Electronic Supplementary Information for:

In situ fabrication of dry/gel bilayer $Ti_3C_2T_r$ film for high-rate micro-

supercapacitors †

Shuyu Cui, ^{†a} Jun Tang, †^a Bihua Hu,^a Peizhi Wang,^a Jiaxin Guo,^a Yuanjun Peng,^b

Xingzhu Wang,a,b,* Baomin Xua,*

a. Department of Materials Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China

b. Shenzhen Putai Technology Co., Ltd, Shenzhen 518055, China

*Corresponding authors.

E-mails: xubm@sustech.edu.cn (Baomin Xu), wangxz@sustech.edu.cn

[†] These authors contributed equally to this work.

1. Experimental Section

Materials

 $Ti₃AIC₂$ powders (99wt%, pure) were purchased from Jilin 11 tech. Inc. HCl (Sinopharm Chemical Reagent Company, 35-38% concentration), HF (Sigma Aldrich, 40%), and LiCl (MERYER, 99%) were commercially procured. All the chemicals were used without further treatments.

Synthesis of $Ti_3C_2T_x$ **nanosheets**

The $Ti_3C_2T_x$ nanosheets were synthesized by etching Al from the precursor $Ti₃AIC₂$ using HF/HCl reported previously.¹ Firstly, 6 ml deionized water, 12 mL of hydrochloric acid and 2.5 ml hydrofluoric acid were mixed in turn by stirring to form a uniform solution. Then, $1 \times T_{3}AlC_{2}$ powder was added into the mixed solution in batches, followed by magnetic stirring for 24 h at the temperature of 35 ℃. The obtained suspension was washed by deionized water via centrifugation (5000 rpm,3 min per cycle) several times until the $pH \ge 6$. Subsequently, the collected sediment was re-dispersed in 30 ml deionized water, then added into LiCl solution containing 30 ml deionized water and 1 g LiCl for delamination. After being stirred for 4 h at the temperature of 35 °C, the delaminated $Ti_3C_2T_x$ dispersion was washed by deionized water via centrifugation at 8000 rpm for 3 mins. Further, the supernatant was discarded and the sediment was washed again by centrifugation at 10000 rpm for 5 mins. Afterwards, 20 ml deionized water was added into the centrifuge tube containing the precipitate, followed by vigorous manual shaking until the $Ti_3C_2T_x$ nanosheets were uniformly dispersed. Ti₃C₂T_x colloidal solution with a high concentration of 42 mg mL⁻¹ was obtained for further usage.

Preparation of H_2SO_4 **-Ti**₃ C_2T_x ion-gel film

Bilayer $Ti_3C_2T_x$ films were prepared via a blade-coating method. Firstly, $Ti_3C_2T_x$ colloidal solution was dropped on the polyimide substrate, followed by removing the blade on it with the height of 200 μ m. After vacuum drying, the bottom layer of Ti₃C₂T_x

film designed as an electron-transport layer was prepared. Next, the top layer of wet $Ti₃C₂T_x$ with a width of 5 mm (the width was limited by the tape) was fabricated on the totally dried $Ti_3C_2T_x$ film using the same way of blade-coating, closely followed by being immersed in 3 M H_2SO_4 for 10 seconds. H_2SO_4 -induced $Ti_3C_2T_x$ ion-gel film (named as $Ti_3C_2T_x-H_2SO_4$) was formed from fluid solution $Ti_3C_2T_x$ solution. For comparison, another set of samples was directly vacuum-dried without being immersed in sulfurous acid (named as $Ti₃C₂T_x$ -dried).

Fabrication of the interdigital micro-supercapacitors

For the fabrication of interdigital MSCs, the as-obtained double-layer $Ti_3C_2T_x$ films were cut into strips for being used as electrodes of the symmetric supercapacitor. Using the direct laser writing technique, a pulse laser (wavelength of 1064 nm; power of 12 W; pulse duration of 100 ns; repeat rate of 20 kHz; scanning speed of 800 mm s ¹) was focused on the $Ti_3C_2T_x$ film and patterned it into interdigital electrodes. Subsequently, $3 M H₂SO₄$ aqueous solution as electrolyte was dripped onto the area of interdigital electrodes of $Ti_3C_2T_x-H_2SO_4$ and $Ti_3C_2T_x$ -dried. Then the $Ti_3C_2T_x-H_2SO_4$ MSCs and $Ti_3C_2T_x$ -dried MSCs were obtained.

Material characterizations

The morphologies of $Ti_3C_2T_x$ nanosheets and electrodes were characterized by scanning electron microscope (SEM) (Hitachi SU8230). X-ray diffraction (XRD) patterns were measured by powder X-ray diffractometer (Bruke D8, Copper Kα radiation, λ =1.540598 Å). Raman spectrum was obtained by Horiba Raman microscope with 532 nm laser, 600 lines mm⁻¹ grating at 10% laser power and a 50X objective.

Electrochemical measurements

The electrochemical performance of $Ti_3C_2T_r-H_2SO_4$ MSCs and $Ti_3C_2T_r$ -dried MSCs was evaluated in a two-electrode system by CHI 660e electrochemical workstation. 3 M H_2SO_4 was served as the electrolyte. Cyclic voltammetry (CV) was carried out from 5 to 200 mV s⁻¹. Galvanostatic charge-discharge (GCD) was measured ranging from 1 to 10 mA cm⁻². EIS was performed in the frequency range from 100 kHz to 0.01 Hz at 0 V.

Electrochemical calculations

Areal specific capacitance C_A (mF cm⁻²) of the MSCs devices was calculated from the CV curves by integrating the discharge portion using the following equation:

$$
C_A = \frac{1}{VAv} \int i dV
$$

Areal specific capacitance C_A (mF cm⁻²) of the MSCs devices was calculated from the GCD profiles based on the following equation:

$$
C_A = (I \times \Delta t)/(A \times \Delta V)
$$

where *i* is the current (mA), *V* is the potential (V), *v* is the scan rate (mV/s) and *A* is the area of the MSC $({\sim} 0.4 \text{ cm}^2)$.

Areal specific energy density E_A (mW h cm⁻²) of MSCs device:

$$
E_A = \frac{1}{A} \int iV dt
$$

$$
E_A = \frac{C \times V^2}{2 \times 3600}
$$

Areal specific power density P_A (mW cm⁻²) of MSCs device:

$$
P_A = \frac{E_A \times 3600}{\Delta t}
$$

where Λ is the area of the MSC device and Δt is the discharge time.

Fig. S1 SEM of (a) Ti_3AIC_2 , (b) $Ti_3C_2T_x$ nanosheet (the substrate is copper foil); (c) XRD of Ti_3AIC_2 and $Ti_3C_2T_x$.

Fig. S2 (a) Photograph shows the effective area of the device; (b) SEM of interdigital electrodes; Photographs of (c) Ti₃C₂T_x-dried MSCs and (d) Ti₃C₂T_x-H₂SO₄ MSCs.

Fig. S3 EIS spectra with the fitting results of the $Ti_3C_2T_x-H_2SO_4$ and $Ti_3C_2T_x$ -dried MSCs.

In order to investigate the performance improvement contributed from the bottom dry $Ti_3C_2T_x$ film, electrochemical measurements of double-layered ion-gel $Ti_3C_2T_x$ MSCs (named as Gel-gel $Ti_3C_2T_x$) were performed in the same test conditions. Fig. S4a and S4b show the cyclic voltammeter (CV) profiles of Gel-gel $Ti_3C_2T_x$ and Dry-gel $Ti₃C₂T_x$ MSCs at various scanning rates. The black lines referring to Gel-gel $Ti₃C₂T_x$ MSCs deviate from the rectangle both at the scan rate of 10 mV/s and 200 mV/s, indicating a worse capacitive performance and large resistance of Gel-gel MSCs. As a comparison, the CV curves of the dry-gel MSCs display a near rectangle in shape, which reveals an ideal capacitor behaviour.² Consequently, the CV curves prove that the bottom layer of dry $Ti_3C_2T_x$ plays an important role for excellent capacitance performance.

Fig. S4 CV curves of the Dry-gel and gel-gel $Ti_3C_2T_x$ at the scan rate of (a)10 mV/s and (b) 200 mV/s.

Fig. S5 (a) CV curves and (b)rate performance of $Ti_3C_2T_r-H_2SO_4$ and $Ti_3C_2T_r$ -dried MSCs in 3M H_2SO_4 and 3M PVA/ H_2SO_4 ; (c) Cycling stability tested at 5 mA cm⁻² in 3M H_2SO_4 , the inserted pictures show the state of the electrolyte before and after the cycling test respectively.

The cycle stability of the $Ti_3C_2T_x-H_2SO_4$ MSCs was tested in the 3M H_2SO_4 in the very beginning (Fig.S5). However, since the device was exposed to the air, the electrolyte of $3M H₂SO₄$ solution gradually evaporates during the long-time cycling test. As a result, the concentrated H_2SO_4 with hardly electric severely affected the performance of MSCs. Besides, we have tested the CV of $Ti_3C_2T_x-H_2SO_4$ and $Ti_3C_2T_x$ dried MSCs in the electrolyte of 3M $H₂SO₄$ and 3M PVA/ $H₂SO₄$ respectively. It is worth noting that as shown in Fig.S5a and S5b, there are obvious enhancements of $Ti_3C_2T_x-H_2SO_4$ compared with $Ti_3C_2T_x$ -dried both in 3M H_2SO_4 and 3M PVA/ H_2SO_4 .

All of them reflect the effectiveness of using ion-gel to improve performance. Moreover, the performances of $Ti_3C_2T_x-H_2SO_4$ in 3M H_2SO_4 and 3M PVA/ H_2SO_4 are similar, the same is true for $Ti_3C_2T_x$ -dried MSCs. Consequently, considering the similar performance in 3M H_2SO_4 and 3M PVA/ H_2SO_4 , we chose the 3M PVA/ H_2SO_4 to ensure the stability of the electrolyte. And $3M PVA/H₂SO₄$ can also reflect the effective improvement of performance and reflect the stability of the capacitor more truly.

Fig. S6 GCD profiles of (a) $Ti_3C_2T_x-H_2SO_4$ and (b) $Ti_3C_2T_x$ -dried MSCs at different current densities; (c) Areal capacitance versus current density.

Refences

1. A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori and Y. Gogotsi, *Sci Adv*, **4**, eaau0920.

2. Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E. C. Kumbur, H. N. Alshareef, M.-D. Ger and Y. Gogotsi, *Energy Environ. Sci.*, 2016, **9**, 2847-2854.