- Supporting Information -

Bisstibane–Distibane conversion via consecutive single-electron oxidation and reduction reaction

Alexander Gehlhaar,^a Hanns Micha Weinert,^a Christoph Wölper,^a Nina Semleit,^b Gebhard Haberhauer,^{*b} Stephan Schulz^{*a,c}

^a Institute for Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany.

^b Institute for Organic Chemistry Duisburg-Essen, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany

^c Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany **Table of Contents**

I. Experimental Details

Figures S1-5. ¹H, ¹³C{¹H} NMR and IR spectra of (Trip₂Sb)₂Naph (1).

Figures S6-8. ¹H, ¹³C{¹H} NMR and IR spectra of (Trip₂Bi)₂Naph (**2**).

Figures S9-14. ¹H, ¹¹B, ¹³C{¹H}, ¹⁹F NMR and IR spectra of [(Trip₂Sb)(TripSb)Naph][Bar^F] (**3**).

Figures S15-17. ¹H, ¹³C{¹H} NMR and IR spectra of (TripSb)₂Naph (4).

Figures S18-20. VT ¹H NMR spectra of 1-3.

Figures S21-24. CV data of 1 and 2.

II. Crystallographic Details

 Table S1. Single crystal X-ray diffraction data of 1-4.

Figure S25. Solid-state structure of **1**. Displacement ellipsoids drawn at 50 % probability levels. The H atoms are omitted for clarity.

Tables S2,3. Bond lengths [Å] and angles [°] of **1**.

Figure S26. Solid-state structure of **2**. Displacement ellipsoids are drawn at a 50 % probability level. The H atoms are omitted for clarity.

Tables S4,5. Bond lengths [Å] and angles [°] 2.

Figure S27. Solid-state structure of **3**. Displacement ellipsoids drawn at 50 % probability levels. The hydrogen atoms are omitted for clarity.

Tables S6,7. Bond lengths [Å] and angles [°] of **3**.

Figure S28. Solid-state structure of 4. Displacement ellipsoids are drawn at a 50 % probability levels.

 Tables S8,9.
 Bond lengths [Å] and angles [°] of 4.

Figure S29. Observed intramolecular CH- π contacts in 1 (A), 2 (B) and 3 (C).

III. Computational Details

Figure S30. Selected orbitals of **1** (left), **3** (middle), and **4** (right) calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03). Hydrogen atoms are omitted for clarity.

Figure S31. Selected orbitals of 2 calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03).

Figure S32. Selected orbitals of **S1** (left), **S3** (middle), and **S4** (right) calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03).

Figure S33. Selected orbitals of S2 calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03).

Figure S34. The percentage contributions of the attractive forces and the total binding energies in S3-S6, 3 and 4.

Figure S35-37. Molecular graphs of S3-S6, 3 and 4 showing the bond paths as well as the critical points. Table 10. Distances between the bond critical points (BCP) and the Sb atoms in S3-S6, 3 and 4. **Table S11.** Topological and energetic properties of electron density calculated at the bond criticalpoints of the Sb--Sb interaction for S3-S6, 3 and 4.

Table S12. Interaction energies between the two Sb atoms in S3-S6, 3 and 4 derived by IQA.

Figure S38. Atomic charges calculated using AIM analysis (B3LYP-D3BJ/TZP).

Figure S39. Atomic charges calculated using NBO analysis (B3LYP-D3BJ/def2-TZVP).

IV. Cartesian Coordinates and Absolute Energies for All Calculated Compounds

 Table S13. Absolute energies [au] calculated by means B3LYP-D3BJ/def2-TZVP.

V. References

I. Experimental Details

General Considerations. All manipulations were performed in an atmosphere of purified argon using standard Schlenk and glovebox techniques. Toluene, *n*-hexane and Et₂O were dried using an mBraun Solvent Purification System (SPS). CH₂Cl₂ and fluorobenzene were dried over CaH₂, while THF was carefully dried over NaK. Dried solvents were degassed and stored over appropriate molecular sieves. thf- d_8 , C₆D₆ and CD₂Cl₂ were dried over activated molecular sieves (4 Å, 3 Å CD₂Cl₂) and degassed prior to use. The anhydrous nature of the solvents was verified by Karl Fischer titration. Water was degassed through reflux in an argon atmosphere, followed by distillation. 1,8-Li₂Naph,¹ Trip₂SbCl,² Trip₂BiCl,² FcBAr^{F, 3} KC₈⁴ were prepared according to literature procedures. 1,8-Br₂Naph, TripBr, Mg, NOSbF₆ and ⁿBuLi (2.5 M in hexane) were commercially available and used as received, whereas SbCl₃ and BiCl₃ were purified by sublimation prior to use. Microanalyses were performed at the Elemental Analysis Laboratory of the University of Duisburg-Essen. Melting points were measured using a Thermo Scientific 9300 apparatus. NMR spectra were recorded using a Bruker Avance Neo 400 (¹H: 400.1 MHz; ¹¹B = 128.4 MHz; ¹³C{¹H}: 150.9 MHz; ¹⁹F: 376.5 MHz) or Bruker DMX300 (¹H: 300.1 MHz; ¹³C{¹H}: 150.9 MHz) spectrometer, and the spectra were referenced to internal CDHCl₂ (¹H: δ = 5.32 ppm), C₆D₅H (¹H: δ = 7.16 ppm), C₇D₇H (¹H: δ = 2.08 ppm, ¹³C: δ = 20.43 ppm) or C₄D₇HO (¹H: δ = 1.72 ppm; ¹³C: δ = 25.31 ppm). IR spectra were recorded with an ALPHA-T FT-IR spectrometer equipped with a single reflection ATR sampling module in a glovebox to guarantee measurements under inert gas conditions. CV studies were performed in a glovebox using a Metrohm Autolab PGSTAT 204 potentiostat with a threeelectrode setup consisting of a Pt-disk (d = 1 mm) working electrode, a Pt-wire counter electrode, and an Ag-wire pseudoreference electrode; and ferrocene was used as an internal standard. For 5, the ferrocene redox couple was obscured; hence, decamethylferrocene was used as the internal reference (440 mV vs Fc in THF/0.1 M NBu₄PF₆).⁵.

Synthesis of $(Trip_2Sb)_2Naph (1)$. Li₂Naph (2 mmol, 369.8 mg) and Trip₂SbCl (4 mmol, 2.29 g) were each dissolved in 20 mL of thf. The solutions were cooled to -78 °C, combined and stirred for 12 h. All volatiles were removed *in vacuo* and 20 mL of degassed water was added. The resulting mixture was stirred for 30 minutes, filtered and the residue dried *in vacuo*. Washing with ethanol (2 x 15 mL) and drying *in vacuo* gave **1** as a yellow powder.

Yield: 1.565 g (65 %); **m.p.:** 265.8 °C; **elemental analysis [wt-%]:** calcd. for C₇₀H₉₈Sb₂: C 71.1, H 8.35. found: C 70.7, H 8.43; ¹H NMR (400.1 MHz, 297 K, CD₂Cl₂): *δ* [ppm] 8.16 (dd, ³J_{HH} = 6.95 Hz, ⁴J_{HH} = 1.07 Hz, 2 H, Naph-2,7-H), 7.86 (dd, ³J_{HH} = 8.15 Hz, ⁴J_{HH} = 1.26 Hz, 2 H, Naph-4,5-H), 7.31 (dd, ³J_{HH} = 7.96 Hz, ³J_{HH} = 7.04 Hz, 2 H, Naph-3,6-H), 6.91 (s (br), 8 H, Ph-*m*-H), 3.70 (s (br), 2 H, *o*-CH(CH₃)₂), 3.41 (s (br), 2 H, *o*-CH(CH₃)₂), 2.80 (s (br), 6 H, *o/p*-CH(CH₃)₂), 2.53 (s (br), 2 H, *o*-CH(CH₃)₂), 1.19 (d, ³J_{HH} = 6.61 Hz, 36 H, *o/p*-CH(CH₃)₂), 0.96 (s (br), 12 H, *o*-CH(CH₃)₂), 0.45 (s (br), 12 H, *o*-CH(CH₃)₂), 0.19 (s (br), 12 H, *o*- CH(CH₃)₂); ¹³C{¹H} NMR (100.6 MHz, 297 K, CD₂Cl₂): δ [ppm] 156.27 (br), 154.96 (br), 150.41 (br), 148.85 (br), 143.53, 143.30, 139.59 (Naph-2,7-CH), 137.26 (br), 136.94, 130.81 (Naph-4,5-CH), 125.12 (Naph-3,6-CH), 123.21 (br, Ph-*m*-CH), 122.22 (br, Ph-*m*-CH), 37.97 (br), 36.59 (br, *o*-CH(CH₃)₂), 34.93 (br, o-CH(CH₃)₂), 34.55 (o/p-CH(CH₃)₂), 26.05 (br, o-CH(CH₃)₂), 25.00 (br), 24.66 (br, o-CH(CH₃)₂), 24.22 (*o*/*p*-CH(*C*H₃)₂), 24.16 (*o*-CH(*C*H₃)₂), 23.21 (br, *o*-CH(*C*H₃)₂); ¹H NMR (300.1 MHz, 232 K, CD₂Cl₂): δ [ppm] 8.08 (d, ³J_{HH} = 6.78 Hz, 2 H, Naph-2,7-H), 7.84 (d, ³J_{HH} = 7.63 Hz, 2 H, Naph-4,5-H), 7.29 (t, ³J_{HH} = 7.38 Hz, 2 H, Naph-3,6-H), 6.98 (s, 2 H, Ph¹-m-H), 6.93 (s, 2 H, Ph¹-m-H), 6.79 (s, 2 H, Ph²-m-H), 6.76 (s, 2 H, Ph²*m*-*H*), 3.63 (sept, ³J_{HH} = 6.55 Hz, 2 H, Ph¹-*o*-C*H*(CH₃)₂), 3.31 (sept, ³J_{HH} = 6.24 Hz, 2 H, Ph²-*o*-C*H*(CH₃)₂), 2.85-2.65 (m, 6 H, Ph-o/p-CH(CH₃)₂), 2.48 (sept, ³J_{HH} = 6.55 Hz, 2 H, Ph²-o-CH(CH₃)₂), 1.16-1.10 (m, 36 H, Ph-o/p-CH(CH₃)₂), 0.92-0.89 (m, 12 H, Ph¹-o-CH(CH₃)₂), 0.38 (d, ³J_{HH} = 6.69 Hz, 6 H, Ph²-o-CH(CH₃)₂), 0.31 (d, ³J_{HH} = 6.23 Hz, 6 H, Ph²-o-CH(CH₃)₂), 0.20 (d, ³J_{HH} = 6.46 Hz, 6 H, Ph²-o-CH(CH₃)₂), 0.02 (d, ³J_{HH} = 6.23 Hz, 6 H, Ph¹-*o*-CH(CH₃)₂); ¹³C{¹H} NMR (75.5 MHz, 232 K, CD₂Cl₂): δ [ppm] 155.55 (Ph¹-*o*-C), 155.11 (Ph²-o-C), 154.13 (Ph¹-o-C), 153.31 (Ph²-o-C), 149.83 (Ph-p-C), 148.03 (Ph-p-C), 142.66 (Naph-1,8-C), 142.27 (Naph-9-C), 142.23 (Ph¹-ipso-C), 138.80 (Naph-2,7-CH), 136.40 (Ph²-ipso-C), 136.07 (Naph-10-C), 130.27 (Naph-4,5-CH), 124.55 (Naph-3,6-CH), 122.98 (Ph¹-m-CH), 122.34 (Ph¹-m-CH), 121.82 (Ph²*m*-CH), 121.17 (Ph²-*m*-CH), 37.62 (Ph¹-*o*-CH(CH₃)₂), 36.29 (Ph²-*o*-CH(CH₃)₂), 36.01 (Ph²-*o*-CH(CH₃)₂), 34.34 (Ph²-o-CH(CH₃)₂), 34.09 (Ph¹-p-CH(CH₃)₂), 33.95 (Ph²-p-CH(CH₃)₂), 25.67 (Ph²-o-CH(CH₃)₂), 25.40 (Ph¹-o-CH(CH₃)₂), 24.50 (Ph¹-o-CH(CH₃)₂), 24.00 (Ph¹-o-CH(CH₃)₂), 23.96 (Ph-p-CH(CH₃)₂), 23.81 (Ph-p-CH(CH₃)₂), 23.75 (Ph²-o-CH(CH₃)₂), 22.72 (Ph²-o-CH(CH₃)₂), 22.31 (Ph¹-o-CH(CH₃)₂), 22.26 (Ph²-o-CH(CH₃)₂); **IR** *v* [cm⁻¹]: 3033 (w), 2954 (s), 2923 (m), 2864 (m), 1594 (w), 1553 (w), 1535 (w), 1459 (m), 1415 (m), 1380 (m), 1360 (m), 1306 (w), 1258 (m), 1231 (w), 1191 (w), 1155 (w), 1129 (w), 1099 (m), 1066 (m), 1051 (m), 1007 (w), 935 (w), 876 (s), 816 (m), 773 (m), 744 (m), 668 (w), 643 (w), 629 (w), 613 (w), 563 (w), 511 (m), 470 (w), 450 (w), 433 (w), 395 (m).

Synthesis of $(Trip_2Bi)_2Naph$ (2). Li₂Naph (1.99 mmol, 362 mg) and Trip₂BiCl (2.00 mmol, 1.3 g) were each dissolved in 20 mL of thf and the resulting solutions cooled to -30 °C. The yellow solution of Trip₂BiCl was added to Li₂Naph and stirred overnight. The reaction mixture was dried *in vacuo* and 25 mL of water were added, stirred for 30 minutes, filtered and the residue dried *in vacuo*. The solid was extracted with toluene and the resulting solution concentrated to 2 mL. Ethanol (10 mL) was added, yielding a precipitate that was dissolved in upon heating. Storage of the solution at +4 °C gave yellow crystals of **2**.

Yield: 754.8 mg (56 %); **m.p.:** 249.6 °C '(dec.); **elemental analysis [wt-%]:** calcd. for C₇₀H₉₈Bi₂: C 61.93, H 7.28. found: C 62.0, H 7.22; ¹H NMR (400.1 MHz, 297 K, CD₂Cl₂): *δ* [ppm] 8.87 (dd, ³J_{HH} = 6.88 Hz, ⁴J_{HH} = 0.96 Hz, 2 H, Naph-2,7-CH), 7.88 (dd, ³J_{HH} = 7.96 Hz, ⁴J_{HH} = 0.93 Hz, 2 H, Naph-4,5-CH), 7.27 (t, ³J_{HH} = 7.41 Hz, 2 H, Naph-3,6-CH), 7.07 (s, 8 H, Ph-*m*-*H*), 2.93 (sept, ³J_{HH} = 6.45 Hz, 8 H, *o*-CH(CH₃)₂), 2.80 (sept, ³J_{HH} = 6.94 Hz, 4 H, *p*-CH(CH₃)₂), 1.20 (d, ³J_{HH} = 7.01 Hz, 24 H, *p*-CH(CH₃)₂), 0.81 (d, ³J_{HH} = 6.42 Hz, 24 H, *o*-CH(CH₃)₂), 0.70 (d, ³J_{HH} = 4.67 Hz, 24 H, *o*-CH(CH₃)₂); ¹³C{¹H} NMR (100.6 MHz, 297 K, CD₂Cl₂): δ [ppm] 160.75 (Naph-*ipso*-C), 156.17 (Trip-*ipso*/*o*-C), 149.12 (Trip-*p*-C), 145.71 (Naph-10-C), 143.89 (Naph-2,7-CH), 139.26 (Naph-9-C), 129.98 (Naph-4,5-CH), 127.71 (Naph-3,6-CH), 123.67 (Ph-*m*-CH), 39.30 (*o*-CH(CH₃)₂), 34.60 (*p*-CH(CH₃)₂), 25.12 (*o*-CH(CH₃)₂), 24.42 (*o*-CH(CH₃)₂), 24.21 (*p*-CH(CH₃)₂), 24.14 (*p*-CH(CH₃)₂); **IR** *v* [cm⁻¹]: 3015 (w), 2947 (s), 2914 (m), 2890 (m), 2855 (m), 1582 (w), 1549 (w), 1523 (w), 1453 (m), 1408 (m), 1375 (m), 1355 (m), 1302 (w), 1254 (w), 1226 (w), 1187 (w), 1152 (w), 1126 (w), 1093 (m), 1048 (m), 990 (m), 935 (w), 872 (m), 833 (w), 806 (m), 764 (m), 734 (m), 640 (w), 550 (w), 550 (w), 507 (w), 471 (w), 448 (w).

Synthesis of $[(Trip_2Sb)(TripSb)Naph][BAr^F]$ (3). 1 (0.8 mmol, 1 g) and $[Fc^+][BAr^F]$ (0.8 mmol, 723 mg) were each dissolved in 30 mL of thf. The solutions were cooled to -78 °C and the solution of $[Fc^+][BAr^F]$ was added to 1, yielding a deep purple reaction mixture, which was stirred for 12 h. Removal of all volatiles *in vacuo* gave an oily residue, that was washed with *n*-hexane until the hexane solution stayed colorless. Additional 50 mL of *n*-hexane were added, the resulting mixture stirred at 60 °C for 12 h and then filtered. Drying the solid residue *in vacuo* gave **3** as a green powder. Crystals suitable for single crystal X-ray diffraction were obtained by dissolving 100 mg of **3** in 2 mL of DCM, which was layered with 30 mL of *n*-hexane. Storage for a week at +4 °C resulted in the formation of green blocks of **3**.

Yield: 1.325 g (84 %); m.p.: 106.0 °C; elemental analysis [wt-%]: calcd. for C₇₉H₇₅BF₂₀Sb₂: C 57.21, H 4.56. found: C 56.5, H 4.22; ¹H NMR (400.1 MHz, 297 K, CD₂Cl₂): δ [ppm] 8.21 (d, ³J_{HH} = 8.43 Hz, 1 H, Naph-*H*), 8.11-8.06 (m, 3 H, Naph-*H*), 7.77 (dd, ³J_{HH} = 8.05 Hz, ³J_{HH} = 7.21 Hz, 1 H, Naph-*m*-*H*), 7.70 (dd, ³Ј_{НН} = 8.26 Hz, ³Ј_{НН} = 6.95 Hz, 1 H, Naph-*m*-CH), 7.17 (s, 2 H, Ph-*m*-H), 7.09 (s (br), 2 H, Ph-*m*-H), 7.06 (s, 2 H, Ph-*m*-H), 3.82 (s (br), 1 H, *o*-CH(CH₃)₂), 2.90 (sept, ³J_{HH} = 6.85 Hz, 1 H, *p*-CH(CH₃)₂), 2.84 (sept, ³J_{HH} = 6.91 Hz, 2 H, *p*-C*H*(CH₃)₂), 2.68 (sept, ³J_{HH} = 6.58 Hz, 2 H, *o*-C*H*(CH₃)₂), 2.58 (sept, ³J_{HH} = 6.58 Hz, 2 H, o-CH(CH₃)₂), 2.00 (s (br), 1 H, o-CH(CH₃)₂), 1.47 (s (br), 6 H, o-CH(CH₃)₂) 1.21-1.16 (m, 18 H, p-CH(CH₃)₂), 0.97 (d, ³J_{HH} = 6.75 Hz, 6 H, *o*-CH(CH₃)₂), 0.91 (d, ³J_{HH} = 6.51 Hz, 6 H, *o*-CH(CH₃)₂), 0.68 (d, ³J_{HH} = 6.51 Hz, 6 H, *o*-CH(CH₃)₂), 0.64 (d, ³J_{HH} = 6.75 Hz, 6 H, *o*-CH(CH₃)₂), 0.25 (s (br), 6 H, *o*-CH(CH₃)₂); ¹¹B NMR (128.4 MHz, 297 K, CD₂Cl₂): δ [ppm] –16.75 (s); ¹³C{¹H} NMR (100.6 MHz, 297 K, CD₂Cl₂): δ [ppm] 157.63 (br), 155.81 (Trip-C), 154.89 (Trip-C), 154.35 (Trip-C), 153.87 (Trip-C), 153.63 (Trip-C), 149.79 (br, Trip-C), 147.35 (br, Trip-C), 142.35 (Naph-ipso-C), 141.11 (Naph-C), 140.12 (Naph-ipso-C), 139.86 (br, Trip-C), 138.43 (Naph-CH), 137.87 (br, Trip-C), 137.37 (Naph-10-C), 136.03 (Naph-CH), 135.47 (br, Trip-C), 134.54 (Naph-CH), 134.32, 132.36 (Naph-CH), 128.45 (Trip-C), 128.0 (Trip-C), 127.93 (Naph-3/5-CH), 127.85 (Naph-3/5-CH), 125.91 (Trip-*m*-C), 125.31 (Trip-*m*-CH), 124.07 (Trip-*m*-CH), 40.39 (*o*-CH(CH₃)₂), 38.73 (o-CH(CH₃)₂), 37.26 (o-CH(CH₃)₂), 34.78 (p-CH(CH₃)₂), 34.69 (p-CH(CH₃)₂), 34.54 (p-CH(CH₃)₂), 25.05 (o-CH(CH₃)₂), 24.46 (o-CH(CH₃)₂), 23.96 (o-CH(CH₃)₂), 23.83 (p-CH(CH₃)₂), 23.72 (p-CH(CH₃)₂), 23.68 (*p*-CH(CH₃)₂), 23.07 (br, *o*-CH(CH₃)₂), 14.28 (br, *o*-CH(CH₃)₂); ¹⁹F NMR (376.5 MHz, 297 K, CD₂Cl₂): **δ** [ppm] –133.26 (br-s, 2 F, BAr^F-o/m-CF), –163.84 (t, ³J_{FF} = 20.55 Hz, 1 F, BAr^F-p-CF), –167.72 (br-t, ³J_{FF}

= 18.19 Hz, 2 F, BAr^F-o/m-CF); ¹H NMR (300.1 MHz, 242 K, CD₂Cl₂): δ [ppm] 8.18 (d, ³J_{HH} = 7.98 Hz, 1 H, Naph-*H*), 8.09-8.04 (m, 3 H, Naph-*H*), 7.76 (dd, ³J_{HH} = 7.91 Hz, ³J_{HH} = 7.38 Hz, 1 H, Naph-*m*-*H*), 7.68 (dd, ³J_{HH} = 8.17 Hz, ³J_{HH} = 6.81 Hz, 1 H, Naph-*m*-*H*), 7.16 (d, ⁴J_{HH} = 1.61 Hz, 1 H, Sb⁺-Ph-*m*-*H*), 7.12 (s, 2 H, Ph-*m*-*H*), 7.00 (s, 2 H, Ph-*m*-*H*), 7.00 (s, 2 H, Ph-*m*-*H*), 6.89 (d, ⁴J_{HH} = 1.37 Hz, 1 H, Ph-*m*-*H*), 3.72 (sept, ³J_{HH} = 6.57 Hz, 1 H, *o*-C*H*(CH₃)₂), 2.85 (sept, ³J_{HH} = 6.72 Hz, 1 H, *p*-CH(CH₃)₂), 2.79 (sept, ³J_{HH} = 6.47 Hz, 2 H, *p*-C*H*(CH₃)₂), 2.62 (sept, ³J_{HH} = 6.22 Hz, 2 H, *o*-C*H*(CH₃)₂), 2.50 (sept, ³J_{HH} = 6.22 Hz, 2 H, *o*-C*H*(CH₃)₂), 1.91 (sept, ³J_{HH} = 6.72 Hz, 1 H, *o*-C*H*(CH₃)₂), 1.45 (d, ³J_{HH} = 6.29 Hz, 3 H, CH(CH₃)₂), 1.26 (d, ³J_{HH} = 6.29 Hz, 3 H, *o*-CH(CH₃)₂), 0.63 (d, ³J_{HH} = 6.29 Hz, 6 H, *o*-CH(CH₃)₂), 0.56 (d, ³J_{HH} = 6.71 Hz, 6 H, *o*-CH(CH₃)₂), 0.17 (d, ³J_{HH} = 6.71 Hz, 3 H, *o*-CH(CH₃)₂), 0.12 (d, ³J_{HH} = 6.71 Hz, 3 H, *o*-CH(CH₃)₂), 187 (w), 1587 (w), 1506 (w), 1506 (m), 1458 (s), 1412 (w), 1381 (w), 1359 (w), 1304 (w), 1255 (m), 1079 (m), 976 (s) 876 (w), 812 (m), 766 (m), 753 (m), 680 (m), 658 (m), 604 (w), 568 (w), 510 (w).

Synthesis of $(TripSb)_2Naph (4)$. 3 (0.06 mmol, 100 mg) and KC₈ (0.06 mmol, 8 mg) were dissolved in 10 mL of thf. The suspension was stirred for 12 h and then filtered, giving a pale-yellow solution. The solvent was removed *in vacuo*, and the remaining residue was extracted with *n*-hexane (3 x 5 mL) and concentrated until the formation of precipitate. The solid was redissolved in the heat and the solution was stored at +4 °C to give a yellow crystalline solid.

Yield: 17 mg (37 %); **m.p.:** 245.8 °C; **elemental analysis [wt-%]**: calcd. for $C_{40}H_{52}Sb_2$: C 61.88, H 6.75. found: C 61.8, H 6.56; ¹H NMR (400.1 MHz, 297 K, CD₂Cl₂): δ [ppm] 7.86 (dd, ³J_{HH} = 6.79 Hz, ⁴J_{HH} = 1.21 Hz, 2 H, Naph-2/7-C*H*), 7.71 (dd, ³J_{HH} = 8.21 Hz, ⁴J_{HH} = 1.11 Hz, 2 H, Naph-4/5-C*H*), 7.38 (dd, ³J_{HH} = 8.11 Hz, ³J_{HH} = 6.85 Hz, 2 H, Naph-3/6-*H*), 6.94 (s, 4 H, Ph-*m*-*H*), 3.25 (sept, ³J_{HH} = 6.78 Hz, 4 H, *o*-CH(CH₃)₂), 2.82 (sept, ³J_{HH} = 6.97 Hz, 2 H, *p*-CH(CH₃)₂), 1.21 (dd, ³J_{HH} = 6.88 Hz, ⁴J_{HH} = 2.06 Hz, 12 H, *p*-CH(CH₃)₂), 1.14 (d, ³J_{HH} = 6.84 Hz, 12 H, *o*-CH(CH₃)₂), 0.64 (d, ³J_{HH} = 6.65 Hz, 12 H, *o*-CH(CH₃)₂); ¹³C{¹H} NMR (100.6 MHz, 297 K, CD₂Cl₂): δ [ppm] 156.69 (Ph-*o*-*C*), 150.20 (Ph-*p*-*C*), 147.95 (Naph-9-*C*), 145.02 (Naph-10-*C*), 138.75 (Naph-2/7-CH), 138.47 (Naph-1,8-*C*), 134.67 (Ph-*ipso*-*C*), 128.92 (Naph-4,5-CH), 125.91 (Naph-3,6-CH), 122.34 (Ph-*m*-CH), 38.20 (*o*-CH(CH₃)₂), 34.48 (*p*-CH(CH₃)₂), 25.27 (*o*-CH(CH₃)₂), 24.39 (*o*-CH(CH₃)₂), 24.06 (*p*-CH(CH₃)₂); IR **v** [cm⁻¹]: 3030 (w), 2943 (s), 2914 (m), 2891 (m), 2854 (m), 1585 (w), 1546 (w), 1533 (w), 1451 (m), 1408 (m), 1375 (m), 1355 (m), 1339 (w), 1296 (w), 1255 (m), 1228 (w), 1191 (w), 1163 (w), 1092 (m), 1059 (m), 1048 (m), 1018 (m), 972 (w), 931 (w), 872 (m), 806 (s), 769 (s), 740 (m), 704 (w), 670 (w), 643 (w), 620 (w), 557 (w), 509 (w), 463 (w), 444 (w), 428 (w).

Figure S1. ¹H NMR spectrum of (Trip₂Sb)₂Naph (1) in CD₂Cl₂.

Figure S2. ¹H NMR spectrum of (Trip₂Sb)₂Naph (**1**) in CD₂Cl₂ recorded at -40 °C.

Figure S3. ¹³C{¹H} NMR spectrum of (Trip₂Sb)₂Naph (1) in CD₂Cl₂.

Figure S4. ¹³C{¹H} NMR spectrum of (Trip₂Sb)₂Naph (**1**) in CD₂Cl₂ recorded at -40 °C.

Figure S5. IR spectrum of neat (Trip₂Sb)₂Naph (1).

Figure S6. ¹H NMR spectrum of (Trip₂Bi)₂Naph (2) in CD₂Cl₂.

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of $(Trip_2Bi)_2Naph$ (2) in CD_2CI_2 .

Figure S8. IR spectrum of neat (Trip₂Bi)₂Naph (2).

Figure S9. ¹H NMR spectrum of [(Trip₂Sb)(TripSb)Naph][BAr^{F-20}] (**3**) in CD₂Cl₂. Due to overlap of signals and lack of crosspeaks in 2D NMR spectra, no exact assignment of ¹H NMR signals to the corresponding protons was possible.

Figure S10. ¹H NMR spectrum of [(Trip₂Sb)(TripSb)Naph][BAr^{F-20}] (**3**) in CD_2CI_2 at -30 °C. Due to low intensity in ¹³C{¹H} NMR spectra, no complete assignment of ¹H NMR to the corresponding protons was possible.

Figure S11. ¹¹B NMR spectrum of [(Trip₂Sb)(TripSb)Naph][BAr^{F-20}] (**3**) in CD₂Cl₂.

Figure S12. ¹³C{¹H} NMR spectrum of $[(Trip_2Sb)(TripSb)Naph][BAr^{F-20}]$ (**3**) in CD₂Cl₂. Due to a lack of crosspeaks in 2D NMR spectra, no exact assignment of ¹³C NMR signals to the corresponding carbon atoms was possible.

Figure S13. ¹⁹F NMR spectrum of [(Trip₂Sb)(TripSb)Naph][BAr^{F-20}] (3) in CD₂Cl₂.

Figure S14. IR spectrum of neat [(Trip₂Sb)(TripSb)Naph][BAr^{F-20}] (3).

Figure S15. ¹H NMR spectrum of (TripSb)₂Naph (4) in CD₂Cl₂.

Figure S16. ¹³C{¹H} NMR spectrum of (TripSb)₂Naph (4) in CD₂Cl₂.

Figure S17. IR spectrum of neat (TripSb)₂Naph (4).

Figure S18. ¹H VT-NMR spectrum of (Trip₂Sb)₂Naph (1) in toluene-*d*₈.

Figure S19. ¹H VT-NMR spectrum of (Trip₂Bi)₂Naph (**2**) in toluene-*d*₈.

Figure S20. ¹H VT-NMR spectrum of [(Trip₂Sb)(TripSb)Naph][BAr^{F-20}] (3) in CD₂Cl₂.

Figure S21. Cyclic voltammograms of solutions (1 mM) in DCM with $[^{n}Bu_{4}N][B(3,5-(CF_{3})_{2}-C_{6}H_{3})_{4}]$ (100 mM) as the electrolyte. **1** shows two oxidation events, while one is observed for **2**.

Figure S22. Cyclic voltammogram of $(Trip_2Sb)_2Naph$ (**1**) in DCM solution (1 mM) at ambient temperature containing ["Bu₄N][B(3,5-(CF₃)₂-C₆H₃)₄] (50 mM) as electrolyte and Fc* as the internal standard (E_{1/2} –0.545 V vs Fc^{0/+}).⁵

Figure S23. Cyclic voltammogram of $(Trip_2Sb)_2Naph$ (**1**) in DCM solution (1 mM) at ambient temperature containing $[^{n}Bu_4N][B(3,5-(CF_3)_2-C_6H_3)_4]$ (50 mM) as electrolyte at varying scan rate showing the pseudoreversible oxidation event. Values are referenced to Fc. Fc* was used as the internal standard ($E_{1/2}$ –0.545 V vs Fc^{0/+}).⁵

 $E[V] (Fc^{0/+})$

Figure S24. Cyclic voltammogram of $(Trip_2Bi)_2Naph (2)$ in DCM solution (1 mM) at ambient temperature containing $[^nBu_4N][B(3,5-(CF_3)_2-C_6H_3)_4]$ (50 mM) as electrolyte. The blue graph shows the scan in oxidative direction, while the red graph was performed in reductive direction. Values are referenced to Fc.

II. Crystallographic Details

Single-crystal X-ray analyses. The crystals were mounted on nylon loops in inert oil. Data of 1 (alf_116_d) and **3** (alf_121_d) were collected on a Bruker AXS D8 Kappa diffractometer with APEX2 detector (mono-chromated Mo_{ka} radiation, $\lambda = 0.71073$ Å) those of **2** (alf_155) and **4** (alf_146_b) on a Bruker AXS D8 Venture diffractometer with Photon II detector (mono-chromated Cu_{ka} radiation, λ = 1.54178 Å, micro-focus source) at 100(2) K. The structures were solved by Direct Methods (SHELXS-2013)⁶ and refined anisotropically by full-matrix least-squares on F^2 (SHELXL-2017)^{7,8}. Absorption corrections were performed semi-empirically from equivalent reflections on basis of multi-scans (Bruker AXS APEX3). Hydrogen atoms were refined using a riding model or rigid methyl groups. In 2 (alf_155) an isopropyl group is disordered over two positions. Its bond lengths and angles were restrained to be equal (SADI). The atoms were refined with common displacement parameters (EADP) to which RIGU restraints were applied. In 3 (alf_121_d) an isopropyl group is disordered over two positions. Its bond lengths and angles were restrained to be equal (SADI) and RIGU and SIMU restraints were applied to its anisotropic displacement parameters. The high residual electron density in 2 and 4 is likely caused by absorption. Several methods and parameters were tried to improve the absorption correction, however, the residual density could not be reduced any further. The highest residual density maxima in **3** are a straight line with the heavy atoms and evenly spaced thus they are likely artifacts caused by Fourier series truncation.

CCDC-2157418 (**1**, alf_116_D), -2157419 (**2**, alf_155), -2157420 (**3**, alf_121_d), and -2157421 (**4**, alf_146_b) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound (Identification code)	1 (alf_116_Dm)	2 (alf_155m)	3 (alf_121_dm)	4 (alf_146_bm)
Empirical formula	C70H98Sb2	C70H98Bi2	C79H75BF20Sb2	$C_{40}H_{52}Sb_2$
<i>M</i> [g/mol]	1182.98	1357.44	1658.70	776.31
Crystal size [mm]	0.422 x 0.356 x 0.184	0.416 × 0.155 × 0.118	0.428 × 0.417 × 0.250	0.312 × 0.230 × 0.104
<i>T</i> [K]	100(2)	100(2)	100(2)	100(2)
Crystal system	orthorhombic	monoclinic	triclinic	orthorhombic
Space group	P21212	<i>C</i> 2/c	ΡĪ	Pbca
<i>a</i> [Å]	15.8867(7)	34.169(3)	14.118(3)	15.8584(15)
<i>b</i> [Å]	14.0109(7)	10.4618(8)	15.623(3)	17.1790(15)
<i>c</i> [Å]	14.5536(7)	18.2971(14)	17.104(3)	26.761(2)
α [°]	90	90	82.723(8)	90
в [°]	90	110.0432(19)	80.545(8)	90
γ [°]	90	90	78.391(8)	90
V [ų]	3239.4(3)	6144.4(8)	3627.9(12)	7290.6(11)
Ζ	2	4	2	8
$D_{calc} [g \cdot cm^{-3}]$	1.213	1.467	1.518	1.415
μ(MoKα [mm⁻¹])	0.871	11.390 (Cu <i>K</i> α)	0.840	11.920
Transmissions	0.75/0.66	0.75/0.44	0.75/0.62	0.75/0.35
F(000)	1240	2736	1672	3152
Index ranges	$-26 \le h \le 26$	–42 ≤ h ≤ 42	–21 ≤ h ≤ 21	$-16 \le h \le 19$
	$-23 \le k \le 23$	$-13 \le k \le 13$	$-24 \le k \le 24$	$-21 \le k \le 21$
	–24 ≤ / ≤ 24	–20 ≤ l ≤ 22	–26 ≤ l ≤ 26	–34 ≤ / ≤ 33
\varTheta_{max} [°]	36.632	80.540	33.920	80.951
Reflections collected	172477	70130	230758	100079
Independent reflections	16019	6421	28346	7676
R _{int}	0.0225	0.0607	0.0494	0.0652
Refined parameters	338	338	958	401
$R_1\left[l>2\sigma(l)\right]$	0.0162	0.0491	0.0324	0.0610
wR ₂ [all data]	0.0422	0.1341	0.0769	0.1613
X(Flack)	-0.0183(19)	-	-	-
GooF	1.087	1.102	1.125	1.135
Δho_{final} (max/min) [e·Å ⁻³]	0.980/-0.558	6.445/-2.252	2.988/-1.085	3.216/-1.648

 Table S3. Single crystal X-ray diffraction data of 1-4.

Figure S25. Solid-state structure of **1**. Displacement ellipsoids drawn at 50 % probability levels. The H atoms are omitted for clarity.

Table S4. Bond lengths [Å] of 1.

Sb1-C1	2.1769(11)	C12-C34	1.5240(15)
Sb1-C28	2.1902(10)	C13-C30	1.527(2)
Sb1-C3	2.2019(11)	C13-C29	1.531(2)
Sb1-Sb1#1	3.2327(2)	C14-C15	1.4007(15)
C1-C2	1.3805(16)	C14-C19	1.5205(16)
C1-C4	1.4447(12)	C15-C16	1.3927(17)
C2-C7	1.4119(17)	C16-C17	1.3908(16)
C3-C14	1.4118(15)	C16-C22	1.5147(16)
C3-C18	1.4167(16)	C17-C18	1.3991(16)
C4-C5	1.433(2)	C18-C25	1.5255(16)
C5-C6	1.4206(14)	C19-C20	1.534(2)
C5-C6#1	1.4207(14)	C19-C21	1.534(2)
C6-C7	1.3676(18)	C22-C24	1.527(2)
C8-C9	1.3991(17)	C22-C23	1.535(2)
C8-C28	1.4179(15)	C25-C27	1.532(2)
C8-C13	1.5252(17)	C25-C26	1.533(2)
C9-C10	1.3905(17)	C31-C32	1.526(2)
C10-C11	1.3918(16)	C31-C33	1.534(2)
C10-C31	1.5169(17)	C34-C36	1.5350(17)
C11-C12	1.4004(15)	C34-C35	1.5374(17)
C12-C28	1.4094(15)		

 Table S5. Bond angles [°] of 1.

C1-Sb1-C28	101.51(4)	C9-C8-C13	117.29(10)	C17-C18-C25	116.13(10)
C1-Sb1-C3	106.84(4)	C28-C8-C13	123.22(10)	C3-C18-C25	124.08(10)
C28-Sb1-C3	97.64(4)	C10-C9-C8	122.02(10)	C14-C19-C20	113.12(11)
C1-Sb1-Sb1#1	80.89(3)	C9-C10-C11	117.67(10)	C14-C19-C21	111.38(11)
C28-Sb1-Sb1#1	167.59(3)	C9-C10-C31	121.32(10)	C20-C19-C21	109.90(10)
C3-Sb1-Sb1#1	93.23(3)	C11-C10-C31	121.00(11)	C16-C22-C24	110.37(11)
C2-C1-C4	119.58(10)	C10-C11-C12	122.43(10)	C16-C22-C23	112.29(11)
C2-C1-Sb1	115.24(8)	C11-C12-C28	119.18(9)	C24-C22-C23	110.96(12)
C4-C1-Sb1	125.19(8)	C11-C12-C34	117.61(10)	C18-C25-C27	111.30(11)
C1-C2-C7	122.32(11)	C28-C12-C34	123.19(9)	C18-C25-C26	111.81(11)
C14-C3-C18	118.65(10)	C8-C13-C30	112.63(12)	C27-C25-C26	111.60(11)
C14-C3-Sb1	127.81(8)	C8-C13-C29	110.79(12)	C12-C28-C8	118.95(10)
C18-C3-Sb1	113.47(8)	C30-C13-C29	110.87(13)	C12-C28-Sb1	125.01(7)
C5-C4-C1#1	117.12(7)	C15-C14-C3	119.38(10)	C8-C28-Sb1	114.17(8)
C5-C4-C1	117.12(7)	C15-C14-C19	116.10(10)	C10-C31-C32	112.22(12)
C1#1-C4-C1	125.75(13)	C3-C14-C19	124.51(10)	C10-C31-C33	110.77(11)
C6-C5-C6#1	119.07(15)	C16-C15-C14	122.53(10)	C32-C31-C33	110.86(13)
C6-C5-C4	120.46(7)	C17-C16-C15	117.51(10)	C12-C34-C36	112.51(9)
C6#1-C5-C4	120.46(7)	C17-C16-C22	121.86(10)	C12-C34-C35	111.29(9)
C7-C6-C5	120.92(11)	C15-C16-C22	120.59(10)	C36-C34-C35	109.40(10)
C6-C7-C2	119.09(11)	C16-C17-C18	122.13(10)		
C9-C8-C28	119.47(10)	C17-C18-C3	119.78(10)		

Figure S26. Solid-state structure of **2**. Displacement ellipsoids are drawn at a 50 % probability level. The H atoms are omitted for clarity.

Table S	4 . Bond	lengths	[Å]	of 2 .
---------	-----------------	---------	-----	---------------

Bi1-C11	2.318(4)	C102-C112	1.533(8)
Bi1-C12	2.326(5)	C132-C152	1.526(7)
Bi1-C13	2.326(5)	C132-C142	1.528(7)
Bi1-Bi1#1	3.6742(4)	C13-C23	1.409(8)
C11-C21	1.380(6)	C13-C63	1.417(8)
C11-C61	1.441(5)	C23-C33	1.414(7)
C21-C31	1.411(7)	C23-C73	1.522(8)
C31-C41	1.356(8)	C33-C43	1.396(10)
C41-C51	1.416(7)	C43-C53	1.346(11)
C51-C61	1.435(9)	C43-C103	1.537(11)
C12-C62	1.403(7)	C43-C10'3	1.66(2)
C12-C22	1.408(7)	C53-C63	1.390(8)
C22-C32	1.394(7)	C63-C133	1.514(8)
C22-C72	1.515(6)	C73-C83	1.539(7)
C32-C42	1.409(7)	C73-C93	1.546(7)
C42-C52	1.371(7)	C103-C123	1.432(10)
C42-C102	1.521(7)	C103-C113	1.471(10)
C52-C62	1.405(7)	C10'3-C12'3	1.429(16)
C62-C132	1.524(6)	C10'3-C11'3	1.440(15)
C72-C82	1.525(8)	C133-C143	1.532(7)
C72-C92	1.532(7)	C133-C153	1.537(8)
C102-C122	1.520(7)		

 Table S5. Bond angles [°] of 2.

C11-Bi1-C12	107.53(16)	C22-C32-C42	121.8(4)	C43-C33-C23	121.4(6)
C11-Bi1-C13	96.72(17)	C52-C42-C32	117.4(4)	C53-C43-C33	118.3(6)
C12-Bi1-C13	92.31(19)	C52-C42-C102	121.1(4)	C53-C43-C103	116.4(7)
C11-Bi1-Bi1#1	74.73(11)	C32-C42-C102	121.5(4)	C33-C43-C103	125.3(7)
C12-Bi1-Bi1#1	102.87(13)	C42-C52-C62	122.7(4)	C53-C43-C10'3	145.7(10)
C13-Bi1-Bi1#1	164.20(13)	C12-C62-C52	119.1(4)	C33-C43-C10'3	95.2(10)
C21-C11-C61	119.2(4)	C12-C62-C132	123.9(4)	C43-C53-C63	123.2(6)
C21-C11-Bi1	113.3(3)	C52-C62-C132	117.0(4)	C53-C63-C13	119.5(5)
C61-C11-Bi1	127.5(3)	C22-C72-C82	113.4(4)	C53-C63-C133	116.3(5)
C11-C21-C31	121.7(5)	C22-C72-C92	110.5(4)	C13-C63-C133	124.1(5)
C41-C31-C21	119.8(5)	C82-C72-C92	110.4(5)	C23-C73-C83	111.7(4)
C31-C41-C51	120.5(5)	C122-C102-C42	112.2(4)	C23-C73-C93	110.2(5)
C41#1-C51-C41	119.8(7)	C122-C102-C112	110.4(4)	C83-C73-C93	108.8(4)
C41#1-C51-C61	120.1(3)	C42-C102-C112	112.1(4)	C123-C103-C113	124.6(8)
C41-C51-C61	120.1(3)	C62-C132-C152	113.2(4)	C123-C103-C43	112.9(7)
C51-C61-C11	116.9(3)	C62-C132-C142	109.7(4)	C113-C103-C43	110.3(7)
C51-C61-C11#1	116.9(3)	C152-C132-C142	111.3(5)	C12'3-C10'3-C11'3	120.4(17)
C11-C61-C11#1	126.3(6)	C23-C13-C63	118.4(5)	C12'3-C10'3-C43	117.3(15)
C62-C12-C22	119.2(4)	C23-C13-Bi1	124.4(4)	C11'3-C10'3-C43	120.0(15)
C62-C12-Bi1	115.3(3)	C63-C13-Bi1	116.7(4)	C63-C133-C143	111.1(5)
C32-C22-C12	119.4(4)	C13-C23-C33	119.1(5)	C63-C133-C153	112.5(5)
C32-C22-C72	118.4(4)	C13-C23-C73	123.4(5)	C143-C133-C153	109.5(5)
C12-C22-C72	122.2(4)	C33-C23-C73	117.4(5)		

Figure S27. Solid-state structure of **3**. Displacement ellipsoids drawn at 50 % probability levels. The hydrogen atoms are omitted for clarity.

Table S6. Bond lengths [Å]	of	3.
----------------------------	----	----

Sb11-C11	2.1170(15)	C291-C351	1.518(2)	F332-C342	1.345(2)
Sb11-C111	2.1367(15)	C301-C311	1.397(2)	F342-C352	1.345(2)
Sb11-C261	2.1465(15)	C311-C381	1.517(2)	F352-C362	1.348(2)
Sb11-Sb21	2.7980(4)	C321-C341	1.532(2)	F412-C422	1.349(2)
Sb21-C31	2.1647(17)	C321-C331	1.534(3)	F422-C432	1.345(2)
Sb21-C411	2.1708(16)	C351-C361	1.506(3)	F432-C442	1.344(2)
C11-C101	1.375(2)	C351-C371	1.512(3)	F442-C452	1.341(2)
C11-C21	1.428(2)	C381-C401	1.531(3)	F452-C462	1.347(2)
C21-C71	1.430(2)	C381-C391	1.536(3)	C112-C162	1.390(2)
C21-C31	1.433(2)	C411-C461	1.407(2)	C112-C122	1.397(2)
C31-C41	1.381(2)	C411-C421	1.421(2)	С112-В12	1.651(3)
C41-C51	1.411(3)	C421-C431	1.391(2)	C122-C132	1.381(2)
C51-C61	1.362(3)	C421-C471	1.524(2)	C132-C142	1.375(3)
C61-C71	1.419(3)	C431-C441	1.391(2)	C142-C152	1.376(3)

C71-C81	1.415(3)	C441-C451	1.388(2)	C152-C162	1.390(2)
C81-C91	1.366(3)	C441-C501	1.517(2)	C212-C222	1.390(2)
C91-C101	1.410(2)	C451-C461	1.397(2)	C212-C262	1.391(3)
C111-C121	1.405(2)	C461-C531	1.512(2)	C212-B12	1.651(3)
C111-C161	1.411(2)	C471-C49'1	1.468(14)	C222-C232	1.385(3)
C121-C131	1.396(2)	C471-C481	1.507(3)	C232-C242	1.366(4)
C121-C171	1.519(2)	C471-C491	1.536(3)	C242-C252	1.381(3)
C131-C141	1.393(2)	C471-C48'1	1.581(13)	C252-C262	1.380(3)
C141-C151	1.389(2)	C501-C521	1.516(3)	C312-C322	1.387(3)
C141-C201	1.515(2)	C501-C511	1.524(3)	C312-C362	1.392(2)
C151-C161	1.400(2)	C531-C551	1.530(3)	C312-B12	1.652(3)
C161-C231	1.522(2)	C531-C541	1.538(3)	C322-C332	1.388(3)
C171-C181	1.527(3)	F122-C122	1.3471(19)	C332-C342	1.372(3)
C171-C191	1.529(3)	F132-C132	1.341(2)	C342-C352	1.372(3)
C201-C221	1.525(3)	F142-C142	1.342(2)	C352-C362	1.383(3)
C201-C211	1.528(3)	F152-C152	1.339(2)	C412-C462	1.389(2)
C231-C251	1.522(2)	F162-C162	1.347(2)	C412-C422	1.395(2)
C231-C241	1.532(2)	F212-C222	1.346(2)	C412-B12	1.653(3)
C261-C311	1.406(2)	F222-C232	1.350(3)	C422-C432	1.381(2)
C261-C271	1.412(2)	F232-C242	1.343(2)	C432-C442	1.374(3)
C271-C281	1.392(2)	F242-C252	1.340(3)	C442-C452	1.375(3)
C271-C321	1.519(2)	F252-C262	1.350(2)	C452-C462	1.386(3)
C281-C291	1.388(2)	F312-C322	1.348(2)		
C291-C301	1.385(2)	F322-C332	1.343(2)		
				-	

Table S7. Bond angles [°] of 3.

C11-Sb11-C111	113.07(6)	C281-C291-C351	121.84(16)	C222-C212-B12	126.72(17)
C11-Sb11-C261	113.33(6)	C291-C301-C311	122.66(15)	C262-C212-B12	118.79(15)
C111-Sb11-C261	102.86(6)	C301-C311-C261	117.67(14)	F212-C222-C232	114.62(17)
C11-Sb11-Sb21	91.26(4)	C301-C311-C381	117.72(14)	F212-C222-C212	121.95(17)
C111-Sb11-Sb21	137.25(4)	C261-C311-C381	124.57(14)	C232-C222-C212	123.4(2)
C261-Sb11-Sb21	98.29(4)	C271-C321-C341	112.48(14)	F222-C232-C242	120.67(19)
C31-Sb21-C411	107.08(6)	C271-C321-C331	111.18(15)	F222-C232-C222	119.2(2)
C31-Sb21-Sb11	80.51(4)	C341-C321-C331	111.43(15)	C242-C232-C222	120.1(2)
C411-Sb21-Sb11	106.31(4)	C361-C351-C371	110.98(19)	F232-C242-C232	120.9(2)
C101-C11-C21	121.81(14)	C361-C351-C291	113.21(16)	F232-C242-C252	119.9(2)
C101-C11-Sb11	122.65(12)	C371-C351-C291	110.91(16)	C232-C242-C252	119.23(18)
C21-C11-Sb11	115.24(11)	C311-C381-C401	113.30(15)	F242-C252-C262	120.8(2)
C11-C21-C71	116.93(15)	C311-C381-C391	110.32(15)	F242-C252-C242	120.19(19)
C11-C21-C31	124.35(14)	C401-C381-C391	110.94(15)	C262-C252-C242	119.0(2)
C71-C21-C31	118.72(14)	C461-C411-C421	120.11(14)	F252-C262-C252	115.97(18)
C41-C31-C21	119.49(15)	C461-C411-Sb21	126.25(11)	F252-C262-C212	119.62(16)
C41-C31-Sb21	114.95(13)	C421-C411-Sb21	113.47(11)	C252-C262-C212	124.40(19)

C21-C31-Sb21	125.54(11)	C431-C421-C411	118.42(15)	C322-C312-C362	113.49(16)
C31-C41-C51	121.21(18)	C431-C421-C471	119.20(15)	C322-C312-B12	126.62(15)
C61-C51-C41	120.26(17)	C411-C421-C471	122.33(15)	C362-C312-B12	119.73(16)
C51-C61-C71	120.91(17)	C441-C431-C421	122.29(15)	F312-C322-C312	121.37(16)
C81-C71-C61	121.29(16)	C451-C441-C431	118.18(15)	F312-C322-C332	114.89(17)
C81-C71-C21	119.49(16)	C451-C441-C501	120.58(15)	C312-C322-C332	123.74(17)
C61-C71-C21	119.22(17)	C431-C441-C501	121.21(15)	F322-C332-C342	120.02(18)
C91-C81-C71	121.71(16)	C441-C451-C461	122.19(15)	F322-C332-C322	120.04(19)
C81-C91-C101	119.52(17)	C451-C461-C411	118.61(14)	C342-C332-C322	119.94(19)
C11-C101-C91	120.20(16)	C451-C461-C531	119.11(14)	F332-C342-C332	120.7(2)
C121-C111-C161	121.53(13)	C411-C461-C531	122.19(14)	F332-C342-C352	120.3(2)
C121-C111-Sb11	119.49(10)	C49'1-C471-C421	119.2(13)	C332-C342-C352	118.98(18)
C161-C111-Sb11	117.86(10)	C481-C471-C421	110.66(16)	F342-C352-C342	119.99(18)
C131-C121-C111	117.90(14)	C481-C471-C491	109.91(19)	F342-C352-C362	120.6(2)
C131-C121-C171	118.45(14)	C421-C471-C491	114.42(16)	C342-C352-C362	119.36(18)
C111-C121-C171	123.63(13)	C49'1-C471-C48'1	110.0(14)	F352-C362-C352	116.45(17)
C141-C131-C121	122.31(15)	C421-C471-C48'1	107.9(8)	F352-C362-C312	119.15(16)
C151-C141-C131	118.04(14)	C521-C501-C441	109.80(17)	C352-C362-C312	124.39(19)
C151-C141-C201	120.11(14)	C521-C501-C511	110.6(2)	C462-C412-C422	112.74(15)
C131-C141-C201	121.81(15)	C441-C501-C511	113.11(16)	C462-C412-B12	127.53(15)
C141-C151-C161	122.53(14)	C461-C531-C551	115.00(15)	C422-C412-B12	119.55(15)
C151-C161-C111	117.45(13)	C461-C531-C541	109.91(14	F412-C422-C432	116.00(15)
C151-C161-C231	117.79(13)	C551-C531-C541	109.85(15)	F412-C422-C412	119.25(15)
C111-C161-C231	124.69(13)	C162-C112-C122	113.55(15)	C432-C422-C412	124.74(16)
C121-C171-C181	112.18(14)	C162-C112-B12	127.48(15)	F422-C432-C442	119.49(16)
C121-C171-C191	111.04(14)	C122-C112-B12	118.69(14)	F422-C432-C422	120.88(17)
C181-C171-C191	109.83(15)	F122-C122-C132	116.09(15)	C442-C432-C422	119.63(17)
C141-C201-C221	113.24(16)	F122-C122-C112	119.08(15)	F432-C442-C432	120.57(18)
C141-C201-C211	109.45(17)	C132-C122-C112	124.82(16)	F432-C442-C452	120.88(18)
C221-C201-C211	110.68(18)	F132-C132-C142	119.95(17)	C432-C442-C452	118.54(17)
C161-C231-C251	112.69(14)	F132-C132-C122	121.23(17)	F442-C452-C442	119.20(18)
C161-C231-C241	109.82(14)	C142-C132-C122	118.80(17)	F442-C452-C462	120.84(19)
C251-C231-C241	110.89(14)	F142-C142-C132	120.21(18)	C442-C452-C462	119.95(18)
C311-C261-C271	121.05(13)	F142-C142-C152	120.36(17)	F452-C462-C452	114.77(16)
C311-C261-Sb11	124.31(11)	C132-C142-C152	119.42(16)	F452-C462-C412	120.95(16)
C271-C261-Sb11	114.64(10)	F152-C152-C142	119.78(16)	C452-C462-C412	124.28(17)
C281-C271-C261	118.27(14)	F152-C152-C162	120.27(17)	C112-B12-C212	100.46(13)
C281-C271-C321	117.59(14)	C142-C152-C162	119.95(16)	C112-B12-C312	112.42(14)
C261-C271-C321	124.14(13)	F162-C162-C152	115.47(15)	C212-B12-C312	113.81(13)
C291-C281-C271	122.00(15)	F162-C162-C112	121.15(15)	C112-B12-C412	114.02(13)
C301-C291-C281	118.30(15)	C152-C162-C112	123.38(16)	C212-B12-C412	113.65(14)
C301-C291-C351	119.85(16)	C222-C212-C262	113.82(17)	C312-B12-C412	102.97(13)

Figure S28. Solid-state structure of 4. Displacement ellipsoids are drawn at a 50 % probability levels.

Table S8. Bond lengths [Å] of 4.

Sb1-C1	2.149(6)	C16-C23	1.511(9)
Sb1-C11	2.196(6)	C17-C19	1.520(11)
Sb1-Sb2	2.7991(6)	C17-C18	1.526(13)
Sb2-C9	2.153(6)	C20-C21	1.487(10)
Sb2-C26	2.192(6)	C20-C22	1.508(10)
C1-C2	1.391(9)	C20'-C22	1.447(14)
C1-C10	1.440(8)	C20'-C21	1.480(14)
C2-C3	1.393(10)	C23-C24	1.530(9)
C3-C4	1.349(12)	C23-C25	1.534(9)
C4-C5	1.424(10)	C26-C27	1.408(8)
C5-C6	1.411(10)	C26-C31	1.411(8)
C5-C10	1.422(8)	C27-C28	1.390(8)
C6-C7	1.373(12)	C27-C32	1.525(8)
C7-C8	1.401(10)	C28-C29	1.380(9)
C8-C9	1.392(8)	C29-C30	1.397(9)
C9-C10	1.426(8)	C29-C35	1.520(9)
C11-C16	1.409(9)	C30-C31	1.387(9)
C11-C12	1.411(9)	C31-C38	1.535(8)
C12-C13	1.391(10)	C32-C34	1.524(8)
C12-C17	1.539(10)	C32-C33	1.535(9)
C13-C14	1.391(12)	C35-C36	1.517(11)
C14-C15	1.369(11)	C35-C37	1.518(12)
C14-C20'	1.54(2)	C38-C40	1.520(10)
C14-C20	1.554(10)	C38-C39	1.530(9)
C15-C16	1.397(9)		

Table S9. Bond angles [°] of 4.

C1-Sb1-C11	100.7(2)	C16-C11-Sb1	124.5(4)	C16-C23-C25	112.1(5)
C1-Sb1-Sb2	86.18(16)	C12-C11-Sb1	116.4(5)	C24-C23-C25	111.4(5)
C11-Sb1-Sb2	100.81(17)	C13-C12-C11	118.8(7)	C27-C26-C31	119.6(5)
C9-Sb2-C26	99.9(2)	C13-C12-C17	119.2(6)	C27-C26-Sb2	124.5(4)
C9-Sb2-Sb1	85.91(15)	C11-C12-C17	122.0(6)	C31-C26-Sb2	115.4(4)
C26-Sb2-Sb1	102.91(15)	C14-C13-C12	122.6(7)	C28-C27-C26	118.5(5)
C2-C1-C10	119.1(6)	C15-C14-C13	117.8(6)	C28-C27-C32	117.9(5)
C2-C1-Sb1	118.4(5)	C15-C14-C20'	143.2(11)	C26-C27-C32	123.6(5)
C10-C1-Sb1	122.3(4)	C13-C14-C20'	98.2(11)	C29-C28-C27	123.0(6)
C1-C2-C3	122.0(6)	C15-C14-C20	115.6(8)	C28-C29-C30	117.7(6)
C4-C3-C2	120.1(6)	C13-C14-C20	126.5(8)	C28-C29-C35	123.0(6)
C3-C4-C5	121.0(6)	C14-C15-C16	122.2(7)	C30-C29-C35	119.3(6)
C6-C5-C10	118.3(6)	C15-C16-C11	119.5(6)	C31-C30-C29	121.8(6)
C6-C5-C4	121.8(6)	C15-C16-C23	116.8(6)	C30-C31-C26	119.3(5)
C10-C5-C4	119.8(6)	C11-C16-C23	123.7(5)	C30-C31-C38	118.9(5)
C7-C6-C5	121.8(6)	C19-C17-C18	111.1(7)	C26-C31-C38	121.7(5)
C6-C7-C8	119.6(6)	C19-C17-C12	113.1(6)	C34-C32-C27	113.5(5)
C9-C8-C7	121.2(6)	C18-C17-C12	110.1(8)	C34-C32-C33	109.8(5)
C8-C9-C10	119.1(6)	C21-C20-C22	113.8(8)	C27-C32-C33	111.2(5)
C8-C9-Sb2	118.0(5)	C21-C20-C14	112.0(7)	C36-C35-C37	110.5(7)
C10-C9-Sb2	122.9(4)	C22-C20-C14	108.4(7)	C36-C35-C29	111.5(6)
C5-C10-C9	119.8(5)	C22-C20'-C21	118.0(13)	C37-C35-C29	112.1(6)
C5-C10-C1	117.9(5)	C22-C20'-C14	112.2(13)	C40-C38-C39	110.3(6)
C9-C10-C1	122.2(5)	C21-C20'-C14	113.0(12)	C40-C38-C31	110.1(6)
C16-C11-C12	119.0(6)	C16-C23-C24	112.3(5)	C39-C38-C31	114.7(6)

Figure S29. Observed intramolecular CH- π contacts in 1 (A), 2 (B) and 3 (C).

III. Computational Details

All calculations were performed by using the program packages Gaussian 16⁹, Amsterdam Density Functional¹⁰ (ADF) and AIMAII¹¹. The geometrical parameters of all stationary points were optimized by means of the density functional B3LYP¹² together with the dispersion correction with Becke-Johnson damping¹³ (D3BJ) using Gaussian 16. The basis set def2-TZVP was applied. For all structures C1 symmetry was applied. Frequency calculations were carried out at each of the stationary points to verify the nature of the stationary point. It turned out that all stationary states except of **1** have none imaginary frequency. However, the negative frequency in **1** has a mode below 1.6 cm⁻¹. Natural bond orbital analysis was performed using the NBO¹⁴ version 3.1 implemented in Gaussian 16. The bond energy analysis calculations¹⁵ (B3LYP-D3BJ/TZP) were carried out using Amsterdam Density Functional (ADF). Quantum theory of atoms in molecules (QTAIM)¹⁶ analyses (B3LYP-D3BJ/TZP and B3LYP-D3BJ/def2-TZVP) were performed using Amsterdam Density Functional (ADF) and AIMAII. Interacting quantum atoms (IQA)¹⁷ calculations were carried out using ADF.

Figure S30. Selected orbitals of **1** (left), **3** (middle), and **4** (right) calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03). Hydrogen atoms are omitted for clarity.

Figure S31. Selected orbitals of 2 calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03).

Figure S32. Selected orbitals of **S1** (left), **S3** (middle), and **S4** (right) calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03).

Figure S33. Selected orbitals of S2 calculated at B3LYP-D3BJ/def2-TZVP level of theory (isovalue 0.03).

Figure S35. Molecular graphs of **S5** (a) and **S6** (b) showing the bond paths (lines) and the different critical points: nuclear (white dots) and bond (red dots) critical points (B3LYP-D3BJ/TZP).

Figure S36. Molecular graphs of **S3** (a) and **S4** (b) showing the bond paths (lines) and the different critical points: nuclear (white dots), bond (red dots) and ring (green dots) critical points (B3LYP-D3BJ/TZP).

Figure S37. Molecular graphs of **3** (a) and **4** (b) showing the bond paths (lines) as well as the nuclear (white dots), bond (red dots), ring (green dots) and cage (blue dots) critical points (B3LYP-D3BJ/TZP).

	d _(Sb1-Sb2) [Å]	d _(Sb1-BCP) [Å]	d _(BCP-Sb2) [Å]	α(_{Sb1-BCP-Sb2}) [°]
S5	2.853	1.360	1.497	174
S6	2.850	1.425	1.425	179
S 3	2.848	1.134	1.767	157
S4	2.860	1.440	1.440	167
3	2.806	1.114	1.771	152
4	2.820	1.395	1.425	179

Table S10. Sb···Sb distances [Å] and distances [Å] between the bond critical points (BCP) of the Sb--Sb interaction and the Sb atoms in **S3-S6**, **3** and **4** (B3LYP-D3BJ/TZP).

Table S11. Topological and energetic properties of the electron density $\rho(\mathbf{r})$ calculated at the bond critical points of the Sb--Sb interaction for **S3-S6**, **3** and **4**. The electron density (ρ_{CP}), the Laplacian of the electron density ($\nabla^2 \rho_{CP}$), the electron kinetic (G_{CP}), potential (V_{CP}) and total (H_{CP}) energy densities at the critical points are given in a.u. (B3LYP-D3BJ/TZP).

	ρср	$\nabla^2 \rho_{CP}$	GCP	V _{CP}	H _{CP}
S5	0.05676898	-0.00116968	0.02388120	-0.04805483	-0.02417362
S6	0.05943471	-0.01539731	0.02342353	-0.05069639	-0.02727286
S3	0.05742284	-0.00369247	0.02392469	-0.04877250	-0.02484781
S4	0.05804408	-0.01390003	0.02266751	-0.04881002	-0.02614252
3	0.06050129	-0.00762143	0.02550149	-0.05290833	-0.02740684
4	0.06116809	-0.01641720	0.02452909	-0.05316248	-0.02863339

Table S12. Interaction energies ($V_{inter(Total)}$) between the two Sb atoms in **S3-S6**, **3** and **4** as well as the covalent and ionic part (B3LYP-D3BJ/TZP). The values are given in kcal mol⁻¹.

	V _{inter(Total)}	ionic part	covalent part
S5	28.40	118.27	-89.87
S6	-37.86	60.33	-98.19
S3	48.70	135.42	-86.72
S4	-18.56	73.76	-92.31
3	40.47	128.61	-88.13
4	-21.33	74.88	-96.21

Figure S38. Atomic charges calculated using AIM analysis (B3LYP-D3BJ/TZP).

Figure S39. Atomic charges calculated using NBO analysis (B3LYP-D3BJ/def2-TZVP).

IV. Cartesian Coordinates and Absolute Energies for All Calculated Compounds

	Ľ
1	-3208.620120
2	-3157.355407
3	-2622.668353
4	-2037.105805
S1	-1871.236600
S2	-1819.966979
S3	-1639.278526
S4	-1407.739882
S5	-680.145643
S6	-640.445580

 $\frac{\textbf{Table S13.} \text{ Absolute energies [au] calculated by means B3LYP-D3BJ/def2-TZVP.}{\textit{E}}$

of theory:				
Sb	1.58866500	0.05952800	0.28240300	
С	1.27493100	0.13711400	2.44820500	
С	2.40489800	0.38681100	3.19390100	
Н	3.35143500	0.52372400	2.69188600	
С	1.63911600	-2.07269700	-0.28915400	
С	0.00267700	0.00604300	3.10113700	
С	0.00329800	0.00792800	4.53924000	
С	1.20095000	0.24121000	5.25584100	
Н	1.15931200	0.25058000	6.33826400	
С	2.37706100	0.45753300	4.59773300	
Н	3.29052900	0.65483900	5.14436200	
С	4.01139300	1.80154200	-0.40141000	
С	5.32240700	2.09705600	-0.76194000	
H	5.53302300	3.04548700	-1.23983500	
С	6.36821000	1.21063700	-0.52740500	
C	6.07620400	0.01864400	0.11923000	
H	6.88812500	-0.66698200	0.33222100	
С	4.77741400	-0.32582900	0.49667600	
C	2,93955200	2.84673600	-0.68992300	
H	2.02760900	2,55134000	-0.17158200	
C	1.37167600	-3.18034800	0.53575000	
C	1.31900500	-4.45481700	-0.03098900	
H	1.10293600	-5.30275000	0.60816300	
C	1.53754400	-4.68273700	-1.37922900	
C	1.80815100	-3.58060900	-2.17955700	
Н	1.98661700	-3.73039000	-3.23611800	
C	1.84875100	-2.28597600	-1.66981300	
C	1.12211900	-3.09189000	2.02978300	
Н	1.29480800	-2.06761200	2.33470500	
C	2.08501300	-3.96187800	2.84626500	
H	1.92802600	-5.02559000	2.65846300	
Н	1,92970800	-3.78653900	3,91266000	
Н	3.12364700	-3.73216700	2.61432400	
С	-0.33031800	-3.43751900	2.37721600	
Н	-1.02877100	-2.83193900	1.80432400	
Н	-0.52504500	-3.25493000	3.43558300	
Н	-0.54492500	-4.48727500	2.16590300	
С	1.46245300	-6.08018100	-1.95587200	
Н	1.30172000	-6.76359400	-1.11663100	
С	2.77026800	-6.48754600	-2.64307400	
Н	2.71722400	-7.52131700	-2.99102800	
Н	3.61598800	-6.39768500	-1.95980800	
H	2.97314800	-5.85543400	-3.50996900	
С	0.26892800	-6.22455200	-2.90820900	
Н	0.37352000	-5.55929900	-3.76792600	
	0 00000	-5 07252000	-2 40523600	
Н	-0.66620000	-3.3/333000	2.40323000	

Cartesian coordinates of the optimized geometry for 1 at B3LYP-D3BJ/def2-TZVP level

н	0 19250200	-7 24774100	-3 28249100
C	2 14795000	1 16407700	2 65607000
C	2.14785900	-1.16497700	-2.65607900
H	1.88170300	-0.21680800	-2.18422200
С	3,63905600	-1.09466300	-3.00513200
	2 0 6 2 5 0 0 0	2 02020000	2 40500100
н	3.96358800	-2.02030900	-3.48580100
Н	4.24969500	-0.93923500	-2.11793100
н	3 83059200	-0 26912600	-3 69389700
	1.00005200	1.05655700	3.09909700
C	1.29305100	-1.25655700	-3.9238/300
Н	1.42196000	-0.35870700	-4.53019700
ц	0 22596200	-1 35507600	-3 67806000
п	0.23396300	-1.33307800	-3.0/00000
H	1.57695100	-2.10980500	-4.54165500
C	3.72628100	0.55826200	0.20359100
3	2 20271400	4 00175100	0 14600400
C	3.302/1400	4.231/5100	-0.14682400
Н	4.15726300	4.66554300	-0.66915700
н	3 54577400	4 18357300	0 91551200
11	0.45704100	1.10557500	0.91091200
H	2.45/24100	4.91105700	-0.2/18/300
С	2.59202200	2.90807500	-2.18123100
ч	3 45377400	3 22891800	-2 77055200
11	5.45577400	5.22091000	2.77055200
H	1.77342800	3.60880200	-2.35538200
Н	2,28057700	1,93094300	-2.55162200
C	7 70100000	1 535/7600	_0 05277000
	1.10409900	1.5554/000	-0.95377000
Н	8.41172600	0.69426900	-0.64483800
С	8.31495600	2.79283300	-0.25572400
ч	Q 25605100	2 07567600	_0 53021000
11	9.33003100	2.9/00/000	-0.03021900
Н	8.25850800	2.69239700	0.82917000
н	7 73564400	3 67374200	-0 53974300
	7 00000000	1 66001700	0.47700000
C	1.89328800	1.66221700	-2.4//99900
Н	7.29530300	2.49927800	-2.84438800
н	7 53769000	0 75713300	-2 97255100
11	1.33709000	0.75715500	2.97255100
H	8.92909800	1.83443300	-2.77825400
С	4.57937200	-1.63967500	1.23173200
u	3 52742200	_1 71200600	1 40707400
п	3.52/42200	-1./1288000	1.49707400
C	5.38192400	-1.67828600	2.53909300
н	6.45616500	-1.67259400	2.34652900
	F 15020000	2 50 200 100	2.00020100
н	5.15007200	-2.58604300	3.09939100
Н	5.15194400	-0.82275500	3.17433300
C	4 92221800	-2 84946400	0 35532100
	1.92221000	2.01910100	0.00002100
H	4.31596000	-2.86911200	-0.54/68500
Н	4.74053400	-3.77824100	0.89882700
н	5 97406700	-2 83288200	0 06280500
	5.57400700	2.05200200	0.00200500
C	-1.2/011300	-0.12/11200	2.449/4400
С	-2.39930300	-0.37554700	3.19699800
н	-3 34607300	-0 51472500	2 69610500
	5.54007500	0.014/2000	2.05010500
C	-1.19369400	-0.22364900	5.25/4/800
Н	-1.15113200	-0.23005500	6.33988700
C	-2 37027700	-0 44235700	1 60096900
	2.37027700	0.44255700	4.00090900
H	-3.28317200	-0.63865100	5.14891800
Sb	-1.58473000	-0.05430100	0.28400900
C	-1 64380800	2 07653700	-0 20105100
	1.04300000	2.07055700	0.29109100
C	-4.00078400	-1.80605300	-0.39735900
С	-5.31097300	-2.10722700	-0.75618100
ч	_5 51022000	-3 05600600	_1 22207000
п	-3.31823800	-3.03099000	-1.23207800
C	-6.36008600	-1.22472300	-0.52161600
С	-6.07224500	-0.03072500	0.12319900
u	-6 99669500	0 65107300	0 22507500
п	-0.00000000	0.0319/300	0.33397300
С	-4.77450200	0.31940000	0.49906800
С	-2,92484200	-2.84682800	-0.68672100
-	2 01201200	2 547(0000	0 16001700
п	-2.01301900	-2.34/69200	-0.10931/00
С	-1.37954100	3.18643500	0.53177700
С	-1 33387200	4 46037100	-0 03670300
	1 10017200	I. 1000/100	0.0000000
н	-1.1201/300	2.31013000	0.60082000
С	-1.55605500	4.68540600	-1.38485600
С	-1 82315800	3 58098300	-2 18317100
	1.02010000	2.200/0300	2.1001/100
н	-2.00418100	3./284/400	-3.23962900
С	-1.85691500	2.28688900	-1.67158400
C	-1 12552200	3 10047000	2 02513500
	1 0050000	J.1004/000	2.02015000
н	-1.29509300	2.0/620400	2.331/7200
C			
C	-2.08804200	3.96905400	2.84348800
н	-2.08804200	3.96905400	2.84348800

н	-1,92950300	3,79493600	3,90960400
Н	-3 12680100	3 73667400	2 61448600
C	0 32739500	3 44925400	2 36743700
U U U U U U U U U U U U U U U U U U U	1 02498500	2 84373000	1 79330700
ч	0 52594100	2.019/5000	2 /2551/00
n II	0.52564100	1 10007100	2 15220700
H	0.53954700	4.4989/100	2.15339700
	-1.48/5/500	6.08221900	-1.963/8100
H	-1.3284/500	6./6/64300	-1.1258/100
С	-2.79786500	6.48324000	-2.64997000
Н	-2.74934600	7.51661200	-2.99976800
Н	-3.64233700	6.39124100	-1.96544600
Н	-2.99940200	5.84885900	-3.51552200
С	-0.29579900	6.22963200	-2.91786900
Н	-0.39922300	5.56297500	-3.77663500
Н	0.64078400	5.98233500	-2.41573000
Н	-0.22334600	7.25263100	-3.29346200
C	-2.15212300	1.16321500	-2.65593300
U H	-1 88340900	0 21671200	-2 18225200
C	-3 64283000	1 08765900	-3 00587300
	-3.04283000	2 01129000	-3.00307300
п 	-3.96993300	2.01120900	-3.40000000
H	-4.25356000	0.93218200	-2.118/3200
H	-3.8313/900	0.26012/00	-3.69306200
С	-1.29653200	1.25528000	-3.92317200
Н	-1.42322000	0.35667400	-4.52883800
Н	-0.23982000	1.35605000	-3.67655300
Н	-1.58154000	2.10750000	-4.54184900
С	-3.72019500	-0.56101100	0.20619600
С	-3.28140300	-4.23347600	-0.14348100
Н	-4.13406500	-4.67129200	-0.66555100
Н	-3.52427500	-4.18648600	0.91894300
Н	-2,43269000	-4,90868000	-0.26882400
С	-2.57838000	-2.90671500	-2.17834600
H	-3 43881400	-3 23283200	-2 76671000
Н	-1 75580700	-3 60258700	-2 35287500
ч	-2 27305700	-1 02705900	-2 54945400
n C	-2.27303700	-1.92793000	-2.54945400
	-7.77506200	-1.55575700	-0.94626600
H	-8.40580100	-0./16/6900	-0.63/5/600
0	-8.30013500	-2.81452/00	-0.24642300
Н	-9.340/4100	-3.0018/900	-0.519/3200
Н	-8.24306000	-2.71275200	0.83831300
Н	-7.71752100	-3.69336600	-0.53010000
С	-7.88520200	-1.68447500	-2.47025500
Н	-7.28420900	-2.51950300	-2.83636100
Н	-7.53371200	-0.77847900	-2.96607300
Н	-8.92059800	-1.86115600	-2.76934000
С	-4.58100900	1.63522500	1.23192500
н	-3.52924300	1.71281800	1.49679000
С	-5.38335200	1.67344100	2,53943000
Н	-6 45761600	1 66429000	2 34712800
н	-5 15404800	2 58280800	3 09817500
н	-5 15078700	0 81964600	3 17605000
 C	_1 02051700	2 84236600	0 35360500
	4.92001/UU	2.04230000	0.55506500
п	-4.32306400	2.0023/000	-0.54982900
н	-4./4945200	3.7/260500	0.8955/400
Н	-5.98054500	2.82179400	0.06203700

Cartesian coordinates of the optimized geometry for ${\bf 2}$ at B3LYP-D3BJ/def2-TZVP level of theory: 0.42118300 0.09063800 Bi 1.61862000 0.38407300 2.36473200 С 1.22137000 0.85015300 С 2.27833700 3.11044400 Η 3.18089500 1.17350100 2.61150700 С 2.23745500 0.91109700 4.51645000 Н 3.09422200 1.28297000 5.06414000 С 1.12728200 0.46573500 5.17235100 1.08398800 0.46391800 6.25482500 Н С 0.00003000 -0.00028700 4.45447000

0.0001200	-0.00024800	3.01507900
2 08281200	-1 75899500	-0 53469400
1 92612100	2 01706600	0.00100100
1.83013100	-2.91/96600	0.22211400
2.20039300	-4.1581/800	-0.29663500
2.02159300	-5.04261000	0.30267100
2.77944200	-4.29721900	-1.55196000
2,97412800	-3.14696500	-2.30138100
3 40997500	-3 23879600	-3 28955600
2.2220200	1 00057000	1 02007100
2.03730300	-1.0003/000	-1.8200/100
1.16884400	-2.89562600	1.58325900
0.88641900	-1.87173500	1.78795300
2.10155300	-3.33027000	2.71802300
2.42987200	-4.36370100	2.58765200
1 58270400	-3 25816600	3 67599900
2 00620200	2 60040100	2 77092400
2.90039200	-2.09949100	2.77062400
-0.11/62000	-3./2/13600	1.00308100
0.09058400	-4.79413500	1.50354000
-0.77979500	-3.44493800	0.78685600
-0.65241600	-3.57210000	2.54184300
3 18520500	-5 65376200	-2 08720500
3 58983000	-5 /9371100	-3 00114400
4.20252700	C 20140200	1 22245200
4.29353700	-6.28149200	-1.23345200
3.94098800	-6.4/66/500	-0.21850300
5.15662800	-5.61790600	-1.16362000
4.62214800	-7.23079300	-1.66207000
1.98435300	-6.59801800	-2.21488500
2,28602300	-7.54939700	-2.65829400
1 20585600	-6 15899600	-2 84080000
1 54640400	0.13099000	2.04000000
1.54640400	-0.81000100	-1.23/33400
2.88727600	-0.69869400	-2.74603900
2.59580800	0.21669100	-2.23268600
2.00975600	-0.77910200	-4.00029300
2.26554100	-1.64858300	-4.60821900
2.14040300	0.11214100	-4.61807700
0 95498600	-0 85824800	-3 73222000
4 36915300	-0 53188600	-3 09611200
4.0001000	0.00100000	2 10565000
4.97031200	-0.41243200	-2.19303900
4.51494400	0.3530/300	-3./1858100
4./4521900	-1.39532600	-3.64//9000
3.83369700	1.08965800	0.11488200
4.89686300	0.29545900	0.58481000
6.20583900	0.68293500	0.30612200
7.01786600	0.06103900	0.66191200
6.50278700	1.83139100	-0.41797400
5 44338200	2 61903800	-0 84092300
5.44550200	2.0100000	1 20071200
5.65963400	3.32772600	-1.390/1300
4.1145/300	2.2/539100	-0.58609000
4.70504000	-0.96860200	1.40347700
3.63660300	-1.10635200	1.54919400
5.24125500	-2.21124600	0.68374800
5.02321500	-3.10900600	1.26433000
6.32416300	-2.14973500	0.55717900
4 78882800	-2 32961200	-0.29766000
4.70002000 E.24072200	2.52901200	0.29700000
5.348/2300	-0.84669200	2.79121100
5.10496400	-1./2004300	3.3995/400
5.00252200	0.03980600	3.32076700
6.43613300	-0.78840800	2.71657700
7.93215600	2.21037100	-0.74203500
7.89591000	3.15757000	-1.28856300
8 76504400	2,43593900	0.52475300
8 58890300	1 16974200	-1 65721200
2 04250100	2 22120000	_1 000021000
3.04239100	J.ZJIJU8UU	-1.09083400
2.06864100	2.84933200	-0./8525100
3.17978200	4.62030600	-0.45756500
3.17584400	4.55375900	0.63105100
2.35011000	5.26090800	-0.76306300
4.10875000	5.10625500	-0.76081100
3 01583800	3.31746900	-2.62083300
2 06503000	2 22/50700	-3 06860700
2.00090900	2.00400/00	5.00002700

3.95217500	3.72086100	-3.01057100
2.20408700	3.96817600	-2.95206000
-1.22137100	-0.38449500	2.36474400
-2.27834300	-0.85057300	3.11045700
-3.18093900	-1.17382800	2.61152500
-2.23741800	-0.91161500	4.51645600
-3.09418400	-1.28348700	5.06414900
-1.12721000	-0.46633400	5.17235300
-1.08388400	-0.46458900	6.25482600
-1.61874500	-0.42145800	0.09067800
-2.08264700	1.75881900	-0.53453000
-1.83579600	2.91775100	0.22228700
-2.19983000	4.15802200	-0.29648600
-2.02091300	5.04242600	0.30282600
-2.77882600	4.29715600	-1.55182300
-2.97372200	3.14692800	-2.30123200
-3.40954900	3.23882600	-3.28940900
-2.63720000	1.88048800	-1.81990700
-1.16862400	2.89531700	1.58349100
-0.88637400	1.87138500	1.78820900
-2.10136600	3.33009800	2.71817700
-2.42962300	4.36353700	2.58771800
-1.58256600	3.25803200	3.67618200
-2.98624100	2.69937000	2.77098900
0.11796300	3.72663500	1.60406100
-0.09005700	4.79366200	1.50383700
0.78022900	3.44429900	0./8/36300
0.65258700	3.5/155900	2.54231200
-3.10434000	5.05570000	-2.00700300
-1.20269300	5.49579200	-1.23242600
-3 94021000	6 47670600	-0 21843100
-5.15587200	5.61814800	-1.16371200
-4.62111700	7.23098300	-1.66203800
-1.98336000	6.59787000	-2.21461800
-2.28486100	7.54928900	-2.65805600
-1.20484700	6.15875500	-2.84044800
-1.54549400	6.80979700	-1.23701800
-2.88728400	0.69863500	-2.74586500
-2.59596800	-0.21679400	-2.23250600
-2.00975000	0.77889000	-4.00011600
-2.26538000	1.64841200	-4.60804800
-2.14054400	-0.11233200	-4.61/89800
-0.95496600	0.63763700	-3.73203600
-4.30919000	0.33204000	-2 19546400
-4 51512000	-0 35291600	-3 71835500
-4 74512600	1 39552300	-3 64763900
-3.83393900	-1.08956400	0.11496700
-4.89695400	-0.29516500	0.58489900
-6.20600200	-0.68235700	0.30618100
-7.01790500	-0.06030100	0.66196700
-6.50317500	-1.83072600	-0.41796200
-5.44392700	-2.61857900	-0.84091700
-5.66055000	-3.52719700	-1.39075300
-4.11504700	-2.27521300	-0.58604800
-4.70484900	0.96881400	1.40361900
-3.63637200	1.10637900	1.54921900
-5.24094600	2.21159200	0.68403600
-5.02270600	3.10927600	1.26466000
-6.32387700	2.15026200	0.55/5/400
-4./8859900	2.32995800	-0.29/41000
-5.5485/800	U.04009100 1 72018300	2.191422UU 3 39980600
-5 00219500	-0 03967300	3 32088200
-6.43580300	0.78871200	2.71691300
-7.93261000	-2.20930400	-0.74219400
-7.89658200	-3.15672600	-1.28835100
-8.76598800	-2.43403300	0.52441800

нноснононвосоносноснонниснинсинноннноннисноннносоносносноснонны наснос

Н	-8.85453100	-1.51341100	1.10482100
Н	-8.30935800	-3.18966400	1.16535300
Н	-9.77486900	-2.76461500	0.26846400
С	-8.58864700	-1.16874700	-1.65797700
Н	-8.00761500	-1.02884700	-2.57072500
Н	-8.66197300	-0.20043900	-1.15856400
Н	-9.59795800	-1.47956900	-1.93626700
С	-3.04326200	-3.23135200	-1.09077500
Н	-2.06922900	-2.84948900	-0.78532200
С	-3.18061700	-4.62023900	-0.45729700
Н	-3.17644800	-4.55354100	0.63130900
Н	-2.35114300	-5.26105900	-0.76287400
Н	-4.10975100	-5.10603100	-0.76029000
С	-3.01665400	-3.31770500	-2.62076400
Н	-2.86667800	-2.33489100	-3.06869000
Н	-3.95306800	-3.72103500	-3.01037800
Н	-2.20500700	-3.96854700	-2.95198600
Н	8.00806600	1.02907200	-2.56997200
Н	9.59807000	1.48101300	-1.93552900
Н	8.66275100	0.20170900	-1.15735000
Н	8.30808800	3.19192400	1.16504100
Н	8.85339200	1.51566600	1.10574200
Н	9.77399800	2.76645000	0.26898900

Cartesian	coordinates	of the o	ptimized	geometry	/ for	3 at	B3LYP-D3	BJ/def2-TZVE	, level
of theory:	:								
Sb	0.	69892300	-0.197	92900	-0.46	22140	0		
С	0.	44651200	-1.585	13800	-2.05	66680	0		
Sb	-1.	11916200	-1.628	859700	1.12	53290	0		
С	0.	90898600	-1.330	36500	-3.32	35800	0		
Н	1.	34560300	-0.371	92300	-3.56	58070	0		
С	0.	85176000	-2.328	81300	-4.31	39140	0		
Н	1.	22017100	-2.118	13400	-5.30	88120	0		
С	0.	35720900	-3.567	51900	-4.00	24550	0		
Н	0.	34069900	-4.352	64500	-4.74	78910	0		
С	-0.	70186100	-5.122	30100	-2.41	11690	0		
Н	-0.	67483300	-5.893	312700	-3.17	08460	0		
С	-1.	25286800	-5.371	62700	-1.18	57590	0		
Н	-1.	66062900	-6.346	58100	-0.95	48970	0		
С	-1.	32497700	-4.342	15300	-0.22	45810	0		
Н	-1.	81520400	-4.556	63900	0.71	81280	0		
С	-0.	81402300	-3.090	48900	-0.47	26320	0		
С	-0.	16581400	-2.824	86100	-1.71	84590	0		
С	-0.	16366700	-3.849	00500	-2.71	69460	0		
С	-3.	03877700	-0.671	56400	0.72	72240	0		
С	-3.	69716500	-0.613	821700	-0.51	39870	0		
С	-4.	93654700	0.020	84700	-0.58	41640	0		
Н	-5.	44902400	0.065	99800	-1.53	68460	0		
С	-5.	53757400	0.603	848200	0.52	14370	0		
С	-4.	86491000	0.539	47300	1.73	87550	0		
Н	-5.	31617600	0.995	55100	2.60	80320	0		
С	-3.	62873200	-0.080	12900	1.86	98610	0		
С	-3.	14336200	-1.241	56300	-1.77	39030	0		
Н	-2.	10254100	-1.467	37800	-1.58	70910	0		
С	-3.	85301200	-2.567	63500	-2.07	27860	0		
Н	-4.	89972400	-2.395	40200	-2.33	00260	0		
Н	-3.	82455500	-3.233	899400	-1.21	14430	0		
Н	-3.	37530200	-3.075	39100	-2.91	22880	0		
С	-3.	16314900	-0.324	54800	-2.99	88980	0		
Н	-4.	17657300	-0.064	03400	-3.30	57290	0		
Н	-2.	68563200	-0.830	88100	-3.83	93740	0		
Н	-2.	62010400	0.600	42800	-2.81	27410	0		
С	-6.	86846300	1.311	31900	0.39	89940	0		
Н	-7.	21026200	1.174	61700	-0.63	07020	0		
С	-6.	71371900	2.818	814800	0.64	34770	0		
Н	-5.	98276300	3.256	535000	-0.03	80130	0		
Н	-6.	38303000	3.017	36700	1.66	49190	0		

-7.66623800	3.32926000	0.49550100
-7.92638900	0.70449800	1.32729900
-8.89203200	1.18702800	1.16923100
-7.65722900	0.83941500	2.37670100
-8.04498900	-0.36439200	1.14528600
-2 97927500	-0 12735200	3 24846600
-1 89411700	-0 13551800	3 11242600
-3 36777000	-1 /1860700	3 98078600
-4 44611500	_1 //00700	1 14539600
-4.44011300	-1.44007000	4.14556600
-2.87053300	-1.4/921/00	4.95025400
-3.099/2300	-2.30/69300	3.40660900
-3.27160400	1.09162900	4.12731700
-3.05929300	2.02491700	3.60617500
-2.65006900	1.05282300	5.02282800
-4.31005600	1.11573400	4.45928300
0.90502800	1.80945000	-1.18038500
-0.12701200	2.73595200	-0.96205400
0.14719800	4.07881700	-1.19669000
-0.63484900	4.80505700	-1.02191300
1.38818400	4.51629300	-1.64876500
2.36481800	3.56253200	-1.90149800
3.32303400	3.88931900	-2.28510600
2 15808600	2 20259200	-1 67632100
-1 51717900	2 35161600	-0 49287600
-1 61602300	1 26530700	-0 56783800
-1 75947500	2 73004000	0.06064000
1 50070100	2.73904900	1 11/11000
-1.59978100	2.20052500	1.11411900
-1.09383200	2.20953500	1.65011000
-2.78382700	2.50253400	1.2514/000
1.66/41100	5.98706400	-1.86508700
2.69148400	6.06703600	-2.23973400
0.73476000	6.59212100	-2.92072900
0.80117200	6.04974400	-3.86479200
0.99800400	7.63433200	-3.10662600
-0.30557500	6.56689200	-2.59051300
1.59115000	6.76275300	-0.54406100
1.85880400	7.80863000	-0.70087800
2.27039900	6.34405100	0.19993300
0.58095100	6.73628700	-0.13040200
3.28650800	1.24383800	-2.01199900
2.94636800	0.22472600	-1.81736800
3.64835000	1.30811700	-3.50188300
2.76986900	1.18735500	-4.13685900
4.36331000	0.52219000	-3.74974300
4.10544000	2.26522800	-3.75482500
4.52427900	1.48348300	-1.14069200
4.93910200	2.47538800	-1.32465900
5 29808600	0.75097300	-1.37227200
4 28971300	1 40281400	-0.08132600
2 47611500	-0.54475200	0.70669500
3 45822900	-1 /9857/00	0.40259000
A 56172700	-1 58592800	1 24553400
5 22114000	2 21 001 200	1 02697600
1 72006000	-2.31001200	1.02007000
4.72090000	-0.76376300	2.33369000
3.72888300	0.15912400	2.6332/100
3.83212200	0.80554700	3.49481600
2.59551800	0.28349500	1.83789300
3.35842400	-2.46099700	-0.76342800
2.60803600	-2.07940200	-1.44810400
4.65403400	-2.57938200	-1.57099900
4.47932500	-3.18558500	-2.46102400
5.45078300	-3.05917000	-1.00185000
5.01329200	-1.60100800	-1.89190500
2.87524000	-3.83650200	-0.28462300
1.93412300	-3.75961100	0.26025100
3.61075500	-4.29412900	0.37937800
2.71918400	-4.50399700	-1.13353900
5.96205700	-0.87435800	3.22305300
6.57238600	-1.68344900	2.81266000

нОнннОнОнннОнннОСОнОСнОСнОнннонснннОнннонннососноонсонсонскиннонннон

С	5.60619300	-1.24405500	4.66762000
Н	5.01678300	-0.45753000	5.14317300
Н	6.51260700	-1.38156700	5.25898500
Н	5.02850000	-2.16848000	4.70823800
С	6.79393500	0.41296100	3.16699800
Н	7.06573800	0.66308900	2.14049700
Н	7.71185400	0.29928300	3.74559400
Н	6.24032500	1.25703600	3.58350100
С	1.55437700	1.31359200	2.23814900
Н	0.71240700	1.24385700	1.54620700
С	0.97741500	1.02963900	3.62900900
Н	0.16294700	1.72128700	3.85144200
Н	1.73509500	1.15052400	4.40369200
Н	0.59477700	0.01001600	3.69529800
С	2.08134000	2.74680800	2.11969100
Н	2.42739100	2.95639200	1.10826000
Н	2.91300600	2.91330800	2.80559800
Н	1.29467900	3.46183900	2.36429000
С	-2.61116000	2.95588200	-1.38079400
Н	-2.41202900	2.78373400	-2.43810500
Н	-2.69473700	4.03254300	-1.22738500
Н	-3.57318000	2.50846400	-1.13281200

Cartesian coordinates of the optimized geometry for ${\bf 4}$ at B3LYP-D3BJ/def2-TZVP level of theory:

Sb	0.72627500	-0.00964000	1.17206200
С	0.65884800	2.16024000	1.00233300
Sb	-0.71822100	-0.03651200	-1.24942300
С	1.32590300	2.89790600	1.95129500
Н	1.90605600	2.39769100	2.71797100
С	1.28113000	4.30693900	1.95156100
Н	1.82853100	4.86033400	2.70395000
С	0.54059500	4.96525000	1.00885700
Н	0.48961600	6.04732000	1.00385000
С	-0.95800400	4.92895900	-0.94410200
Н	-0.99981200	6.01083500	-0.90810000
С	-1.64139500	4.23689800	-1.90563800
Н	-2.23560800	4.76268400	-2.64214500
С	-1.56550500	2.82982500	-1.94561400
Н	-2.10239700	2.30378600	-2.72638200
С	-0.83562700	2.12526500	-1.01793600
С	-0.11726400	2.81868900	0.00178400
С	-0.17862600	4.24937900	0.02226900
С	2.74319000	-0.44617500	0.40069800
С	3.43050500	-1.50718800	1.03618700
С	4.73568400	-1.79830400	0.65484700
Н	5.25776300	-2.60899700	1.14319400
С	5.39444000	-1.07680900	-0.33636000
С	4.69784900	-0.05780500	-0.96325800
Н	5.19220400	0.50290900	-1.74801200
С	3.38202500	0.26752800	-0.62637300
С	2.75455900	-2.39230400	2.07518800
Н	2.08964900	-1.75886300	2.66744100
С	1.88299000	-3.45027200	1.38298400
Н	2.50359100	-4.11498200	0.77811000
Н	1.14752100	-2.99511300	0.71774000
Н	1.34516600	-4.05350200	2.11746400
С	3.71004200	-3.05748300	3.06726500
Н	3.13723600	-3.54497700	3.85808200
Н	4.37689400	-2.32871900	3.53026000
Н	4.32335600	-3.82648600	2.59374400
С	7.78766100	-1.19383100	0.44608000
Н	7.56330500	-1.88188100	1.26380800
Н	7.71894100	-0.17762800	0.83704200
Н	8.81844100	-1.37257000	0.13253400
С	2.71738900	1.37249100	-1.42207200
Н	1.69028500	1.44655300	-1.08727300

С	2.67116600	1.05380700	-2.92068700
Н	2.20420400	0.08466600	-3.10021900
Н	3.67018500	1.03379400	-3.35993000
Н	2.08920000	1.81392700	-3.44600000
С	3.35889200	2.73935000	-1.16466500
Н	4.39148400	2.76379600	-1.51921700
Н	3.35822800	2.97597500	-0.10131100
Н	2.80337100	3.52187600	-1.68528600
С	-2.69439600	-0.65795800	-0.50065900
С	-3.38784000	-0.03325500	0.55237900
C	-4.67001200	-0.47221400	0.87812500
Н	-5.19735100	0.02390500	1.68347600
С	-5.28474200	-1.52361200	0.21410900
C	-4.57415000	-2.15208200	-0.80036800
н	-5.03930500	-2.98349200	-1.31287000
C	-3.29486900	-1.74479700	-1.17321000
C	-2.81036700	1.09235800	1.38682800
Н	-1.79320500	1.25994300	1.05548400
C	-3 55914000	2 41203000	1 17792200
н	-3 58014000	2 68538000	0 12363500
н	-3 06669100	3 21751600	1 72625900
н	-4 58957900	2 34128700	1 53256400
C	-2 73524500	0 72483100	2 87298300
н	-2 19481300	-0 21147100	3 01718900
н	-3 72847100	0 61201800	3 31145900
н	-2 21207800	1 50801300	3 42554500
C	-6 67869000	-1 98427600	0 58443700
н	-6 92659200	-2 81833400	-0 07893900
C	-7 71793000	-0 88111200	0.35281400
ч	-7 69328900	-0 52970800	-0 67973200
н	-7 52922500	-0 02328000	1 00155500
н	-8 72418700	-1 24739800	0 56744000
C	-6 73817500	-2 50326600	2 02597500
ч	-7 73394300	-2 88778700	2.02557500
и и	-6 51426400	-1 70676700	2 7385/100
и и	-6 01508200	-3 30/70900	2 18/39000
C	-2 55590200	-2 53620000	-2 24428800
ч	-1 93838300	-1 83282500	-2 80810600
C	-3 46006200	-3 22809600	-3 26586500
с u	-2 85279500	-3 64047100	-1 07356900
и и	-4 17743300	-2 53119700	-3 70160900
и и	-4 01678300	-1 05762300	-2 82600900
п С	-1 60967400	-3.55463200	-2.02000900
с ч	-2 17057300	-1.29573000	-1.01454500
11	2.17957500	2 07200500	1.01434300
n u	-1 03050500	-1.0923500	-2 34964200
п С	-1.03030300	-4.00033300	-2.34004200
с ц	0.02132900	-0 60507100	-0.72040300
	1.1U2940UU	2 91562000	1 20047000
с ц	0.94484/00	-2.01302900 -2.05376400	-1.3004/800
ц	6 60020200	-2 56642500	-2.13003200
п	0.09030200	-3.00043300	-0.04949300
н	1.90093500	-3.00951400	-1.03283600

Cartesian coordi	nates of the opt	imized geometr	y for S1 at B3	3LYP-D3BJ/def2-TZVP
level of theory:				
С	-4.13243900	-0.70018900	-0.85686700	
С	-4.73760500	-1.22033500	0.28628800	
С	-4.86973900	-0.63698200	-2.04003100	
С	-6.05676400	-1.66064600	0.24815700	
Н	-4.18323000	-1.28102500	1.21345800	
С	-6.19046600	-1.07028700	-2.07880800	
Н	-4.41734900	-0.24305800	-2.94351000	
С	-6.78610500	-1.58406200	-0.93265400	
Н	-6.51515200	-2.06235600	1.14341500	
Н	-6.75200000	-1.00979000	-3.00277200	
Н	-7.81303700	-1.92546200	-0.96061200	
С	-1.62358600	-0.61410100	1.13089500	

С	-1.91798300	0.16349000	2.25139100
С	-1.03337100	-1.86505000	1.31253300
С	-1.63486100	-0.30611800	3.52998000
Н	-2.37050400	1.13890700	2.13067800
С	-0.74430600	-2.33196100	2.58963300
Н	-0.78440100	-2.48180800	0.45892200
С	-1.04689300	-1.55446100	3.70068000
H	-1.86865900	0.30707300	4.39150600
Н	-0.27385400	-3.29901400	2.71227000
Н	-0.81783600	-1.91601600	4.69499100
С	-2.59827100	2.06121000	-0.31563100
C	-1.5/18/400	3.004/8500	-0.24519400
C	-3.89908400	2.45466400	-0.00524100
	-1.83805400	4.31320200	0.14223400
H	-0.55425000	2.71987300	-0.48487200
C II	-4.16/42800	3./65/4800	0.3/61/400
H C	-4./0888200	1.73849000	-0.05393500
	-3.13/91000	4.0901/000	0.43334400
п	-5 19220000	1 05945200	0.19940200
п	-3.24732500	4.03043200	0.013/1900
С	3 88302600	0 66237200	-1 44467100
C	4 62427800	-0.46832500	-1 78529600
C	4 40517800	1 92378300	-1 73267000
C	5 86736100	-0 33863700	-2 39587100
н	4 23540700	-1 45555600	-1 57260200
C	5.65038800	2.05558100	-2.33764000
Н	3.84271200	2.81659800	-1.48299200
С	6.38338200	0.92255800	-2.67083500
Н	6.43360300	-1.22453300	-2.65558300
Н	6.04550900	3.04087100	-2.55134700
Н	7.35138500	1.02216300	-3.14509200
С	1.72006600	-1.59307700	-0.68265700
С	2.18390900	-2.50036500	0.26787300
С	1.01969400	-2.07238700	-1.78964400
С	1.94630500	-3.86220400	0.11728000
Н	2.71810400	-2.14615600	1.13938100
С	0.78083700	-3.43393600	-1.94247600
Н	0.63944400	-1.38367400	-2.53408200
С	1.24026800	-4.33124400	-0.98494400
Н	2.30790800	-4.55693500	0.86532600
Н	0.22944800	-3.79184600	-2.80285000
Н	1.04805300	-5.39061300	-1.09725000
С	2.75285500	0.44108000	1.55165200
С	4.11846000	0.42568600	1.83044600
C	1.84198700	0.36605300	2.60553800
C	4.56541300	0.33062600	3.144/5000
H	4.83896300	0.48084200	1.02482100
C	2.28865700	0.26229100	3.91/39600
п	0.///83400	0.3/392300	2.41130100
U U	3.631938UU 5.63951700	0.2462/900	4.10949300
n u	J.02831/UU 1 56000200	U.JL8/JJUU 0 10333000	J.JJIZ00UU A 72225200
н Н	4 00170600	0.15233000	5 21120500
sh	1 96366200	0.10090900	-0 45571500
Sh	-2 09447500	0.03283300	-0 88115400
0.0	2.0944/300	0.05205500	0.00110400

Cartesian coordinates of the optimized geometry for **S2** at B3LYP-D3BJ/def2-TZVP level of theory: C -4.25745000 0.57402200 0.80609400

С	-4.77689500	1.34172700	-0.23376400
С	-5.09048500	0.21453500	1.86506600
С	-6.11095400	1.73872100	-0.21654500
Н	-4.14676200	1.62994500	-1.06513200
С	-6.42516800	0.60688800	1.88170100
Н	-4.70863500	-0.38239400	2.68633500
С	-6.93695700	1.37090100	0.83915500

Н	-6.50470600	2.33465200	-1.03080800
Н	-7.06333700	0.31698900	2.70734000
H	-7.97479000	1.67866300	0.85025800
C	-1.58473900	0.90313500	-1.10605900
С	-1.86755900	0.33194600	-2.34601100
С	-1.00933900	2.17203800	-1.05699600
С	-1.58697900	1.02508800	-3.51999400
H	-2.30984200	-0.65425900	-2.40290300
C	-0.72133800	2.86114000	-2.23045000
H	-0.76984600	2.63215400	-0.10705100
С	-1.01350600	2.29052200	-3.46320100
Н	-1.81121800	0.57239800	-4.47805100
H	-0.26173400	3.83986600	-2.17781200
H	-0.78761400	2.82621800	-4.37635600
C	-2.58757600	-2.10089600	-0.18438700
C	-1.56781800	-3.03847400	-0.34643400
С	-3.85813900	-2.39128600	-0.67695700
С	-1.80986300	-4.24319000	-0.99881200
H	-0.57160700	-2.83512900	0.02947200
C	-4.102//500	-3.59//3900	-1.326/9400
H	-4.66282300	-1.6/655/00	-0.560/8900
	-3.0/941/00	-4.52413000	-1.49053900
H	-1.00802200	-4.96066700	-1.122/4500
H	-5.09419800	-3.81216300	-1./06/0100
H C	-3.27028300	-5.46114500	-1.99801300
	4.00198100	-0.84405400	1.24004100
	4.68221700	0.23469300	1.80109900
C	4.59989200	-2.10354800	1.25263300
	J.94313300	1 2100900	2.30212300
С	4.23402100	-2 20304300	1 010025000
u	1 09017600	-2.20304300	1.01003300
n C	6 5353/100	-2.938488000	2 36616000
ч	6 46353400	0 90177800	2,30010000
u	6 31795500	-3 265/9500	1 81046800
н	7 51688600	-1 33877900	2 80164600
C	1 69615700	1 52869800	0 93792000
C	2 15589300	2 59972600	0 17585000
C	0 98728900	1 78554600	2 11035400
C	1 90251000	3 90787700	0 57563600
Н	2.69837400	2.41900400	-0.74286500
C	0.72868200	3.09330900	2.51037900
H	0.61990500	0.96834900	2.72012400
С	1.18289300	4.15716600	1.73919800
Н	2.26130800	4.73329900	-0.02697400
Н	0.17021500	3.28000800	3.41923500
Н	0.97780200	5.17524600	2.04451500
С	2.81569700	-0.02436100	-1.73906800
С	4.18459900	0.07534000	-1.97588700
С	1.91905000	0.27875400	-2.76222100
С	4.65095500	0.47736100	-3.22439500
Н	4.89300800	-0.15148000	-1.18940900
С	2.38583300	0.68635300	-4.00713400
H	0.85172200	0.21539900	-2.59748700
С	3.75282500	0.78469000	-4.24041800
Н	5.71688600	0.55364700	-3.40101400
Н	1.67845500	0.92877400	-4.79025300
Н	4.11753500	1.10054900	-5.20967400
Bi	1.97188600	-0.61413000	0.26919900
Bi	-2.10758100	-0.13641100	0.83600800

Cartesian coordinates of the optimized geometry for **S3** at B3LYP-D3BJ/def2-TZVP level of theory: C -0.27663200 -0.02290700 1.96103000

С	-0.27663200	-0.02290700	1.96103000
С	0.54723900	0.61223000	2.88775200
С	-0.94225600	-1.20346300	2.29033000
С	0.69942200	0.06295300	4.15524600

Н	1.06727700	1.52572900	2.63178100
С	-0.78155900	-1.74388800	3.55984700
Н	-1.57568900	-1.70607400	1.57340400
С	0.03911400	-1.11414700	4.48937100
Н	1.33338300	0.55584600	4.88034200
н	-1.29698600	-2.65898100	3.81936700
Н	0.16253700	-1.54012600	5.47619700
C	0.64112300	2.59222500	0.04629200
C	-0.04459800	3.80425700	0.01020000
C	2 03508500	2 56120900	0 10653800
C	0 67269600	4 99459400	0 04216800
U U U U U U U U U U U U U U U U U U U	-1 12559300	3 82768400	-0 04075900
C	2 74058800	3 75750800	0 13988800
U H	2 57271500	1 62257100	0.12980100
C	2.06108500	1 97058000	0.12300100
Ч	0 14575500	5 93911800	0.10/55400
11 U	3 82124000	3 7/051100	0.01007300
n u	2 61519700	5 900/3100	0.13155000
п С	2.01310700	1 25442000	0.13135000
	-2.4/595800	1.25443000	-0.266/5800
	-2.94393700	1.00100500	-1.54646500
	-3.34111100	1.26180500	1 72020200
	-4.28458600	1.86448400	-1./3020200
H	-2.2/593200	1.54206700	-2.39939300
	-4.68155900	1.5/531500	0.63118600
H	-2.980/1600	1.02590800	1.81/88/00
C	-5.15120200	1.8/5/4000	-0.64228900
H	-4.65162500	2.09849800	-2./2061000
H	-5.35/52000	1.58482100	1.4/58/900
Н	-6.19529500	2.11834800	-0./8835000
С	-0.49186300	-2.60150600	-0.91687800
С	0.15931700	-3.62401900	-0.23103500
С	-1.88791000	-2.58074000	-0.96399800
С	-0.58138000	-4.60367200	0.42240200
Н	1.23939100	-3.66669000	-0.19868100
С	-2.62423900	-3.55661500	-0.30433700
Н	-2.41330400	-1.80096100	-1.50396300
С	-1.97012400	-4.56664800	0.39413700
Н	-0.07039300	-5.39666400	0.95257200
Н	-3.70547400	-3.53060300	-0.33887100
Н	-2.54285500	-5.32902000	0.90522300
С	2.43082200	-1.02125400	-0.89534100
С	3.54035000	-0.55687500	-1.60470700
С	2.56299400	-1.33444100	0.45931700
С	4.76715300	-0.40627600	-0.96741200
Н	3.45660200	-0.30419000	-2.65500100
C	3.78841900	-1.17682900	1.09360500
Н	1.71721400	-1.68763200	1.03113300
C	4.89020800	-0.71141100	0.38257700
Н	5.62320900	-0.05085800	-1.52557300
Н	3.88091000	-1.41534600	2.14507400
Н	5.84348600	-0.59097400	0.87986800
Sb	0.55682000	-1.03427400	-1.95740400
Sb	-0.43658000	0.77388000	0.00652800

Cartesian coordinates of the optimized geometry for **S4** at B3LYP-D3BJ/def2-TZVP level of theory: C -1.59236000 1.53931200 0.56217100 C -1.18961400 2.65318700 1.29759700 C -2.36585900 1.72813500 -0.58346200 C -1.55170200 3.93410300 0.89715200 H -0.57286300 2.52982000 2.17945000

C	-1.331/0200	3.93410300	0.09/15200
Н	-0.57286300	2.52982000	2.17945000
С	-2.73062500	3.00869000	-0.98262500
Н	-2.68504600	0.87613600	-1.16990900
С	-2.32319700	4.11427500	-0.24370700
Н	-1.22277800	4.79018100	1.47230100
Н	-3.32935500	3.14307200	-1.87509000
Н	-2.60404500	5.11127200	-0.55833100

С	-2.43617100	-1.56321000	0.26391700
С	-3.76919800	-1.22804200	0.50652500
С	-2.16031700	-2.70311200	-0.49120400
С	-4.80102300	-2.00723000	-0.00470500
Н	-4.01129600	-0.34625900	1.08735000
С	-3.19017200	-3.48764200	-0.99900600
Н	-1.13548400	-2.98622600	-0.70228800
С	-4.51389600	-3.13989200	-0.75796500
Н	-5.83005200	-1.72920000	0.18650200
Н	-2.95741900	-4.36583300	-1.58826300
Н	-5.31693400	-3.74645600	-1.15641800
С	2.43616700	-1.56321600	-0.26391500
С	3.76919400	-1.22803700	-0.50650500
С	2.16031100	-2.70312800	0.49119000
С	4.80101800	-2.00722500	0.00472800
Н	4.01129300	-0.34624500	-1.08731600
С	3.19016500	-3.48765800	0.99899300
Н	1.13547700	-2.98625000	0.70225900
С	4.51388900	-3.13989700	0.75797100
Н	5.83004700	-1.72918600	-0.18646500
Н	2.95741000	-4.36585700	1.58823700
H	5.31692600	-3.74646100	1.15642600
С	1.59236300	1.53930700	-0.56217500
С	1.18959200	2.65318700	-1.29758000
С	2.36589300	1.72812300	0.58343800
С	1.55168400	3.93410100	-0.89713300
H	0.57281700	2.52982400	-2.17941800
С	2.73066300	3.00867600	0.98260300
Н	2.68510100	0.87612000	1.16986800
С	2.32321000	4.11426600	0.24370700
H	1.22274000	4.79018200	-1.47226500
H	3.32941800	3.14305300	1.87505300
H	2.60406100	5.11126200	0.55833200
Sb	0.84170800	-0.39936800	-1.15584000
Sb	-0.84171000	-0.39936500	1.15583900

Cartesian coordi	inates of the opt	imized geometr	y for S5 at B3LYB	P-D3BJ/def2-TZVP
level of theory:	:			
Sb	1.19631400	0.00001900	-0.00047000	
С	1.72950600	0.00014800	2.07056700	
Sb	-1.62044100	-0.00002900	-0.45141000	
С	-1.90483600	1.60977300	0.98528700	
С	2.19519200	1.69620800	-0.82939300	
Н	3.25841900	1.60747600	-0.61493600	
Н	2.03008300	1.71538700	-1.90411400	
Н	1.79717500	2.60085100	-0.37562400	
С	2.19488200	-1.69642300	-0.82924600	
H	2.03061200	-1.71501500	-1.90410900	
Н	3.25799000	-1.60842000	-0.61390900	
Н	1.79596800	-2.60104000	-0.37621600	
C	-1.90455800	-1.60965300	0.98555800	
Н	-2.97972000	-1.71188500	1.13005200	
Н	-1.51548700	-2.54330600	0.58507700	
н	-1 43704400	-1 37695900	1 93926600	
н	-1 51630600	2 54351100	0 58448000	
и И	-2 98000600	1 71153900	1 13007400	
и И	1 32473700	-0 89125500	2 54376100	
11 U	2 91551100	0.00036000	2 14292000	
11 U	1 32430200	0.00030000	2.14202000	
п	1 42004000	1 27751700	2.54570000	
п	-1.43694800	T.3//2T/00	T. 3383T/00	

Cartesian coordinates of the optimized geometry for **S6** at B3LYP-D3BJ/def2-TZVP level of theory: Sb 1.33966400 0.04682800 -0.48518400

C 1.88115500 -1.71689000 0.69081600	~	 1.00000000	0.01002000	· ·	10010100
	C	1.88115500	-1.71689000	0.	69081600

Sb	-1.33968200	0.04681400	0.48516600
С	-1.88080500	-1.71714500	-0.69065700
С	2.07338800	1.47048900	1.00381400
Н	3.16248800	1.47033600	0.98643900
Н	1.71545700	2.46921900	0.75823500
Н	1.72300600	1.19131300	1.99569900
С	-2.07364500	1.47026700	-1.00388400
Н	-3.16275100	1.46955400	-0.98670900
Н	-1.71628500	2.46913300	-0.75801800
Н	-1.72295400	1.19149700	-1.99577400
Н	-1.42662300	-2.60124700	-0.24609900
Н	-2.96397200	-1.83031200	-0.67714200
Н	2.96434100	-1.82985300	0.67697200
Н	1.54008500	-1.60712800	1.71874700
Н	-1.53942400	-1.60747700	-1.71849700
Н	1.42698400	-2.60113100	0.24652700

V. References

- 1. R. L. Letsinger, J. A. Gilpin and W. J. Vullo, J. Org. Chem. 1962, 27, 672.
- 2. S. Sasaki, K. Sutoh, F. Murakami and M. Yoshifuji, J. Am. Chem. Soc. 2002, 124, 14830.
- 3. A. R. O'Connor, C. Nataro, J. A. Golen and A. L. Rheingold, J. Organomet. Chem. 2004, 689, 2411.
- 4. W. Uhlig, Z. Naturforsch. B 1995, 50, 1674.
- 5. J. R. Aranzaes, M.-C. Daniel and D. Astruc, Can. J. Chem. 2006, 84, 288.
- 6. G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
- G. M. Sheldrick, SHELXL-2017, Program for the Refinement of Crystal Structures University of Göttingen, Göttingen (Germany) 2017. See also: G.M. Sheldrick Acta Crystallogr. 2015, C71, 3.
- shelXle, A Qt GUI for SHELXL, C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr.; J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, *J. Comput. Chem.* 2001, **22**, 931–967. b) ADF 2020.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. E.J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, C. Cappelli, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai, L. Deng, R. M. Dickson, J.M. Dieterich, F. Egidi, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, A. Förster, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. Goez, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, Z. Hu, C. R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J. W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M. V. Krykunov, P. Lafiosca, E. van Lenthe, D. A. McCormack, M. Medves, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, C. A. Peeples, P. H. T. Philipsen, D. Post, C. C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, M. Reimann, J. I. Rodríguez, P. Ros, R. Rüger, P. R. T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone,

V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo and A. L. Yakovlev.

- 11. AIMAII (Version 19.10.12), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (http://aim.tkgristmill.com).
- a) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098. b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, **37**, 785. c) B. Miehlich, A. Savin, H. Stoll and H. Preuss, *Chem. Phys. Lett.* 1989, **157**, 200.
- 13. S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 2011, 32, 1456.
- 14. A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.* 1988, **88**, 899.
- 15. F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem. 2000, 15, 1.
- 16. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press: Oxford, U.K., 1990.
- 17. M. A. Blanco, A. Martín Pendás and E. Francisco, J. Chem. Theory Comput. 2005, 1, 1096.