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Experimental
Preparation of Se-rich MnCdSe nanocrystals

A class of Se-rich MnCdSe solid solutions was prepared through a facile one-pot
solution-phase approach. Firstly, anhydrous cadmium chloride (CdCl,) (0.8 mmol, 0.6 mmol,
0.485 mmol, 0.4 mmol), 2.4 mmol of anhydrous manganese chloride (MnCl;), and 3 mmol
of selenium (Se) powder were added into 16 mL of oleylamine in a three-neck flask. Then
the mixture was heated up to 300°C for 1 h under an argon atmosphere. The precipitate was
cooled down to room temperature and subsequently washed with n-hexane several times.
Afterward, the product was collected after drying overnight under a vacuum at 60°C.
Similarly, bare CdSe was prepared using the same method without adding MnCl,. Finally,
the final product was obtained through a ligand exchange process by exchanging the surface
oleylamine with 3-mercaptopropionic acid (MPA), according to previous reports’2.
Characterization

The crystalline phases were studied by an X-ray diffractometer (XRD, Smartlab-3KW
(Rigaku Ltd., Japan)). The SEM images were recorded on a scanning electron microscope
(SEM, Hitachi SU8220). The TEM images were obtained from a Titan G260-300
transmission electron microscopy. Ultraviolet-visible (UV-vis) diffuse reflectance spectra
were obtained from a Lambda-750 spectrometer. X-ray photoelectron spectroscopy (XPS)
measurements were identified by a Thermo Fisher Scientific K-Alpha system. Time-resolved
photoluminescence (TRPL) spectra (excitation wavelength: 380 nm) were derived from an
FL3C-111 (HORIBA Instruments Inc.). The elemental composition of the samples was
analyzed by coupled plasma-atomic emission spectroscopy (ICP-AES) using ICPS-7510

(Shimadzu, Japan).



Photocatalytic H2 evolution tests

The H» evolution measurements of the photocatalyst were performed on a sealed Pyrex
flask reaction system. In a typical experiment, 30 mg of the photocatalyst was dispersed in 60
mL of 0.35 M Na»S/0.25 M Na>SOs3 aqueous solution. Then the mixture was degassed for 30
min by a vacuum pump to remove the dissolved gas. After that, the reactor was vertically
irradiated by a 300 W Xe lamp equipped with a 420 nm UV cut-off filter. The generated Ha
was detected by online gas chromatography (GC-7920, N> as the carrier gas, TCD). The
apparent quantum yield (AQY) was measured using a 420 nm band-pass filter according to

the following equation.

04) — number of evolved hydrogen moleculesx2 x o
AQY ( A)) number of incident photons 100%

Photoelectrochemical measurements

The photoelectrochemical (PEC) measurements were conducted on a VSP-300
(Biologic) electrochemical workstation. The working electrodes were prepared as follows:
the photocatalyst (5 mg) was dissolved in ethanol (0.5 mL) containing Nafion (10 pL) and
ultrasonicated for three hours. Then the ink was deposited on a 2.0 cm? ITO glass. The
Ag/AgCl (3.5 M KCl) electrode, Pt sheet, and 0.1 M Na>SOj4 solution served as the reference
electrode, counter electrode, and electrolyte, respectively. The photocurrent responses were
tested under several visible-light on-off cycles at an applied potential of 0.2 V vs. Ag/AgCl.
Electrochemical impedance spectroscopy (EIS) was measured over a frequency range from
107! to 10° Hz. Mott-Schottky plots were determined at frequencies of 500, 1000, and 1500

Hz.
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Fig. S1. XRD patterns of Se source (a) and the as-obtained product without adding CdCl»

precursor in the reaction solution (b).
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Fig. S2. (a, b) SEM, (¢) TEM, and (d) HRTEM images of pure CdSe.



Fig. S3. (a) TEM and (b) HRTEM images of Mno 33Cdo.67Se1-+x.
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Fig. S4. (a) SEM, (b) TEM, and (c, d) HRTEM images of Mng.46Cdo.54S€1+x.



Fig. S5. Elemental mapping images of (a) Mn, (b) Cd, (¢) Se, and (d) the corresponding

overlapping image of Mn (red), Cd (green), and Se (blue) for Mno.46Cdo.54Se+x.

Fig. S6. (a) TEM and (b) HRTEM images of Mno.70Cdo.30Se1-+x.
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Fig. S7. (a) UV-vis diffuse reflectance spectra and (b) Tauc plots of pure CdSe and

MnCdSe solid solutions.
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Fig. S8. XRD patterns of Mno.ssCdo.32Se1+x before and after the photocatalytic cycle

experiment. (Note: The peak at about 22° in the spent Mng.¢3Cdo.32Se1+x can be

ascribed to the characteristic peak of the quartz sample holder)



Fig. S9. TEM (a) and HRTEM images (b) of Mno.ssCdo.32Sei1-+x after the cycled

photocatalytic experiment.
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Fig. S10. Time course for photocatalytic H> production of the recycled
Mno6sCdo.32Se1+x after 37 days.
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Fig. S11. (a) transient photocurrent responses and (b) EIS Nyquist plots (inset:
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Fig. S12. Time-resolved photoluminescence (TRPL) spectra of CdSe, and

Mnyg6sCdo32Sei+x.
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(d) Mng.63Cdo32Sei1+x, and (e) Mno.70Cdo.30Se1+x samples.

Fig. S13. Mott-Schottky plots of (a) CdSe, (b) Mno33Cdo.s7Sei+x, (¢) Mno.46Cdo.5aSe1+x,



Table. S1. The Mn/Cd/Se molar ratio in the MnCdSe solid solutions was determined

by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

Precursor composition (mmol) ICP-AES
Samples
MnCl, CdCh Se Mn:Cd:Se
CdSe 0 3 3 0:1:1

Mno.33Cdo.67Se1+x 24 0.8 3 0.33: 0.67: (1+0.03)
Mno.46Cdo.5aSe1+x 24 0.6 3 0.46: 0.54: (1+0.07)
Mno68Cdo.32Se1-+x 24 0.485 3 0.68: 0.32: (1+0.20)
Mnyo.70Cdoz0Ser+x 24 0.4 3 0.70: 0.30: (1+0.18)




Table. S2. Comparison of the photocatalytic H, evolution performance of the metal

selenide photocatalysts.

Sacrificial

H, Evolution Rate

: AQY (%)
Catalysts Light Source Ref.
reagent (umol g h) (Wavelength)
CdSe/ZnCr- | 300 W Xe lamp NazS 2196 3
LDH (A>420 nm) /Na2S0s
300 W Xe lamp Naz2S 4
In>Ses NPS (> 420 nm) /N22SOs 1347.59
300 W Xe lamp NazS 5
ZnO-CdSe | = 420nm) | /NaSOs 1045
FeSex/ZnSe | 300 W Xe lam methanol 1228 4.1% 6
2 P (360 nm)
275 W Xe lamp Naz2S 7
CdsSe (A>400nm) | /Na2SOs 233
300 W Xe lamp NazS 10 g
ZnosCdosSe |~ ) > 400 nm) | /NaSOs (umol b))
300 W Xe lamp
Cd D Na2SO 630 --- ?
e QDs 1 5 420 nm) a3
300 W Xe lamp NazS 10
CdsSe (.>400nm) | /NazSOs 1153
500 W Xe lamp | Ascorbic 1"
ZnSe (L > 420 nm) acid 330
500 W Xe lamp | Ascorbic 1.57% 1
ZnSe/ZnS |5 - 420 nm) acid 1810 (420 nm)
300 W Xe lamp Naz2S 12
CdSe (L.>420nm) | /Na:SOs 6
300 W Xe lamp Naz2S 12
ZnSe (A>420nm) | /NazSOs 1056
300 W Xe lamp Naz2S 1.7% 13
ZnosCdosSe | =5 5 420 nm) | INazSOs 438.3 (420 nm)
300 W Xe NazS 7.5% This
MnCdSe | jamp (1> 420 | /NazSOs 2582 (420 nm) | work

)




Table. S3. Fitting results of the Nyquist plots for CdSe, and MnCdSe solid solution.

Photocatalyst Rs Ret CPE n
Q) @  (Fem?S™)
CdSe 16.55 21306 2.9E-3 0.78
Mno 33Cdo.67Se1+x 17.81 1852 1.2E-3 0.78
Mno.46Cdo.5aSe1+x 16.63 1210 1.8E-3 0.74
Mno.6sCdo.325€1+x 16.41 1146 4.1E-3 0.70
Mno.70Cdo.30Se1+x 17.65 1699 2.2E-3 0.78

Note: Rs is Ohm internal resistance, Rct represents the charge transfer resistance, and
CPE is the constant phase element.
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