 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.4 Hz, 2H), 6.57(s, 1H), 4.13 (s, 2H), 3.54 (t, J = 7.1 Hz, 2H), 1.65 (dt, J = 14.8, 7.2 Hz, 2H), 1.36 (td, J = 14.6, 7.2 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): 193.6, 155.2, 135.8, 133.8, 133.3, 128.8, 128.3, 113.3, 43.7, 35.7, 30.8, 19.6, 13.5. IR: 2959, 2930, 2873, 1748, 1692, 1448, 1408, 1214, 1075, 1000, 957, 742, 689 cm⁻¹. HRMS (ESI) m/z calcd for C₁₅H₁₈NO₃⁺ [M+H⁺] 260.1281, found: 260.1280.

3-benzyl-4-methyl-5-(2-oxo-2-phenylethyl) oxazol-2(3H)-one

(30a), yellow solid, m.p.85-87 °C. $R_f = 0.3$ (EtOAc/petroleum ether = 1:2).¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 7.8 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.31 (ddd, J = 20.4, 13.9, 7.1 Hz, 5H), 4.77 (s, 2H), 4.05 (s, 2H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 194.0, 155.7, 136.1, 135.8, 133.7, 128.9, 128.8, 128.5, 127.9, 127.0, 121.2, 45.4, 35.0, 8.3. IR: 3060, 3033, 2926, 1751, 1691, 1596, 1579, 1496, 1448, 1403, 1384, 1352, 1213, 1179, 1112, 1079, 1044, 755, 719, 692, 626 cm⁻¹. HRMS (ESI) m/z calcd for $C_{19}H_{18}NO_3^+$ [M+H⁺] 308.1281, found:308.1279.

(6aa), pale yellow oil, $R_f = 0.4$ (EtOAc/petroleum ether = 1:4). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 6.8 Hz, 2H), 7.33 (s, 2H), 7.24 (s, 2H), 6.26 (s, 1H), 4.66 (dd, J = 32.9, 15.0 Hz, 1H), 4.56 (d, J =6.9 Hz, 1H), 1.44 (d, J = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃):197.3, 155.1, 139.2, 135.2, 133.5, 129.0, 128.8, 128.6, 128.4, 127.7, 111.4, 47.5, 38.7, 15.3. IR: 2956, 2923, 1749, 1677, 1595, 1615, 1451, 1378, 1264, 1184, 1078, 1011, 895, 739, 703 cm⁻¹. HRMS (ESI) m/z calcd for $C_{19}H_{18}NO_3^+$ [M+H⁺] 308.1281, found: 308.1280.

H₃C 2(3H)-one (6ab), yellow oil; $R_f = 0.5$ (EtOAc/petroleum ether = 1:3).¹H NMR (400z MHz, CDCl₃) δ 7.95 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.13 (s, 4H), 6.25 (s, 1H), 4.68 – 4.58 (m, 2H), 4.54 (d, J = 6.6 Hz, 1H), 2.33 (s, 3H), 1.43 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃):197.3, 155.1, 139.1, 138.0, 135.2, 133.5, 132.1, 129.5, 128.7, 128.5, 127.8, 111.3, 47.3, 38.7, 21.0, 15.4. IR: 3135, 3058, 2937, 2873, 1755, 1688, 1596, 1516, 1448, 1400, 1363, 1275, 1214, 1173, 1056, 1001, 968, 756, 723, 689, 655, 472 cm⁻¹. HRMS (ESI) m/z calcd for C₂₀H₂₀NO₃⁺ [M+H⁺] 322.1438, found: 322.1434.

H₃co O Ph H₃co O CH₃ 3-(4-methoxybenzyl)-5-(1-oxo-1-phenylpropan-2-yl)oxazol-2(3H)-one(6ac), yellow oil; $R_f = 0.5$ (EtOAc/petroleum ether = 1:3).¹H NMR (400z MHz, CDCl₃) δ 7.94 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 2H), 7.45 (t, J = 7.7 Hz, 1H), 7.17 (d, J = 8.3 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 6.22 (s, 1H), 4.65-4.55 (m, 2H), 4.53 (d, J = 6.7 Hz, 1H), 3.78 (s, 3H), 1.42 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃):197.4, 159.5, 155.1, 139.2, 135.3, 129.4, 128.8, 128.6, 128.5, 127.2, 114.2, 111.3, 111.1, 55.2, 47.1, 38.9, 15.6. **IR:** 2929, 2850, 1750, 1687, 1612, 1514, 1448, 1402, 1249, 1177, 1032, 969, 820, 726, 689 cm⁻¹. **HRMS (ESI)** m/z calcd for C₂₀H₂₀NO₄⁺ [M+H⁺] 338.1387, found: 338.1383.

 $c_1 \leftarrow c_1 \leftarrow c_{H_3}$ 3-(4-chlorobenzyl)-5-(1-oxo-1-phenylpropan-2-yl) oxazol-2(3H)-one (6ad), yellow oil; R_f = 0.4 (EtOAc/petroleum ether = 1:3). ¹H NMR (400z MHz, CDCl₃) δ 7.89 (d, *J* = 8.7 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.20 (s, 1H), 4.68-4.54 (m, 2H), 4.52-4.44 (m, 1H), 1.39 (d, *J* = 7.1 Hz,3H). ¹³C NMR (101 MHz, CDCl₃):197.3, 155.1, 139.6, 135.3, 134.2, 133.8, 133.7, 129.2, 129.1, 128.8, 128.5, 111.2, 47.0, 38.8, 15.6. IR: 3136, 3059, 2986, 2937, 1749, 1688, 1596, 1493, 1448, 1401, 1213, 1172, 1077, 1060, 1015, 1001, 968, 841, 803, 748, 687, 642, 599 cm⁻¹. HRMS (ESI) m/z calcd for C₁₉H₁₇ClNO₃⁺ [M+H⁺] 342.0891, found: 342.0889.

N o CH₃ **3-isopropyl-5-(1-oxo-1-phenylpropan-2-yl) oxazol-2(3H)-one (6af),** yellow oil; $R_f = 0.5$ (EtOAc/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.0 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 6.32 (s, 1H), 4.51 (q, J = 7.1 Hz, 1H), 4.12 (p, J = 6.7 Hz, 1H), 1.40 (d, J = 7.1 Hz, 3H), 1.19 (dd, J= 9.5, 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃):197.5, 154.4, 139.1, 135.3, 133.5, 129.8, 128.7, 128.5, 108.2, 45.7, 38.7, 21.3, 15.6. IR: 3133, 2980, 2937, 2879, 1736, 1680, 1649, 1449, 1390, 1373, 1275, 1215, 1175, 1133, 1097, 1034, 1001, 967, 932, 886, 749, 725, 689, 656 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₅H₁₈NO₃⁺ [M+H⁺] 260.1281, found: 260.1278.

3-benzyl-5-(1-oxo-1-phenylheptan-2-yl) oxazol-2(3H)-one (6ag), yellow oil; $R_f = 0.5$ (EtOAc/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.25 (d, J =7.4 Hz, 3H), 7.19 – 7.11 (m, 2H), 6.19 (s, 1H), 4.65 – 4.52 (m, 2H), 4.38 (t, J = 7.0Hz, 1H), 1.88 (dt, J = 14.5, 7.1 Hz, 1H), 1.72 (dt, J = 14.2, 7.0 Hz, 1H), 1.18 (s, 6H), 0.79 – 0.71 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 197.2, 155.2, 138.5, 136.0, 135, 133.6, 128.9, 128.8, 128.5, 128.2, 127.8, 111.7, 47.6, 44.3, 31.5, 30.9, 26.7, 22.3, 13.9. IR: 2955, 2928, 2858, 1753, 1686, 1595, 1580, 1497, 1447, 1401, 1364, 1224, 1158, 1067, 1029, 1001, 965, 908, 737, 702 cm⁻¹. HRMS (ESI) m/z calcd for C₂₃H₂₆NO₃⁺ [M+H⁺] 364.1907, found: 364.1903.

BnN \rightarrow **3-benzyl-5-(1-oxo-1-phenylbutan-2-yl) oxazol-2(3H)-one** (6ah), pale yellow solid, m.p.104-105 °C. R_f=0.4 (EtOAc/petroleum ether = 1:3).¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.58 (d, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.19 (m, 5H), 6.31 (s, 1H), 4.72 – 4.60 (m, 2H), 4.41 (t, *J* = 6.9 Hz, 1H), 1.94 (ddq, *J* = 55.0, 14.0, 7.1 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 197.1, 155.2, 138.2, 135.9, 135.2, 133.5, 128.9, 128.7, 128.4, 128.2, 127.8, 111.9, 47.6, 45.7, 24.1, 11.5. **IR:** 2968, 2934, 2877, 1750, 1684, 1596, 1580, 1559, 1497, 1401, 1363, 1261, 1211, 1179, 1065, 965, 748, 703 cm⁻¹. **HRMS (ESI)** m/z calcd for C₂₀H₂₀NO₃⁺ [M+H⁺] 322.1438, found:322.1439.

BNN o CH₃ 3-benzyl-5-(1-oxo-1-(p-tolyl) propan-2-yl) oxazol-2(3H)-one (6ai), yellow oil; $R_f = 0.5$ (EtOAc/petroleum ether = 1:3). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.2 Hz, 2H), 7.29 (dt, J = 15.7, 7.4 Hz, 7H), 6.28 (s, 1H), 4.66 (dd, J = 33.4, 15.1 Hz, 2H), 4.54 (q, J = 7.1 Hz, 1H), 2.41 (s, 3H), 1.44 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃):196.9, 155.1, 144.5,139.4, 135.2, 132.7, 129.3, 128.8, 128.6, 128.5, 128.1, 127.8, 111.3, 111.2, 47.5, 38.6, 21.5, 15.5. IR: 3035, 2982, 2935, 1752, 1682, 1606, 1454,, 1401, 1366, 1276, 1226, 1206, 1180, 1057, 966, 749, 703 cm⁻¹.**HRMS (ESI)** m/z calcd for C₂₀H₂₀NO₃⁺ [M+H⁺] 322.1438, found: 322.1434.

 $\begin{array}{c} {}_{\textbf{BnN}} & \overbrace{\textbf{CH}_3} & \textbf{3-benzyl-5-(1-(4-methoxyphenyl)-1-oxopropan-2-yl)} & \textbf{oxazol-2(3H)-one (6aj), yellow oil; } R_f = 0.5 (EtOAc/petroleum ether = 1:3). ^1H NMR (400 MHz, CDCl_3): \delta 7.95 (d, <math>J = 8.7$ Hz, 2H), 7.38 – 7.30 (m, 3H), 7.25 (d, J = 7.1 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 6.27 (s, 1H), 4.67 (dd, J = 34.8, 15.1 Hz, 2H), 4.52 (q, J = 6.9 Hz, 1H), 3.87 (s, 3H), 1.43 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl_3):195.8, 163.8, 155.1, 139.6, 135.2, 130.9, 128.8, 128.2, 127.8, 113.9, 111.2, 55.4, 47.5, 38.3, 15.5. IR: 3137, 2952, 2936, 2842, 1750, 1678, 1599, 1573, 1510, 1455, 1401, 1260, 1170, 1028, 967, 844, 750, 703 cm⁻¹. HRMS (ESI) m/z calcd for $C_{20}H_{20}NO_4^+$ [M+H⁺] 338.1387, found: 338.1383.

BnN (E)-3-benzyl-5-benzylideneoxazolidin-2-one (3'aa), white solid; m.p. 156-158 °C. R_f = 0.5 (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 2H), 7.43-7.31 (m, 8H), 7.24 (t, J = 7.4 Hz,1H), 5.48 (s, 1H), 4.55 (s, 2H), 4.19 (s, 2H). ¹³C NMR (101 MHz, CDCl₃):155.5, 141.7, 134.8, 133.3, 128.9, 128.4, 128.2, 128.1, 126.8, 103.1, 48.1, 47.8. **IR:** 3085, 3061, 3027, 1770, 1695, 1546,1494, 1471, 1450, 1440, 1427, 1390, 1350, 1329, 1266, 1047, 937, 921, 908, 818, 747, 704, 664, 566 cm⁻¹. **HRMS (ESI)** m/z calcd for C₁₇H₁₆NO₂⁺ [M+H⁺] 266.1176, found: 266.1173.

BnN _____

(E)-3-benzyl-5-(2-oxo-2-phenylethylidene) oxazolidin-2-one (4aa),

white solid, m.p. 145-147 °C, $R_f = 0.6$ (EtOAc/petroleum ether = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.41 – 7.30 (m, 5H), 6.86 (t, J = 2.5 Hz, 1H), 4.64 (d, J = 2.4 Hz, 2H), 4.55 (s, 2H). ¹³C NMR (101 MHz, CDCl₃):190.0, 163.1, 153.6, 137.8, 134.4, 133.0, 129.1, 128.7, 128.5, 128.4, 127.8, 98.5, 50.8, 48.0. IR: 1781, 1742, 1677, 1605, 1573, 1494, 1447, 1416, 1388, 1364, 1332, 1301, 1273, 1226, 1205, 1190, 1149, 1081, 1059, 1012, 887, 831, 758, 748, 698, 677, 633, 591, 544 cm⁻¹. HRMS (ESI) m/z calcd for C₁₈H₁₆NO₃⁺ [M+H⁺] 294.1125, found: 294.1120.

^h 4-(benzylamino)-4-methyl-1-phenylpent-2-yn-1-one (3na'), yellow oil, $R_f = 0.6$ (EtOAc/petroleum ether = 1:5). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.1 Hz, 2H), 7.65 – 7.60 (m, 1H), 7.52 – 7.47 (m, 2H), 7.41 – 7.23 (m, 6H), 3.98 (s, 2H), 1.57 (s, 6H). ³C NMR (101 MHz, CDCl₃):178.0, 140.0, 136.9, 134.0, 129.5, 128.6, 128.5, 128.3, 127.2, 99.6, 80.6, 50.6, 49.2, 29.0.

7. ¹H and ¹³C Spectra of all Products

¹³C NMR (101 MHz, CDCl₃)

¹⁸F NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

8. X-Ray crystal Structure of 3aa

Figure S3 X-ray crystal structure of 3aa Table S13 Crystal Data and Structure Refinement for 3aa

Identification code	3aa
Empirical formula	C ₁₈ H ₁₅ NO ₃
Formula weight	293.31
Temperature/K	113.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	5.7848(3)
b/Å	11.3961(5)
c/Å	21.8769(9)
a/°	90
β/°	91.520(4)
$\gamma/^{\circ}$	90
Volume/Å ³	1441.71(11)
Ζ	4
$ ho_{calc}g/cm^3$	1.351
μ/mm^{-1}	0.093
F(000)	616.0
Crystal size/mm ³	$0.42 \times 0.08 \times 0.06$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/° 4.03 to 56.556	
Index ranges	$\textbf{-7} \le h \le 7, \textbf{-15} \le k \le 15, \textbf{-29} \le \textbf{l} \le 29$
Reflections collected	17338
Independent reflections	3567 [$R_{int} = 0.0774, R_{sigma} = 0.0435$]
Data/restraints/parameters	3567/0/200
Goodness-of-fit on F ²	1.018
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0467, wR_2 = 0.1109$
Final R indexes [all data]	$R_1 = 0.0615, wR_2 = 0.1212$
Largest diff. peak/hole / e Å ⁻³ 0.25/-0.21	

REFERENCES

- Wang, M. Y.; Song, Q. W.; Ma, R.; Xie, J. N.; He, L. N. Green Chem. 2016, 18, 282–287.
- (2) Campolo, D.; Arif, T.; Borie, C.; Mouysset, D.; Vanthuyne, N.; Naubron, J. V.; Bertrand, M. P.; Nechab, M. Angew. Chem. Int. Ed. 2014, 53, 3227 –3231.
- (3) Hase, S.; Kayaki, Y.; Ikariya, T. ACS Catal. 2015, 5, 5135-5140.
- (4) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076-8077.
- (5) Sekine, K.; Kobayashi, R.; Yamada, T. Chem. Lett. 2015, 44, 1407-1409.
- (6) Hase, S.; Kayaki, Y.; Ikariya, T. Organometallics 2013, 32, 5285-5288.
- (7) Yoshida, M.; Mizuguchi, T.; Shishido, K. Chem. Eur. J. 2012, 18, 15578-15581.
- (8) Katayama, A.; Senboku, H.; Hara, S. Tetrahedron 2016, 72, 4626-4636.
- (9) Harmata, M.; Cai, Z. X.; Huang, C. F.; Brummond, M.; Wen, B. Org. Synth. 2011, 88, 309-316.

(10) Greenwood, P.D. G.; Grenet, E.; Waser, J. Chem. Eur. J. 2019, 25, 3010-3013.