Supporting Information

Silver-Catalyzed Decarboxylative Cyclization for the Synthesis of Substituted Pyrazoles from 1,2-Diaza-1,3-dienes and α -Keto Acids

Sarita Katiyar,^{a,c} Abhishek Kumar,^a and Koneni V. Sashidhara*,^{a,b,c}

^{*a*} Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.

^b Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India

^c Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh- 201002

e-mail: kv_sashidhara@cdri.res.in, sashidhar123@gmail.com

Table of Contents

1. General Information	SI-3
2. Experimental Section	.SI-3
3. Optimization of Reaction Conditions	.SI-4
4. Synthetic Procedure and Characterization of Pyrazole Compounds	
	SI-16
5. Radical Trapping Experiments	SI-17
6. Gram-Scale Experiments	SI-18
7. Synthetic UtilitySI-18-S	SI-22
8. X-ray Crystal Structure of Compound 3aS	I-22
9. References	SI-24
10. Spectral Data (¹ H NMR, ¹³ C NMR and ¹⁹ F NMR)SI-26-S	SI-73
11. LCMS DataSI-74-5	SI-75

1. General Information

Reagent Information. All reactions were performed using borosil sealed tube vial under nitrogen atmosphere. unless otherwise noted. All the chemicals were purchased from Sigma Aldrich, Alfa Aesar and TCI-India. All solvents were used further distillation. Oil bath was used for all required reactions with magnetic stirring. Silica gel (100-200 mesh) was used for column chromatography obtained from Merck. Hexane and ethyl acetate mixture was used as a gradient elution for column chromatography. The eluting solvent for the purification of each compound was determined by thin-layer chromatography (TLC) on glass plates coated with silica gel 60 F_{254} and visualized by ultraviolet light/or with iodine.

Analytical Information. All isolated compounds were characterized by ¹H NMR, ¹³C NMR and ¹⁹F NMR spectroscopy, and HRMS. Unless otherwise stated, all Nuclear Magnetic Resonance spectra were recorded on a Bruker 300 MHz, 400 MHz and 500 MHz instrument. NMR spectra are reported in parts per million (ppm), and were measured relative to the signals for residual solvent (7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR in CDCl₃) in the deuterated solvent, unless otherwise stated. Melting points were measured with a Büchi B-540 apparatus. All ¹³C NMR spectra were obtained with ¹H decoupling. High-resolution mass spectra (HRMS) were recorded using Q-TOF mass spectrometer of the SAIF Division in CSIR-CDRI Lucknow.

2. Experimental Section.

2.1 General procedure for preparation of 1,2-diaza-1,3-dienes derivatives:

The starting material 3-(phenyldiazenyl)but-2-enenitrile derivatives (**1a-1q**) was prepapared according to general procedure via reported method.¹

2.2 General procedure for preparation of ethyl-3-(phenyldiazenyl)but-2-enoate derivatives:

The compound was prepared from ethyl 2-chloroacetoacetate by general proceture. A mixture of sodium acetate (2.0 mmol) in water (3 mL) and phenylhydrazine (1.1 mmol) in ethanol (4 mL) was added rapidaly with stirring to a solution of ethyl 2-chloroacetoacetate (1 mmol) in ethanol (3 mL). After 1h the reaction mixture was filterd to give the desired 1,2-diaza-1,3-dienes in good yield.²

ethyl-3-(p-tolyldiazenyl)but-2-enoate (1am): Yield, 69 % Red solid; M. P.: 92-94 °C; ¹H

NMR (400 MHz, CDCl₃): δ 7.75 (dd, J = 6.6 Hz, 1.6 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 1.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 1.36 (t, J =7.1, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.0, 164.5, 150.5, 142.7, 129.9, 126.4, 123.2, 60.6, 21.6, 14.4, 11.7; **HRMS(ESI)**: calcd for

C₁₃H₁₇N₂O₂ [M+H]⁺ 233.1290, found 233.1278.

2.3 General procedure for preparation of α -ketoacids:

To a substituted methyl aryl ketones (5.0 mmol), SeO₂ (6.0 mmol), 20 mL of dry pyridine were added in a 50 mL round bottom flask. The reaction mixture was stirred at 110 °C for 1 h in an oil bath, then reduce the temperature to 90 °C for 4 h. The desired products were isolated by column chromatography on silica gel using (ethyl acetate/hexane = 1:20) to give α -ketoacids in 65-90% yield. All α -ketoacids are known compounds.³⁻⁵

3. Optimization of Reaction Conditions

Table-S1: Investigation of solvents^a

Entry	Catalyst (mol %)	Oxidant (equiv.)	Solvent	Yield (%) ^[b]
1	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	THF:H ₂ O	40
2	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	DMF:H ₂ O	45
3	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	1,4-Dioxane:H ₂ O	60
4	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	EtOH:H ₂ O	NR

5	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	86
6	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN	40
7	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	DMF	15
8	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	1,4-Dioxane	18

^{*a*}Reaction conditions: **1a** (0.25 mmol), **2a** (2.0 equiv.), oxidant (3.0 equiv.), and catalyst (10 mol%) in 2 mL of solvent (3:1) were stirred at 90 °C in sealed tube vial under inert atmosphere. ^{*b*}Isolated yields after column chromatography.

Table-S2: Investigation of Oxidizing reagent^a

N:N 1	Me CN + (Cata Oxid 2a	Nulyst (10 mol%) ant (3.0 equiv.) Solvent 90 °C, 3-4 h	
Entry	Catalyst (mol %) Oxidant (equ		Solvent	Yield (%) ^[b]
1	Ag ₂ O (10)	$Na_2S_2O_8(3)$	CH ₃ CN:H ₂ O	50
2	Ag ₂ O (10)	$K_2S_2O_8(3)$	CH ₃ CN:H ₂ O	65
3	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	86

^{*a*}Reaction conditions: **1a** (0.25 mmol), **2a** (2.0 equiv.), oxidant (3.0 equiv.), and catalyst (10 mol%) in 2 mL of solvent (3:1) were stirred at 90 °C in sealed tube vial under inert atmosphere. ^{*b*}Isolated yields after column chromatography.

Table-S3: Investigation of Catalyst^a

Entry	Catalyst (mol %)	Oxidant (equiv.)	Solvent	Yield (%) ^[b]
1	$Ag_{3}PO_{4}(10)$	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	50
2	AgNO ₃ (10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	73
3	AgOAc(10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	76

4	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	86
5	$Ag_2CO_3(10)$	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	NR
6 ^c	Ag ₂ O (10)	$(NH_4)_2S_2O_8(3)$	CH ₃ CN:H ₂ O	NR

^{*a*}Reaction conditions: **1a** (0.25 mmol), **2a** (2.0 equiv.), oxidant (3.0 equiv.), and catalyst (10 mol%) in 2 mL of solvent (3:1) were stirred at 90 °C in sealed tube vial under inert atmosphere. ^{*b*}Isolated yields after column chromatography. ^oReaction at room temperature. NR- No reaction

4. Synthetic Procedure and Characterization of Pyrazole Compounds.

4.1. General procedure for the synthesis of substituted pyrazoles:

To a solution of 1,2-Diaza-1,3-dienes (42.7 mg, 0.25 mmol), α -keto acids (75.0 mg, 0.50 mmol), ammonium persulfate (171 mg, 3.0 equiv.) in CH₃CN/H₂O (3:1) and silver oxide (5.7 mg, 0.10 mmol) in a sealed tube vial was added. Then, the vial was degassed with nitrogen for 5 min and the resulting mixture was stirred in a preheated oil bath at 90 °C for 4 h. After completion of the reaction (monitored by TLC) the reaction mixture was cooled down to room temperature. The resulting mixture was extracted with ethyl acetate (3 × 15 mL) in water and organic phase was dried over anhydrous Na₂SO₄. The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column chromatography (100-200 mesh) by using ethyl acetate/hexane solvent system to give the desired product.

4.2. Characterization of substituted pyrazoles compounds:

3-methyl-1,5-diphenyl-1H-pyrazole-4-carbonitrile (3a): Yield, 86%; yellow solid;

M. P.: 104-106 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.43-7.39 (m, 3H), 7.37-7.32 (m, 5H), 7.28-7.25 (m, 2H), 2.53 (s, 3H)); ¹³C **NMR (100 MHz, CDCl₃)**: δ 152.8, 148.0, 138.9, 130.1, 129.3, 129.1, 129.1, 128.6, 127.2, 125.4, 114.5, 93.9, 12.7; **HRMS (ESI)**: calcd for C₁₇H₁₃N₃[M+H]⁺ 260.1188, found 260.1177.

3-methyl-1-phenyl-5-(p-tolyl)-1H-pyrazole-4-carbonitrile (3b): Yield, 87%; yellow

solid; **M. P.:** 109-111 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.35-7.33 (m, 3H), 7.25-7.23 (m, 2H), 7.21-7.15 (m, 4H), 2.49 (s, 3H), 2.35 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)**: δ 152.7, 148.2, 140.3, 138.9,

129.7, 129.3, 129.0, 128.5, 125.3, 124.3, 114.6, 93.6, 21.5, 12.7; **HRMS (ESI)**: calcd for $C_{18}H_{16}N_3[M+H]^+$ 274.1344, found 274.1335.

5-(4-methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3c): Yield, 90%;

yellow solid; oily product; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.34 (m, 2 H), 7.26-7.23 (m, 5H), 6.88 (dd, J = 6.8 Hz, 2.1 Hz, 2H), 3.82 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 160.8, 152.7, 148.0, 138.9, 132.4, 130.5, 129.3, 128.4, 125.3, 119.3, 114.5, 93.3, 55.4, 12.7; HRMS (ESI): calcd for C₁₈H₁₆N₃O[M+H]⁺ 290.1293, found 290.1279.

5-(4-isopropylphenyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3d): Yield 89%; a

yellow solid; **M. P.:** 114-116 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.35-7.34 (m, 3H), 7.26-7.23 (m, 2H), 7.22-7.20 (m, 4H), 2.94-2.86 (m, 1H), 2.49 (s, 3H), 1.24 (d, J = 6.9 Hz, 6H); ¹³C NMR (125 **MHz, CDCl₃**): 152.7, 151.0, 148.2, 139.0, 129.2, 129.0, 128.5, 127.1, 125.4, 124.5, 114.7, 93.6, 34.0, 23.8, 12.7; **HRMS (ESI)**:

calcd for $C_{20}H_{20}N_3[M+H]^+$ 302.1657, found 302.1644.

5-(3-methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3e): Yield 87%; yellow colour solid; M. P.: 81-83 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.34 (m, 3H),

7.30-7.26 (m, 3H), 6.96-6.93 (m, 1H), 6.90-6.88 (m, 1H), 6.83-6.82 (m, 1H), 3.70 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 159.8, 152.8, 147.8, 138.8, 130.1, 129.3, 128.6, 128.2, 125.3, 121.4, 116.2, 114.4, 114.2, 93.9, 55.3, 12.7; HRMS (ESI): calcd for $C_{18}H_{16}N_{3}O[M+H]^{+}$ 290.1293, found 290.1285.

3-methyl-1-phenyl-5-(2,3,4-trimethoxyphenyl)-1H-pyrazole-4-carbonitrile (3f): Yield 88%;

yellow solid; **M. P.:** 171-173 °C, ¹**H NMR (500 MHz, CDCl₃)**: δ 7.39-7.37 (m, 3H), 7.30-7.28 (m, 2H), 6.50 (s, 2H), 3.86 (s, 3H), 3.66 (s, 6H), 2.49 (s, 3H); ¹³C **NMR (125 MHz, CDCl₃)**: δ 153.5, 152.8, 147.9, 139.5, 139.0, 129.4, 128.7, 125.6, 122.0, 114.6, 106.5, 93.4, 61.0, 56.2,

12.7; **HRMS (ESI)**: calcd for $C_{20}H_{20}N_3O_3[M+H]^+$ 350.1505, found 350.1495

5-(4-fluorophenyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3g): Yield 83%;

yellow solid; **M. P.:** 117-119 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.37-7.35 (m, 3H), 7.31-7.29 (m, 2H), 7.24-7.22 (m, 2H), 7.07 (t, *J* = 8.4 Hz, 2H), 2.49 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)**: δ 163.5 (d, *J*_{C-F} = 250.0 Hz), 152.8, 146.9, 138.6, 131.2 (d, *J*_{C-F} = 8.4 Hz), 129.4, 128.7, 125.3, 123.3 (d, *J*_{C-F} = 3.4 Hz), 116.4 (d, *J*_{C-F} =

22.0 Hz), 114.3, 93.9, 12.7; ¹⁹F NMR (**376 MHz, CDCl₃**): -109.4 (s); HRMS (ESI): calcd for C₁₇H₁₃FN₃[M+H]⁺ 278.1094, found 278.1084.

5-(4-chlorophenyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3h):. Yield 81%;

yellow solid; oily product; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (dd, J = 6.6 Hz, 1.8 Hz, 2H), 7.38-7.35 (m, 3H), 7.24-7.22 (m, 2H), 7.19-7.16 (m, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 146.7, 138.6, 136.4, 130.4, 129.4, 128.8, 125.6, 125.3, 120.3, 114.2, 94.0, 12.7; HRMS (ESI): calcd for

 $C_{17}H_{13}ClN_3[M+H]^+$ 294.0798, found 294.0786.

5-(4-bromophenyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3i): Yield 78%; yellow solid; oily product; ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, J = 8.3 Hz, 2H), 7.37-7.36 (m, 3H),

7.24-7.22 (m, 2H), 7.18 (d, J = 8.3 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 146.7, 138.5, 132.4, 130.6, 129.5, 128.8, 126.1, 125.3, 124.7, 114.2, 94.0, 12.7; HRMS (ESI): calcd for C₁₇H₁₃BrN₃[M+H]⁺ 338.0293, found 338.0295.

5-(furan-2-yl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3j): Yield 75%; yellow

solid; **M. P.:** 191-193 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.48-7.46 (m, 4H), 7.38-7.37 (m, 2H), 6.42-6.40 (m, 2H), 2.47 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)**: 152.9, 144.3, 141.4, 139.3, 138.6, 129.5, 129.4, 126.0, 114.1, 112.5, 111.8, 91.6, 12.6; **HRMS (ESI)**: calcd for C₁₅H₁₂N₃O[M+H]⁺ 250.0980, found 250.0965.

3-methyl-1-phenyl-5-(thiophen-2-yl)-1H-pyrazole-4-carbonitrile (3k): Yield, 77%; yellow solid; M. P.: 206-208 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.42 (m, 3H), 7.39

(dd , J = 5.0 Hz, 1.1 Hz, 1H), 7.36-7.34 (m, 2H), 7.32 (dd , J = 3.7 Hz, 1.0 Hz, 1H), 7.05-7.03 (m, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 152.8, 142.3, 138.5, 129.9, 129.6, 129.5, 129.2, 127.7, 127.3, 126.5, 114.4, 93.0, 12.7; HRMS (ESI): calcd for $C_{15}H_{12}N_3S[M+H]^+$ 266.0752, found 266.0743.

5-(1H-indol-3-yl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3l): Yield 73%; brown

red solid; **M. P.:** 184-186 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.80 (s, 1H), 7.36-7.32 (m, 4H), 7.27-7.24 (m, 3H), 7.16-7.13 (m, 1 H), 7.05 (d, J = 8.0 Hz, 1H), 6.97-6.94 (m, 1H), 2.52 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)**: 152.9, 143.8, 139.5, 136.0, 129.2, 128.2, 125.9, 124.6, 124.5, 123.1, 121.0, 120.0, 115.2, 111.7,

103.5, 93.7, 12.9; **HRMS (ESI)**: calcd for C₁₉H₁₅N₄[M+H]⁺ 299.1297, found 299.1281.

3-methyl-5-(naphthalen-2-yl)-1-phenyl-1H-pyrazole-4-carbonitrile (3m): Yield 86%; Light yellow solid; **M. P.:** 119-121 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.97 (d, J = 1.3 Hz,

1H), 7.84-7.81 (m, 2H), 7.78 (d, J = 8.6 Hz, 1H), 7.57-7.50 (m, 2H), 7.33-7.31 (m, 3H), 7.29-7.27 (m, 2H), 7.22 (dd, J = 8.5 Hz, 1.8 Hz 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 152.9, 147.9, 138.9, 133.5, 133.0, 129.3, 128.8, 128.6, 128.6, 127.8, 127.7, 127.0, 125.6, 125.3, 124.5, 114.5, 94.2, 12.8; HRMS

(ESI): calcd for $C_{21}H_{16}N_3[M+H]^+$ 310.1344, found 310.1332.

5-(6-methoxynaphthalen-2-yl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (3n):

Yield 87%; white solid; **M. P.:** 149-151 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.86 (d, J = 1.2 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.33-7.31 (m, 3H), 7.29-7.27 (m, 2H), 7.21-7.18 (m, 2H), 7.10 (d, J = 2.3 Hz, 1H), 3.91 (s, 3H), 2.53 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)**: 159.1, 152.8, 148.1,

138.0, 136.5, 135.1, 131.9, 129.6, 128.5, 128.3, 125.3, 111.9, 60.0, 21.1, 14.4, 14.1; **HRMS** (ESI): calcd for C₂₂H₁₈N₃O[M+H]⁺ 340.1450, found 340.1442.

3,5-dimethyl-1-phenyl-1H-pyrazole-4-carbonitrile (30): Yield, 63%; yellow solid; M. P.:

89-91 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.48 (m, 3H), 7.47-7.43 (m, 1H), 7.41-7.39 (m, 2H), 2.44 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 145.8, 138.4, 129.5, 128.9, 125.0, 114.3, 93.7, 12.6, 11.9; HRMS (ESI): calcd for C₁₂H₁₂N₃[M+H]⁺198.1031, found 198.1023.

1,3,5-triphenyl-1H-pyrazole-4-carbonitrile (3q): Yield, 85%; Light yellow solid; M. P.:

169-171 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (dd, J = 8.4 Hz, 1.5 Hz, 2H), 7.44-7.39 (m, 3H), 7.37-7.30 (m, 5H), 7.29-7.24 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 153.5, 149.5, 138.8, 130.6, 130.2, 129.6, 129.4, 129.3, 129.1, 129.0, 128.7, 127.0, 127.0, 125.4, 115.2, 91.6; HRMS (ESI): calcd forC₂₂H₁₆N₃[M+H]⁺ 322.1344,

found 322.1331.

1-(4-methoxyphenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3r): Yield, 86% White

solid; M. P.: 154-156 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.51-7.44 (m, 3H), 7.43-7.39 (m, 5H), 7.26-7.23 (m, 2H), 6.87 (dd, J = 6.8, Hz, J = 2.1, Hz, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 153.2, 149.3, 131.9, 130.7, 130.1, 129.6, 129.4, 129.1, 129.0, 127.1, 126.8, 115.4, 114.5, 91.0, 55.6; HRMS (ESI): calcd for C₂₃H₁₈N₃O[M+H]⁺ 352.1450, found 352.1437

1-(4-isopropylphenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3s): Yield 84%; White solid;

M. P.: 164-166 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 8.12-8.10 (m, 2H), 7.52-7.48 (m, 2H), 7.48-7.45 (m, 2H), 7.44-7.39 (m, 5H), 7.23 (dd, J = 6.2 Hz, J = 2.6 Hz, 3H), 2.98-2.88 (m, 1H), 2.50 (d, J = 6.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): 153.4, 149.8, 149.3, 136.6, 130.7, 130.1, 129.6, 129.4, 129.1, 129.0, 127.3, 127.1, 127.0, 125.3, 115.4, 91.3, 33.9, 23.9; HRMS (ESI): calcd

for $C_{25}H_{22}N_3$ [M+H]⁺ 364.1814, found 364.1811.

3,5-diphenyl-1-(o-tolyl)-1H-pyrazole-4-carbonitrile (3t): Yield 84%; White solid; M. P.:

189-191 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.10 (d, J = 7.4 Hz, 2H), 7.50-7.42 (m, 3H), 7.38-7.34 (m, 6H), 7.25-7.23 (m, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 153.4, 150.6, 138.0, 135.4, 131.4, 130.7, 130.1, 129.9, 129.6, 129.0, 128.8, 128.0, 127.0, 126.8, 115.5, 89.9, 17.8; HRMS (ESI): calcd for C₂₃H₁₈N₃[M+H]⁺

336.1501, found 336.1493.

1-(4-fluorophenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3u): Yield 81%; Light

yellow solid; **M. P.:** 154-156 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.01 (d, J = 7.0 Hz, 2H), 7.44-7.41 (m, 2H), 7.40-7.33 (m, 4H), 7.37 (dd, J = 7.7 Hz, J = 1.2 Hz, 2H), 7.26-7.23 (m, 2H), 7.07 (t, J = 8.2 Hz, 2H); ¹³**C NMR (125 MHz, CDCl₃)**: δ 162.3 (d, $J_{C-F} =$ 248.0 Hz), 153.5, 149.5, 134.9, 130.5, 130.4, 129.8, 129.3 (d, $J_{C-F} =$ 12.9 Hz), 129.0, 127.3 (d, $J_{C-F} = 8.7$ Hz), 127.0, 126.8, 116.4 (d,

 $J_{C-F} = 22.9 \text{ Hz}$, 115.1, 91.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -109.4 (s); HRMS (ESI): calcd for C₂₂H₁₅FN₃[M+H]⁺340.1250, found 340.1245.

methyl 4-(4-cvano-3,5-diphenyl-1H-pyrazol-1-yl)benzoate (3v): Yield 72%; Light yellow

solid; **M. P.:** 92-93 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.11-8.09 (m, 2H), 8.04 (dd, J = 6.8 Hz, 1.8 Hz, 2H), 7.53-7.45 (m, 5H), 7.44-7.37 (m, 5H), 3.92 (s, 3H); ¹³C **NMR (125 MHz, CDCl₃)**: 163.3, 161.3, 153.5, 149.5, 134.9, 130.5, 130.4, 129.8, 129.3, 129.2, 129.0, 127.3, 127.0, 126.8, 116.4, 115.1, 91.6, 29.8; **HRMS (ESI)**: calcd for C₂₄H₁₈N₃O₂[M+H]⁺ 380.1399, found

380.1395.

1-(4-nitrophenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3w): Yield 73%; yellow

solid; **M. P.:** 174-176 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 8.23 (dd, J = 6.9 Hz, 2.0 Hz, 2H), 8.10 (dd, J = 8.2 Hz, 1.8 Hz, 2H), 7.55-7.51 (m, 5H), 7.50-7.46 (m, 3H), 7.40 (dd, J = 7.9 Hz, 1.2 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃): 154.3, 150.1, 147.0, 143.5, 131.0, 130.2, 130.0, 129.6, 129.3, 129.2, 127.0, 126.4,

125.4, 124.8, 114.5, 93.4; **HRMS (ESI)**: calcd for $C_{22}H_{15}N_4O_2[M+H]^+$ 367.1195, found 367.1185.

3,5-diphenyl-1-(4-(trifluoromethyl)phenyl)-1H-pyrazole-4-carbonitrile (3x): Yield, 75% White solid; **M. P.:** 149-151 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.10 (dd, J = 8.3 Hz, 1.5

Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.53-7.48 (m, 5H), 7.48-7.45 (m, 3H), 7.39 (dd, J = 7.9 Hz, 1.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 153.9, 149.8, 141.5, 132.2, 130.7, 130.3 (q, $J_{C-F} = 11.6$ Hz), 131.0, 129.9, 129.4, 129.3, 129.1, 127.6, 127.2, 126.6, 126.5 (q, $J_{C-F} = 3.5$ Hz), 126.1, 125.3, 119.0, 114.8, 92.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.6 (s); HRMS (ESI): calcd for

 $C_{23}H_{15}F_3N_3[M+H]^+$ 390.1218, found 390.1215.

1-(4-cyanophenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3y): Yield 77%; White

347.1293.

solid; M. P.: 179-181 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.09 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.6 Hz, 2H), 7.53-7.50 (m, 3H), 7.49-7.46 (m, 5H), 7.39 (d, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 154.2, 149.9, 142.1, 133.2, 130.9, 130.1, 129.6, 129.3, 129.1, 127.0, 126.5, 126.1, 125.4, 117.8, 114.5, 112.2, 93.1; HRMS (ESI): calcd for C₂₃H₁₅N₄[M+H]⁺ 347.1297, found

1-(2-chlorophenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3z): Yield 78%; White solid; M.

P.: 114-116 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.09 (dd, J = 8.5 Hz, 1.5 Hz, 2H), 7.51-7.45 (m, 5H), 7.43-7.39 (m, 2H), 7.38-7.36 (m, 5H), ¹³C NMR (100 MHz, CDCl₃): 153.8, 151.5, 136.6, 132.1, 131.2, 130.7, 130.5, 130.3, 129.8, 129.7, 129.2, 129.0, 128.8, 127.9, 127.0, 126.5 115.2, 90.5; HRMS (ESI): calcd for C₂₂H₁₅ClN₃[M+H]⁺ 356.0955,

1-(2,4-dimethylphenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3aa): Yield 80%; Light yellow solid; M. P.: 169-171 °C; ¹H NMR

(500 MHz, CDCl₃): δ 8.11 (d, J = 7.1 Hz, 2H), 7.50-7.42 (m, 3H), 7.38-7.35 (m, 5H), 7.14 (d, J = 7.9 Hz, 1H), 7.06-7.04 (m, 2H), 2.35 (s, 3H) 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 153.3, 150.5, 140.0, 135.5, 134.9, 132.0, 130.8, 130.0, 129.5, 128.9, 127.7, 127.6, 127.0, 126.9, 115.6, 89.8, 21.3, 17.7; HRMS (ESI): calcd for C₂₄H₂₀N₃[M+H]⁺ 350.1657, found 350.1643

1-(3,5-dimethylphenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3ab): Yield 81% Light

yellow solid; **M. P.:** 169-171 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.99 (d, J = 8.1 Hz, 2H), 7.43-7.37 (m, 5H), 7.30 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 2.42 (s, 3H), 2.37 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)**: 153.4, 149.2, 139.6, 138.8, 136.4, 130.1 129.9, 129.7, 129.4, 129.0, 127.9, 127.2, 126.9, 125.3, 115.5, 91.1, 21.5, 21.2; **HRMS (ESI)**: calcd for

 $C_{24}H_{20}N_3[M+H]^+$ 350.1657, found 350.1652.

1-(2,4-dichlorophenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3ac): Yield 70%; Light

yellow solid; **M. P.:** 149-151 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.09 (d, J = 7.6 Hz, 2H), 7.51-7.42 (m, 5H), 7.40-7.34 (m, 6H); ¹³**C NMR (125 MHz, CDCl₃)**: 154.0, 151.6, 136.7, 135.3, 133.1, 130.1, 130.6, 130.6, 130.5, 130.3, 129.8, 129.1, 129.0, 128.8, 128.3, 127.0, 126.3, 115.0, 90.8; **HRMS (ESI)**: calcd for C₂₂H₁₄Cl₂N₃[M+H]⁺ 390.0565, found 390.0565.

5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-phenyl-1H-pyrazole-4-carbonitrile (3ad): Yield 72%; Light yellow solid; M. P.: 159-161 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07

(dd, J = 8.2 Hz, 1.7 Hz, 2H), 7.53-7.46 (m, 4H), 7.53 (s, 1H), 7.40-7.37 (m, 3H), 7.31 (dd, J = 6.6 Hz, 2.1 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 154.1, 150.4, 137.0, 136.9, 135.1, 132.9, 130.7, 130.5, 130.1, 130.0, 130.0, 129.6, 129.1, 128.4, 127.0, 124.8, 114.7, 91.0; HRMS (ESI): calcd for C₂₂H₁₃Cl₃N₃[M+H]⁺ 424.0175, found

424.0178.

yellow solid; **M. P.:** 187-188 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.09 (dd, J = 8.3 Hz, 1.5 Hz, 2H), 7.53-7.50 (m, 5H), 7.49-7.47 (m, 1H), 7.41 (dd, J = 7.9 Hz, 1.3 Hz, 2H), 7.36 (t, J = 1.8 Hz, 1H), 7.26-7.26 (m, 2H); ¹³**C NMR (125 MHz, CDCl₃)**: 154.0, 149.8, 140.2, 135.6, 130.9, 130.1, 130.0, 129.5, 129.3 129.1, 128.8, 127.0,

126.3, 123.7, 114.6, 92.6; **HRMS (ESI)**: $C_{22}H_{14}Cl_2N_3[M+H]^+$ 390.0565, found 390.0565.

1-(3-chloro-4-fluorophenyl)-3,5-diphenyl-1H-pyrazole-4-carbonitrile (3af): Yield 73%; yellow solid; M. P.: 79-81 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 6.9 Hz, 2H),

7.55-7.51 (m, 2H), 7.49-7.45 (m, 5H), 7.40-7.38 (m, 2H), 7.11 (d, J = 6.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 157.9 (d, $J_{C-F} = 250$ Hz), 153.8, 149.7, 135.3 (d, $J_{C-F} = 3.0$ Hz), 130.7, 130.2, 129.9, 129.4, 129.3, 129.1, 127.8, 126.5, 125.0 (d, $J_{C-F} = 7.7$ Hz), 122.1 (d, $J_{C-F} = 18.9$ Hz), 117.0 (d, $J_{C-F} = 22.5$ Hz), 114.8, 92.1; ¹⁹F

NMR (376 MHz, CDCl₃): δ -109.4 (s); **HRMS (ESI)**: calcd for C₂₂H₁₄ClFN₃[M+H]⁺ 374.0860 found 374.0855.

3,5-diphenyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbonitrile (3ag): Yield 68%; Light yellow

solid; **M. P.:** 109-111 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 8.38-8.36 (m, 1H), 8.12 (dd, J = 8.3 Hz, 1.6 Hz, 2H), 7.86-7.81 (m, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.52-7.46 (m, 3H), 7.45-7.41 (m, 5H), 7.33-7.29 (m, 1H); ¹³**C NMR (100 MHz, CDCl₃)**: 153.7, 151.4, 150.3, 148.8, 138.8, 133.8, 130.4, 130.3, 130.1, 129.8, 129.4, 129.3, 129.0, 128.8, 128.6, 127.5, 127.1, 123.8, 119.4,

115.0, 92.6; **HRMS (ESI)**: calcd for $C_{21}H_{15}N_4[M+H]^+$ 323.1297, found 323.1286.

3-(4-methoxyphenyl)-5-phenyl-1-(p-tolyl)-1H-pyrazole-4-carbonitrile (3ah): Yield 75%

White solid; **M. P.:** 159-161 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 8.04 (dd, J = 6.8 Hz, 2.0 Hz, 2H), 7.43-7.36 (m, 5H), 7.19 (dd, J = 6.4 Hz, 1.8 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.01 (dd, J = 6.8 Hz, 2.0 Hz, 2H), 3.87 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 153.2, 149.1, 138.8, 136.4, 130.1, 129.8, 129.3, 129.0, 128.4,

127.2, 125.2, 123.4, 115.6, 114.4, 90.8, 55.5, 21.2; **HRMS (ESI)**: calcd for $C_{24}H_{20}N_3O[M+H]^+$ 366.1606, found 366.1595

3-(4-chlorophenyl)-5-phenyl-1-(p-tolyl)-1H-pyrazole-4-carbonitrile (3ai): Yield 73%

Light yellow solid; **M. P.:** 85-87 °C, ¹**H NMR (500 MHz, CDCl₃)**: δ 8.05 (dd, J = 6.7 Hz, 1.9 Hz, 2H), 7.46 (dd, J = 6.8 Hz, 1.9 Hz, 2H), 7.44-7.39 (m, 3H), 7.38-7.36 (m, 2H), 7.20-7.16 (m, 4H), 2.37 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)**: δ 152.1, 149.5 139.0, 136.3 135.6, 130.2, 129.9, 129.3, 129.2, 129.1, 128.2, 126.9, 125.2, 115.1, 91.2, 21.3; **HRMS (ESI)**: calcd for C₂₃H₁₇ClN₃[M+H]⁺ 370.1111, found

370.1107.

3-(4-bromophenyl)-5-phenyl-1-(p-tolyl)-1H-pyrazole-4-carbonitrile (3aj) Yield 71%

White solid. **M. P.:** 159-161 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.98 (dd, J = 6.7 Hz, 1.9 Hz, 2H), 7.62 (dd, J = 6.7 Hz, 1.9 Hz, 2H), 7.44-7.35 (m, 5H), 7.20-7.15 (m, 4H), 2.37 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃): δ 152.2, 149.5, 139.0, 136.3, 132.2, 130.2, 129.9, 129.3, 129.1, 128.4, 126.9, 125.2, 123.9, 115.1, 91.2, 21.3; HRMS (ESI): calcd for C₂₃H₁₇BrN₃[2M+H]⁺ 416.0585, found

416.0586.

methyl 4-(4-cyano-5-phenyl-1-(p-tolyl)-1H-pyrazol-3-yl)benzoate (3ak): Yield, 67%

Light yellow solid; **M. P.:** 154-156 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 8.20-8.14 (m, 4H), 7.45-7.37 (m, 5H), 7.21-7.16 (m, 4H), 3.95 (s, 3H), 2.38 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)**: δ 166.8, 152.1, 149.6, 139.1, 136.2, 134.9, 133.8, 130.9, 130.3, 130.3, 129.9, 129.3, 129.1, 128.6, 126.9, 126.8, 125.2, 115.0, 91.6, 52.4, 21.3; **HRMS(ESI)**: calcd for C₂₅H₂₀N₃O₂ [M+H]⁺ 394.1556, found 394.1544.

3-(4-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4carbonitrile (3al): Yield, 81% Light yellow solid; M. P.: 147-149

°C; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (dd, J = 6.6 Hz, 2.0 Hz, 2H), 7.55-7.47 (m, 5H), 7.44 (dd, J = 6.6 Hz, 2.0 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 151.5, 147.5, 138.3, 135.5, 129.7, 129.3, 129.3, 129.2, 128.0, 125.2, 114.9, 91.4, 12.0; HRMS(ESI): calcd for C₁₇H₁₃ClN₃ [M+H]⁺ 294.0798, found 294.0798.

ethyl 3-methyl-1,5-diphenyl-1H-pyrazole-4-carboxylate (3am): Yield, 72% Light yellow

solid; **M. P.:** 102-104 °C; ¹**H NMR (400 MHz, CDCl₃)**: δ 7.34-7.28 (m, 3H), 7.25-7.22 (m, 2H), 7.04 (m, 4H), 4.14 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 2.29 (s, 3H), 1.12 (t, J = 7.1, 3H); ¹³**C NMR (125 MHz, CDCl₃)**: δ 164.0, 151.7, 146.3, 137.6, 136.8, 130.5, 130.1, 129.4, 128.8, 127.9, 125.2, 111.8, 59.8, 21.1, 14.3, 14.0; **HRMS(ESI)**: calcd for C₂₀H₂₁N₂O₂[M+H]⁺ 321.1603, found 321.1596.

ethyl 5-(4-chlorophenyl)-3-methyl-1-(p-tolyl)-1H-pyrazole-4-carboxylate (3an) : Yield,

69%; white solid; **M. P.:** 89-91 °C; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.28 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 7.07-7.02 (m, 4H), 4.16 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 2.30 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃)**: δ 163.8, 151.8, 145.1, 129.5, 128.9, 125.0, 114.3, 93.7, 12.6, 11.9; **HRMS (ESI)**:

calcd for $C_{20}H_{20}ClN_2O_2 \ [M+H]^+ 355.1208$, found 355.1222.

5-phenyl-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazole-4-carbonitrile (3ao): Yield, 65% yellow

solid; oily product; ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.39 (m, 3H), 7.34 (dd, J = 7.9 Hz, 1.2 Hz, 2H), 7.20-7.13 (m, 4H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 149.7, 144.4 (q, $J_{C-F} = 39.0$ Hz), 140.0, 135.6, 130.8, 130.1, 130.0 (q, $J_{C-F} = 272.0$ Hz), 129.3 (d, $J_{C-F} = 3.0$ Hz), 125.8, 125.8, 125.2, 121.7, 118.3, 111.3, 92.0, 21.2; ¹⁹F NMR (282 MHz,

CDCl₃): δ -62.3 (s); **HRMS (ESI)**: calcd for C₁₈H₁₃F₃N₃ [M+H]⁺ 328.1062, found 328.1072.

5. Radical Trapping Experiments:

5.1. With TEMPO as a radical scavengers:

A solution of 1,2-Diaza-1,3-dienes (42.7 mg, 0.25 mmol), α -keto acids (75.0 mg, 0.50 mmol), ammonium persulfate (171 mg, 3.0 equiv.), silver oxide (5.7 mg, 0.10 mmol) and TEMPO (2.0 equiv.) in CH₃CN/H₂O (3:1) was taken in a sealed tube vial. Then, the vial was degassed with nitrogen for 5 min. and the resulting mixture was stirred in a preheated oil bath at 90 °C for 4 h. After completion of the reaction (monitored by TLC) the reaction mixture was cooled down to room temperature. The resulting mixture was extracted with ethyl acetate (3 × 15 mL) in water and organic phase was dried over anhydrous Na₂SO₄. The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column chromatography to afford the product.

5.2. With BHT as a scavengers:

A solution of 1,2-Diaza-1,3-dienes (42.7 mg, 0.25 mmol), α -keto acids (75.0 mg, 0.50 mmol), ammonium persulfate (171 mg, 3.0 equiv.), silver oxide (5.7 mg, 0.10 mmol) and BHT (2.0 equiv.) in CH₃CN/H₂O (3:1) was taken in a sealed tube vial. Then, the vial was degassed with nitrogen for 5 min. and the resulting mixture was stirred in a preheated oil bath at 90 °C for 4 h. After completion of the reaction (monitored by TLC) the reaction mixture was cooled down to room temperature. The resulting mixture was extracted with ethyl Me. CN

acetate $(3 \times 15 \text{ mL})$ in water and organic phase was dried over anhydrous Na₂SO₄.

The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column chromatography to give the desired product **3a** in 25% yield.

6. Gram-scale experiments

To a solution of 1,2-Diaza-1,3-dienes (1.026 g, 6.0 mmol), phenyl glyoxylic acid (1.800 g, 12.0 mmol), ammonium persulfate (1.369 g, 3.0 equiv.) in CH₃CN/H₂O (3:1) and silver oxide (139.041 mg, 10 mol%) in a sealed tube vial was added. Then, the vial was degassed with nitrogen for 5 min. and the resulting mixture was stirred in a preheated oil bath at 90 °C for 4 h. After completion of the reaction (monitored by TLC) the reaction mixture was cooled down to room temperature. The resulting mixture was extracted with ethyl acetate (3 × 25 mL) in water and organic phase was dried over anhydrous Na₂SO₄. The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column chromatography (100-200 mesh) by using ethyl acetate/hexane solvent system to give the desired product.

7. Synthetic Utility

7.1. Synthesis of Lonazolac Derivatives:

Reagents and conditions: (i) H_2SO_4 , H_2O , 110 °C, 4 h; (ii) LiAlH₄, THF, rt, 4 h; (iii) SOCl₂, toluene, 120 °C, 12 h; (iv) NaCN, DMF, DMSO, 80 °C.

7.1.1. General procedure for the synthesis of cyano-pyrazoles (3al):

To a solution of 1,2-Diaza-1,3-diene **1al** (66.75 mg, 0.25 mmol), pyruvic acid **2o** (44.0 mg, 0.50 mmol), ammonium persulfate (171 mg, 3.0 equiv.) in CH₃CN/H₂O (3:1) and silver oxide (5.7 mg, 0.10 mmol) in a sealed tube vial was added. Then, the vial was degassed with nitrogen for 5 min. and the resulting mixture was stirred in a preheated oil bath at 90 °C for 4 h. After completion of the reaction (monitored by TLC) the reaction mixture was cooled down to room temperature. The resulting mixture was extracted with ethyl acetate (3×15 mL) in water and organic phase was dried over anhydrous Na₂SO₄. The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column chromatography (100-200 mesh) by using ethyl acetate/hexane solvent system to give the desired product **3al** in 81% yield.

7.1.2. General procedure for the synthesis of alcohol (4):

A mixture of (1.0 mmol) of cyano-pyrazole (3al) in (5 mL) of 50% H_2SO_4 was heated to 110 °C and stirred for 4 h till completion of reaction. Water (10 mL) was added and the mixture was partially neutralized with ammonia to pH 2-3. The mixture was maintained at 0 °C for overnight, the precipitate solid were filtered off, and dried in the air.

To an ice-cooled solution of obtained carboxylic acid (1.0 mmol) in dry THF (5 mL) was added $LiAlH_4$ (2.0 mmol) in portions, then the reaction was then stirred at room temperature for 4 h. After completion of the reaction, methanol (2 mL) was added and the solvent was evaporated on vacuum. H₂O (10 mL) was added slowly and the reaction mixture was extracted with EtOAc (2×10 mL), and dried over MgSO₄ and evaporated under reduced pressure to give the crude alcohol (**4**).

7.1.3. General procedure for the synthesis of Lonazolac Derivatives (5):

To an ice-cooled solution of (1.0 mmol) of pyrazole-alcohol (4) in dry toluene (5 mL) was added thionyl chloride (10 mmol) dropwise over 25 min. The reaction was stirred at 120 °C for 12 h and evaporated under reduced pressure to give the crude chloride as brown solid.

A mixture of (1.2 mmol) of sodium cyanide was placed in (25 mL) two-neck flask. (10 mL) of dimethyl sulfoxide was used as solvent and stirred at 80 °C to complete dissolved . After 30 min. a solution of obtained (1.0 mmol) pyrazole-chloride in N,N dimethylformamide was added dropwise, and further stirred the reaction for 3 h. After completion, the reaction was poured in water, extracted with EtOAc (3×5 mL), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to give the cyano pyrazole which was further purified by column chromatography. A mixture of the obtained cyano-derivative (1.0 mmol) in (5 mL) of 50% H₂SO₄ was heated to 110 °C and stirred for 4 h till completion of reaction. Water (10 ml) was added and the mixture was partially neutralized with ammonia to pH 2-3. The mixture was maintained at 0 °C for overnight, the precipitate solid were filtered off, and dried in the air. The crude product was purified by silica gel column chromatography (100-200 mesh) by using ethyl acetate/hexane solvent system to give the desired lonazolac derivative (**5**) in 55% yield.

7.2. Synthesis of Rimonabant Analogue

Reagents and conditions: (i) H₂SO₄, H₂O, 100 °C, overnight; (ii) 1-aminopiperidine, DIPEA, EDC, HOBt, CH₂Cl₂, 25 °C, 12 h.

7.2.1. General procedure for the synthesis of cyano-pyrazoles (3ad):

To a solution of 1,2-Diaza-1,3-diene **1ac** (75.28 mg, 0.25 mmol), 4-chlorophenylglyoxalic acid **2h** (92.28 mg, 0.50 mmol), ammonium persulfate (171 mg, 3.0 equiv.) in CH₃CN/H₂O (3:1) and silver oxide (5.7 mg, 0.10 mmol) in a sealed tube vial was added. Then, the vial was degassed with nitrogen for 5 min. and the resulting mixture was stirred in a preheated oil bath at 90 °C for 4 h. After completion of the reaction (monitored by TLC) the reaction mixture was cooled down to room temperature. The resulting mixture was extracted with ethyl acetate (3×15 mL) in water and organic phase was dried over anhydrous Na₂SO₄. The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column chromatography (100-200 mesh) by using ethyl acetate/hexane solvent system to give the desired product **3ad** in 72% yield.

7.2.2. General procedure for the synthesis of Rimonabant Analogue (6):

A mixture of (1.0 mmol) of cyano-pyrazole (**3ad**) in (5 mL) of 50% H_2SO_4 was heated to 110 °C and stirred for 4 h till completion of reaction. Water (10 mL) was added and the mixture was partially neutralized with ammonia to pH 2-3. The mixture was maintained at 0 °C for overnight, the precipitate solid were filtered off, and dried in the air.

A solution of the obtained carboxylic acid (1.0 mmol) dissolved in dry dichloromethane (10 mL) was cooled to 0 °C and hydroxybenztriazole (HOBt, 1.5 mmol) was added and stirred for 5 min. To this solution, EDC (1.5 mmol) was added and continue stirring for 15 min. followed by the addition of 1-aminopiperidine (1.0 mmol), and DIPEA (2.0 equiv.) and the reaction was further stirred for 12 h. The reaction was quenched with saturated aqueous solution of NH₄Cl (5 mL), and 10 mL water was added. The resulting mixture was extracted with DCM (3×15 mL) and organic phase was dried over anhydrous Na₂SO₄. The organic layer was concentrated in *vacuo* and crude product was purified by silica gel column

chromatography (100-200 mesh) by using ethyl acetate/hexane solvent system to give the desired Rimonabant Analogue (6) in 70% yield.

5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-phenyl-N-(piperidin-1-yl)-1H-pyrazole-4-

carboxamide (6): Yield, 70% white solid; M. P.: 248-251
°C; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (dd, J = 8.0 Hz, 1.7 Hz, 2H), 7.45-7.40 (m, 4H), 7.29 (d, J = 1.1 Hz, 2H), 7.27 (s, 3H), 7.26-7.25 (m, 1H), 6.24 (br s, 1H), 2.55 (m, 4H), 1.67-1.63 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 161.5, 150.9, 144.5, 136.1, 136.7, 133.2, 131.6, 130.9, 130.8, 130.5, 130.5, 129.0, 128.9, 128.7, 128.0, 127.7, 126.5, 114.8, 57.7, 56.6, 25.5, 25.2, 23.2; HRMS(ESI):

calcd for $C_{27}H_{24}Cl_3N_4O [M+H]^+ 527.0986$, found 527.1809.

8. X-ray crystal structure of compound 3a:

Figure 1: ORTEP diagram of **3a** with 50% ellipsoid probability, hydrogen atom were omitted for clarity.

Crystallization: Crystals of compound **3a** were grown from the solvent ethyl acetate/hexane by slow evaporation method.

X-Ray Data Collection and Structure Refinement Details:

The single crystal of **3a** suitable for Single-crystal X-ray differaction was collected at 100 K on a Bruker SMART APEX2,^{1a} software suite CCD diffractometer using graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). The structure was solved by the intrinsic phasing (SHELXT/XT) method, and refined was using *SHELXTL-2015*^{1b} installed in the Olex2^{1c} software suite. The non-hydrogen atoms were refined anisotropically, whereas the H atoms fixed to their geometrically ideal positions were refined isotropically. The PLATON program was applied for the validation of refinement.^{1d}

- (a) Bruker (2005). APEX2. Version 5.053. Bruker AXS Inc., Madison, Wisconsin, USA. (b) Sheldrick, G. M. SHELXT –Integrated space-group and crystal structure determination, Acta Cryst. 2015, A71, 3. (c) Dolomanov, O. V. Bourhis, L. J. Gildea, R. J. Howard, J. A. K. H. Puschmann, J. Appl. Cryst. 2009, 42, 339. (d) Spek, A. L. (2005) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands
- 2. Supplementary:

Table 1 Crystal data and structure refinement for 3a .							
Identification code	3a						
Empirical formula	$C_{17}H_{13}N_3$						
Formula weight	259.30						
Temperature/K	100 (2)						
Crystal system	monoclinic						
Space group	P2 ₁ /c						
a/Å	21.011(3)						
b/Å	7.5421(9)						
c/Å	18.744(2)						
α/°	90						
β/°	116.488(4)						
γ/°	90						
Volume/Å ³	2658.5(6)						

Z	8
$\rho_{calc}g/cm^3$	1.296
μ/mm ⁻¹	0.079
F(000)	1088.0
Crystal size/mm ³	0.2 imes 0.18 imes 0.16
Radiation	MoK α ($\lambda = 0.71073$)
2@ range for data collection/°	5.82 to 50.094
Index ranges	$-25 \le h \le 25, -8 \le k \le 8, -22 \le l \le 22$
Reflections collected	30986
Independent reflections	$4624 [R_{int} = 0.0454, R_{sigma} = 0.0243]$
Data/restraints/parameters	4624/0/364
Goodness-of-fit on F ²	1.140
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0465, wR_2 = 0.1008$
Final R indexes [all data]	$R_1 = 0.0483, wR_2 = 0.1018$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.21
CCDC No.	2092505

9. References:

[1] Kumar, A.; Katiyar, S.; Kumar Jaiswal, A.; Kant, R.; Sashidhara, K. V. PIDA-Mediated Oxidative Aromatic C-N Bond Cleavage: Efficient Methodology for the Synthesis of 1,2-Diaza-1,3-Dienes under Ambient Conditions. *Tetrahedron Letters* **2021**, *77*, 153252.

[2] Gilchrist, T L.; Sanchez Romero, O. A.; Wasson. R. C. J. chem. Soc. Perkin Trans. I, 1989, 353.

[3] Yang, N.; Zhang, H.; Yuan, G. KI-catalyzed reactions of aryl hydrazines with α -oxocarboxylic acids in the presence of CO₂: access to 1,3,4-oxadiazol-2(3H)-ones. *Org. Chem. Front.*, **2019**, *6*, 532.

[4] Huang, H.; Zhang, G.; Chen, Y. Dual hypervalent Iodine(III) reagents and photoredox catalysis enable decarboxylative ynonylation under mild conditions. *Angew. Chem., Int. Ed.*, 2015, *54*, 1.

[5] Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Chem. Commun., 2017, 53, 3228.

10. Spectral Data:

NMR and ¹³C NMR Spectra (3b)

¹⁹F

NMR Spectra (3g)

 · · · · ·	' 1	' '									
0	-20	_10	-60	_90	_100	_120	_140	-160	_190	-200	
0	-20	-40	-00	-80	-100	-120	-140	-100	-190	-200	ppm

¹H NMR and ¹³C NMR Spectra (3h)

¹H NMR and ¹³C NMR Spectra (3k)

¹H NMR and ¹³C NMR Spectra (3l)

¹H NMR and ¹³C NMR Spectra (30)

¹H NMR and ¹³C NMR Spectra (3q)

¹H NMR and ¹³C NMR Spectra (3r)

¹H NMR and ¹³C NMR Spectra (3s)

¹H NMR and ¹³C NMR Spectra (3u)

¹H NMR and ¹³C NMR Spectra (3w)

¹H NMR and ¹³C NMR Spectra (3x)

¹H NMR and ¹³C NMR Spectra (3y)

¹H NMR and ¹³C NMR Spectra (3z)

¹H NMR and ¹³C NMR Spectra (3ab)

¹H NMR and ¹³C NMR Spectra (3ae)

¹H NMR and ¹³C NMR Spectra (3af)

¹⁹F NMR Spectra (3af)

¹H NMR and ¹³C NMR Spectra (3ag)

¹H NMR and ¹³C NMR Spectra (3ah)

¹H NMR and ¹³C NMR Spectra (3ak)

¹H NMR and ¹³C NMR Spectra (3am)

¹H NMR and ¹³C NMR Spectra (3an)

¹⁹F NMR Spectra (3ao)

