Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Rh(III)-catalysed C–H/C–H cross-coupling of S-Aryl sulfoximines with thiophenes: facile access to [1]benzothieno[3,2-*b*][1]benzothiophene (BTBT) and

benzothiazines

Chengyong Yang, Zheng Liu, Rui Cheng, Jiping Du, Chunhao Ran, Di Wu* and Jingbo Lan*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China

Table of contents

I. General remarks	S1
II. Optimization of reaction conditions	S2
III. General procedure for heteroarylation of sulfoximines	S6
IV. Procedure for the synthesis of 3a on 1.0 mmol scale	S6
V. Mechanistic studies	.S17
VI. Synthesis of BTBT derivatives	.S22
VII. Synthesis of thermally activated delayed fluorescence molecules	.S24
VIII. Single-crystal X-ray structure of 3v	.S27
IX. References	.S29
X. Copies of ¹ H and ¹³ C NMR spectra	S30

I. General remarks

NMR spectra were obtained on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO-d₆ as the internal standard (CDCl₃: δ = 77.16). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). X-Ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectra and absolute quantum yields were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system. The excited state lifetimes were obtained using an HORIBA TEMPRO-01 instrument. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification.

(1) List of sulfoximine derivatives 1

(2) List of thiophene derivatives 2

Synthesis of sulfoximine derivatives 1: 1a-h¹ were prepared according to literature procedures.

Synthesis of thiophene derivatives 2: $2e^2$, $2f^3$, $2g^4$ were prepared according to literature procedures.

2a-2d, 2h-2o were purchased from Energy Chemistry.

II. Optimization of reaction conditions

A flame-dried Schlenk tube with a magnetic stir bar was charged with S-(4bromophenyl)-S-methyl sulfoximine (1a, 0.3 mmol), benzo[b]thiophene (2a, 0.1 mmol), catalyst (5.0 mol%), oxidant (3.0 equiv), additive and solvent (1.0 mL). The resulting mixture was stirred at indicated temperature in oil bath for 4.5 h. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product **3a**.

2	$[Cp*IrCl_2]_2/AgSbF_6$	trace
3	Cp*Co(CO)I ₂ (10%)	n.d.
4	[Rh(cod)Cl] ₂ /AgSbF ₆	trace
5	[Ru(p-cymene)Cl ₂] ₂ /AgSbF ₆	n.d.
6	RhCl ₃	n.d.
7	[Cp*RhCl ₂] ₂	14
8	[Cp*RhCl ₂] ₂ /AgOTFA (20%)	31
9	[Cp*RhCl ₂] ₂ /AgOTFA (30%)	38
10	[Cp*RhCl ₂] ₂ /AgOTFA (50%)	34
11	AgOTFA (30%)	n.d.
12 ^c	AgOTFA (30%)/Ag ₂ CO ₃	n.d.

^{*a*}Reaction conditions: *S*-(4-bromophenyl)-*S*-methyl sulfoximine (**1a**, 0.3 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol), catalyst, Ag₂O (3.0 equiv), K₂HPO₄ (4.0 equiv), HFIP (1.0 mL) at 120 °C in oil bath for 4.5 h. ^{*b*}Isolated yield. n.d. = not detected. HFIP = 1,1,1,3,3,3hexafluoro-2-propanol. ^{*c*} Ag₂CO₃ (3.0 equiv) was used instead of Ag₂O (3.0 equiv) as the oxidant.

Table S2. Screening of oxidant^a

Br 1a) NH +	S [Cp*RhCl ₂] ₂ , AgO ⁻ oxidant 0xidant K ₂ HPO ₄ HFIP, 120 °C, 4.5	$\begin{array}{c} HN \\ S \\ \hline O \\ h, N_2 \\ Br \\ 3a \end{array}$	
	entry	oxidant (equiv)	yield $(\%)^b$	
-	1	Ag ₂ CO ₃ (3.0)	24	
	2	Ag ₂ O (3.0)	38	
	3	$Cu(OAc)_2(3.0)$	n.d.	
	4	$Cu(OAc)_2(3.0) + O_2$	trace	
	5	Ag ₂ O (2.0)	29	
	6	AgOTFA (6.0)	trace	
	7	AgOAc (6.0)	trace	
	8	$PhI(OAc)_{2}(3.0)$	n.d.	

9	$Na_2S_2O_8(3.0)$	n.d.
10	MnO ₂ (3.0)	n.d.
11	AgNO ₃ (6.0)	n.d.
12	AgOTf (6.0)	n.d.
13	Cu(OTf) ₂ (3.0)	n.d.
14	Cu(OTFA) ₂ (3.0)	n.d.
15	BQ	n.d.
16	$Cu(OAc)_2(2.0) + Ag_2O(1.0)$	trace
17	$Cu(OAc)_2(1.5) + Ag_2O(1.5)$	trace

^{*a*}Reaction conditions: *S*-(4-bromophenyl)-*S*-methyl sulfoximine (**1a**, 0.3 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5 μ mol), AgOTFA (6.6 mg, 30 μ mol), oxidant, K₂HPO₄ (4.0 equiv), HFIP (1.0 mL) at 120 °C in oil bath for 4.5 h. ^{*b*}Isolated yield. n.d. = not detected. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol. BQ = benzoquinone.

Table S3. Screening of solvent^a

Br 1a	NH + S 2a	[Cp*RhCl ₂] ₂ , AgOTFA Ag ₂ O, K ₂ HPO ₄ 120 °C, 4.5 h, N ₂ solvent	$\rightarrow \qquad \qquad$
	entry	solvent	yield $(\%)^b$
	1	HFIP	38
	2 ^c	HFIP	trace
	3 ^{<i>d</i>}	HFIP	29
	4	TFE	17
	5	DCE	trace
	6	toluene	n.d.
	7	THF	n.d.
	8	dioxane	n.d.
	9	DMSO	n.d.
	10	МеОН	n.d.
	11	CH ₃ CN	n.d.

12	<i>i</i> -PrOH	n.d.

^{*a*}Reaction conditions: *S*-(4-bromophenyl)-*S*-methyl sulfoximine (**1a**, 0.3 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5.0 μ mol), AgOTFA (6.6 mg, 30.0 μ mol), Ag₂O (3.0 equiv), K₂HPO₄ (4.0 equiv), solvent (1.0 mL) at 120 °C in oil bath for 4.5 h. ^{*b*}Isolated yield. n.d. = not detected. ^{*c*}HFIP (2.0 mL). ^{*d*}HFIP (0.5 mL). HFIP = 1,1,1,3,3,3hexafluoro-2-propanol, TFE = 2,2,2-trifluoroethanol, DCE = 1,2-dichloroethane, THF = tetrahydrofuran, DMSO = dimethyl sulfoxide, *i*-PrOH = isopropyl alcohol.

Table S4. Screening of additive^{*a*}

Br 1a	O S NH +	S 2a	[Cp*RhCl ₂] ₂ , AgOTFA additive Ag ₂ O, HFIP 120 °C, 4.5 h, N ₂		
	entry	ade	ditive (equiv)	yield $(\%)^b$	
	1	K	² ₂ HPO ₄ (4.0)	38	
	2	Na	a ₂ HPO ₄ (4.0)	41	
	3	Na	a ₂ HPO ₄ (2.0)	26	
	4	Na	$a_{2}HPO_{4}(1.0)$	19	
	5	Ν	JaOAc (1.0)	trace	
	6	Zr	$n(OAc)_2(1.0)$	trace	
	7	I	$K_3PO_4(1.0)$	16	
	8	K	$H_2PO_4(2.0)$	trace	
	9	Ν	aHCO ₃ (2.0)	14	
	10	N	$Ja_2CO_3(1.0)$	trace	
	11	1	HOAc (1.0)	trace	
	12	I	PivOH(1.0)	trace	
	13		-	24	

^{*a*}Reaction conditions: *S*-(4-bromophenyl)-*S*-methyl sulfoximine (**1a**, 0.3 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5 μ mol), AgOTFA (6.6 mg, 30.0 μ mol), Ag₂O (3.0 equiv), additive, HFIP (1.0 mL) at 120 °C in oil bath for 4.5 h. ^{*b*}Isolated yield. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol.

Br 1a	O S NH +	$ \begin{array}{c} S \\ S \\ \hline S \\ S \\$	HI a_2HPO_4 $a_2O, HFIP$ $a_2O, HFIP$	$3a^{N \cdot S \cdot O} S \cdot C$
•	entry	temperature	e yield	$(\%)^b$
	1	120 °C	41	1
	2	100 °C	28	3
	3	130 °C	43	3
	4	150 °C	69)
	5 ^{<i>c</i>}	150 °C	61	l
	6 ^{<i>d</i>}	150 °C	58	3

^{*a*}Reaction conditions: *S*-(4-bromophenyl)-*S*-methyl sulfoximine (**1a**, 0.3 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5.0 μ mol), AgOTFA (6.6 mg, 30.0 μ mol), Ag₂O (3.0 equiv), Na₂HPO₄ (4.0 equiv), HFIP (1.0 mL) at indicated temperature in oil bath for 4.5 h. ^{*b*}Isolated yield. ^{*c*}3 h. ^{*d*}6 h. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol.

III. General procedure for heteroarylation of sulfoximines

A flame-dried Schlenk with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 5.0 μ mol), Ag₂O (69.5 mg, 0.3 mmol), AgOTFA (6.6 mg, 30.0 μ mol), Na₂HPO₄ (56.8 mg, 0.4 mmol), sulfoximines **1** (0.3 mmol), and thiophenes **2** (0.1 mmol) in HFIP (1.0 mL) under an N₂ atmosphere. The resulting mixture was stirred at 150 °C in oil bath for 4.5 h and then diluted with 5 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product **3**.

IV. Procedure for the synthesis of 3a on 1.0 mmol scale

A flame-dried Schlenk with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (31 mg, 50.0 μ mol), Ag₂O (695 mg, 3.0 mmol), AgOTFA (66 mg, 0.3 mmol), Na₂HPO₄ (568 mg, 4.0 mmol), *S*-(4-bromophenyl)-*S*-methyl sulfoximine **1a** (699 mg, 3.0 mmol), and

benzo[*b*]thiophene **2a** (134 mg, 1.0 mmol) in HFIP (10.0 mL) under an N₂ atmosphere. The resulting mixture was stirred at 150 °C in oil bath for 4.5 h and then diluted with 50 mL of dichloromethane. The solution was filtered through a celite pad and washed with 100-200 mL of dichloromethane. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product **3a** (182 mg, 50% yield).

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3a)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3a** as a yellow solid (25.2 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.13 (d, *J* = 8.4 Hz, 1H), 7.87-7.83 (m, 2H), 7.74-7.67 (m, 3H), 7.44-7.38 (m, 2H), 2.94 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.6, 140.6, 139.5, 137.2, 136.8, 135.3, 132.1, 130.4, 127.7, 127.1, 125.4, 125.1, 124.6, 122.1, 44.1 ppm. HRMS (ESI): calcd for C₁₅H₁₃⁸¹BrNOS₂ [M+H]⁺ 367.9596, found 367.9588; calcd for C₁₅H₁₃⁷⁹BrNOS₂ [M+H]⁺ 365.9616, found 395.9611.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-5-chlorobenzo[b]thiophene (3b)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3b** as a gray solid (22.3 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.14 (d, *J* = 8.8 Hz, 1H), 7.82-7.72 (m, 4H), 7.58 (s, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 2.94 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 140.5, 138.6, 136.7, 135.7, 134.4, 132.4, 131.4, 130.6, 130.2, 127.2, 126.8, 125.8, 124.0, 123.2, 45.1 ppm. HRMS (ESI): calcd for $C_{15}H_{12}^{81}Br^{37}CINOS_2 [M+H]^+ 403.9177$, found 403.9171; calcd for $C_{15}H_{12}^{81}Br^{35}CINOS_2 [M+H]^+ 401.9206$, found 401.9197; calcd for $C_{15}H_{12}^{79}Br^{35}CINOS_2 [M+H]^+ 399.9227$, found 399.9227.

2-Bromo-2-(5-bromo-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3c)

Following the general procedure. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3c** as a yellow solid (20.7 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.14$ (d, J = 8.4 Hz, 1H), 7.79-7.73 (m, 3H), 7.67 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.27-7.23 (m, 1H), 3.02 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 139.2, 138.9, 137.4, 132.64, 132.61, 130.8, 129.6, 128.3, 127.2,$ 126.2, 125.5, 121.3, 115.9, 115.3, 47.8 ppm. HRMS (ESI): calcd for $C_{15}H_{12}^{81}Br^{81}BrNOS_2$ $[M+H]^+$ 447.8681, found 447.8680; calcd for $C_{15}H_{12}^{81}Br^{79}BrNOS_2$ $[M+H]^+$ 445.8701, found 445.8701; calcd for C₁₅H₁₂⁷⁹Br⁷⁹BrNOS₂ [M+H]⁺ 443.8722, found 443.8722.

2-Bromo-2-(5-bromo-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3d)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3d** as a yellow solid (18.9 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.14 (d, *J* = 9.2 Hz, 1H), 7.98 (s, 1H), 7.74-7.70 (m, 3H), 7.58 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 2.93 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 140.9, 139.2, 136.7, 134.8, 134.3, 132.5, 130.6, 130.2, 128.5, 127.2, 127.1, 126.6, 123.5, 119.1, 44.3 ppm. HRMS (ESI): calcd for C₁₅H₁₂⁸¹Br⁸¹BrNOS₂ [M+H]⁺ 447.8681, found 447.8678; calcd for $C_{15}H_{12}^{81}Br^{79}BrNOS_2 [M+H]^+$ 445.8701, found 445.8698; calcd for $C_{15}H_{12}^{79}Br^{79}BrNOS_2 [M+H]^+$ 443.8722, found 443.8723.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-5-methoxybenzo[b]thiophene (3e)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3e** as a yellow solid (27.7 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (d, *J* = 8.8 Hz, 1H), 7.74-7.69 (m, 3H), 7.63 (s, 1H), 7.28 (d, *J* = 2.0 Hz, 1H), 7.05 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 3.88 (s, 3H), 2.93 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 158.1, 140.6, 138.2, 137.4, 136.7, 135.3, 133.0, 132.0, 130.3, 127.6, 127.1, 122.8, 116.0, 106.2, 55.7, 43.9 ppm. HRMS (ESI): calcd for C₁₆H₁₅⁸¹BrNO₂S₂ [M+H]⁺ 397.9702, found 397.9692; calcd for C₁₆H₁₅⁷⁹BrNO₂S₂ [M+H]⁺ 395.9722, found 395.9720.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-4-phenylbenzo[b]thiophene (3f)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3f** as a yellow solid (30.3 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.70-7.68 (m, 3H), 7.61-7.59 (m, 2H), 7.49-7.37 (m, 5H), 2.97 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.5, 141.3, 140.5, 138.7, 137.6, 137.1, 136.7, 135.6, 132.2, 130.5, 129.2, 128.7, 127.8, 127.2, 127.1, 125.5, 121.2, 118.1, 44.5 ppm. HRMS (ESI): calcd for C₂₁H₁₇⁸¹BrNOS₂ [M+H]⁺ 443.9909, found 443.9907; calcd for C₂₁H₁₇⁷⁹BrNOS₂ [M+H]⁺ 441.9929, found 441.9929.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-5-phenylbenzo[b]thiophene (3g)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3g** as a yellow solid (29.9 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.15 (d, *J* = 8.4 Hz, 1H), 8.04 (s, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.76-7.72 (m, 3H), 7.67-7.64 (m, 3H), 7.50-7.46 (m, 2H), 7.40-7.36 (m, 1H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 167.9, 167.5, 159.2, 142.7, 138.7, 136.8, 132.2, 131.6, 130.9, 130.4, 129.3, 129.1, 127.9, 127.5, 125.1, 122.9, 112.4, 43.4 ppm. HRMS (ESI): calcd for C₂₁H₁₇⁸¹BrNOS₂ [M+H]⁺ 443.9909, found 443.9908; calcd for C₂₁H₁₇⁷⁹BrNOS₂ [M+H]⁺ 441.9929, found 441.9928.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)naphtho[1,2-b]thiophene (3h)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3h** as a yellow solid (28.0 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.16 (d, *J* = 8.8 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.84-7.77 (m, 4H), 7.73 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.62-7.54 (m, 2H), 2.92 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.6, 138.6, 137.4, 136.9, 136.2, 135.2, 132.0, 131.2, 130.3, 129.1, 129.0, 128.6, 127.11, 127.06, 126.4, 126.2, 123.8, 122.5, 43.9 ppm. HRMS (ESI): calcd for C₁₉H₁₅⁸¹BrNOS₂ [M+H]⁺ 417.9752, found 417.9745; calcd for C₁₉H₁₅⁷⁹BrNOS₂ [M+H]⁺ 415.9773, found 415.9773.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)thieno[3,2-b]thiophene (3i)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3i** as a yellow solid (21.9 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (d, *J* = 8.8 Hz, 1H), 7.73-7.68 (m, 3H), 7.46 (d, *J* = 6.0 Hz, 1H), 7.29 (d, *J* = 5.2 Hz, 1H), 2.92 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.4, 140.6, 139.4, 138.4, 136.9, 135.2, 131.9, 130.2, 128.5, 127.1, 123.3, 119.4, 43.7 ppm. HRMS (ESI): calcd for C₁₃H₁₁⁸¹BrNOS₃ [M+H]⁺ 373.9160, found 373.9153; calcd for C₁₃H₁₁⁷⁹BrNOS₃ [M+H]⁺ 371.9181, found 371.9176.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-5-hexylthiophene (3j)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3j** as a yellow solid (21.2 mg, 53% yield).¹H NMR (400 MHz, CDCl₃): δ = 8.07 (d, *J* = 8.4 Hz, 1H), 7.65-7.61 (m, 2H), 7.28 (d, *J* = 3.2 Hz, 1H), 6.78 (d, *J* = 3.6 Hz, 1H), 2.87 (s, 3H), 2.84 (t, *J* = 7.6 Hz, 2H), 1.73-1.66 (m, 2H), 1.40-1.25 (m, 6H), 0.91-0.88 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.0, 142.2, 136.7, 135.7, 134.2, 131.2, 130.8, 130.0, 126.9, 124.7, 43.4, 31.7, 31.7, 30.2, 28.9, 22.7, 14.2 ppm. HRMS (ESI): calcd for C₁₇H₂₃⁸¹BrNOS₂ [M+H]⁺ 402.0378, found 402.0378; calcd for C₁₇H₂₃⁷⁹BrNOS₂ [M+H]⁺ 400.0399, found 400.0399.

3-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-4-phenylthiophene (3k)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3k** as a yellow solid (18.8 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 1.2 Hz, 1H), 7.72-7.68 (m, 2H), 7.62-7.58 (m, 3H), 7.43-7.40 (m, 2H), 7.34-7.30 (m, 1H), 2.92 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.6, 142.3, 138.0, 136.6, 135.3, 135.2, 131.8, 130.24, 130.15, 129.1, 127.7, 127.1, 126.6, 122.4, 43.8 ppm. HRMS (ESI): calcd for C₁₇H₁₅⁸¹BrNOS₂ [M+H]⁺ 393.9752, found 391.9736; calcd for C₁₇H₁₅⁷⁹BrNOS₂ [M+H]⁺ 391.9773, found 391.9770.

2-(5-Bromo-2-(S-methylsulfonimidoyl)phenyl)-2-chloro-3-methylthiophene (3l)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3l** as a yellow solid (22.4 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.08 (d, *J* = 8.8 Hz, 1H), 7.66 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.61 (d, *J* = 2.0 Hz, 1H), 7.12 (s, 1H), 2.95 (s, 3H), 2.22 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.2, 136.7, 134.9, 134.6, 133.4, 132.4, 131.9, 130.3, 127.5, 127.2, 43.8, 13.8 ppm. HRMS (ESI): calcd for C₁₂H₁₁⁸¹Br³⁷ClNNaOS₂ [M+Na]⁺ 389.8996, found 389.8999; calcd for C₁₂H₁₁⁸¹Br³⁵ClNNaOS₂ [M+Na]⁺ 387.9026, found 387.9028; calcd for C₁₂H₁₁⁷⁹Br³⁷ClNNaOS₂ [M+Na]⁺ 385.9046, found 385.9045.

Methyl5-(5-bromo-2-(S-methylsulfonimidoyl)phenyl)-3-methylthiophene-2-carboxylate (3m)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3m** as a yellow solid (18.2 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (d, *J* = 8.8 Hz, 1H), 7.71 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.20 (s, 1H), 3.88 (s, 3H), 2.94 (s, 3H), 2.58 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 162.9, 152.8, 146.2, 142.3, 141.6, 136.5, 134.9, 134.5, 132.4, 130.6, 127.2, 52.1, 44.4, 16.2 ppm. HRMS (ESI): calcd for C₁₄H₁₅⁸¹BrNO₃S₂ [M+H]⁺ 389.9651, found 389.9641; calcd for C₁₄H₁₅⁷⁹BrNO₃S₂ [M+H]⁺ 387.9671, found 387.9670.

Methyl 5-(5-bromo-2-(S-methylsulfonimidoyl)phenyl)-3-chlorothiophene-2carboxylate (3n)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3n** as a yellow solid (23.8 mg, 58% yield).¹H NMR (400 MHz, CDCl₃): δ = 8.13 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.63 (s, 1H), 7.30 (s, 1H), 3.91 (s, 3H), 2.97 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.8, 142.3, 142.2, 136.4, 133.3, 133.1, 132.8, 131.1, 131.0, 127.5, 127.2, 52.6, 44.8 ppm. HRMS (ESI): calcd for C₁₃H₁₂⁸¹Br³⁷ClNO₃S₂ [M+H]⁺ 411.9075, found 411.9062; calcd for C₁₃H₁₂⁷⁹Br³⁷ClNO₃S₂ [M+H]⁺ 409.9096, found 409.9091; calcd for C₁₃H₁₂⁷⁹Br³⁵ClNO₃S₂ [M+H]⁺ 407.9125, found 407.9125.

Methyl 3-bromo-5-(5-bromo-2-(S-methylsulfonimidoyl)phenyl)thiophene-2carboxylate (30)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **30** as a yellow solid (29.3 mg, 65% yield).¹H NMR (400 MHz, CDCl₃): δ = 8.13 (d, *J* = 8.8 Hz, 1H), 7.75 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.35 (s, 1H), 3.92 (s, 3H), 2.97 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.9, 143.2, 142.3, 136.4, 135.4, 133.2, 133.1, 131.0, 128.8, 127.5, 116.6, 52.6, 44.8 ppm. HRMS (ESI): calcd for C₁₃H₁₂⁸¹Br⁸¹BrNO₃S₂ [M+H]⁺ 455.8579, found 455.8578; calcd for C₁₃H₁₂⁸¹Br⁷⁹BrNO₃S₂ [M+H]⁺ 451.8620, found 451.8619.

2-(5-Fluoro-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3p)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3p** as a yellow solid (10.4 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.32-8.29 (m, 1H), 7.87-7.84 (m, 2H), 7.70 (s, 1H), 7.44-7.38 (m, 2H), 7.31-7.24 (m, 2H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.0 (d, *J*_{C-F} = 249.9 Hz), 141.7, 140.3, 139.3 (d, *J*_{C-F} = 9.6 Hz), 131.7 (d, *J*_{C-F} = 9.3 Hz), 130.6, 127.3, 125.2, 125.1, 124.9, 124.4 122.0, 121.1 (d, *J*_{C-F} = 22.8 Hz), 115.7 (d, *J*_{C-F} = 21.2 Hz), 44.0. HRMS (ESI): calcd for C₁₅H₁₂FNNaOS₂ [M+Na]⁺ 328.0237, found 328.0240.

2-(5-Chloro-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3q)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3q** as a yellow solid (24.1 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.21 (d, *J* = 8.8 Hz, 1H), 7.85 (t, *J* = 6.4 Hz, 2H), 7.68 (s, 1H), 7.58-7.53 (m, 2H), 7.44-7.38 (m, 2H), 2.93 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 141.9, 140.5, 139.5, 138.7, 137.3, 135.2, 133.9, 130.4, 129.0, 127.6, 125.4, 125.1, 124.6, 122.1, 44.1 ppm. HRMS (ESI): calcd for C₁₅H₁₃³⁷ClNOS₂ [M+H]⁺ 324.0092, found 324.0091; calcd for C₁₅H₁₃³⁵ClNOS₂ [M+H]⁺ 322.0122, found 322.0119.

2-(4-Bromo-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3r)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3r** as a yellow solid (18.6 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 2.0 Hz, 1H), 7.86-7.83 (m, 2H), 7.74 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.66 (s, 1H), 7.46-7.37 (m, 3H), 2.95 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 135.6, 135.4, 131.7, 130.3, 130.3, 127.5, 125.3, 125.1, 124.9, 124.6, 124.5, 123.3, 122.5, 122.1, 53.7 ppm. HRMS (ESI): calcd for C₁₅H₁₃⁸¹BrNOS₂ [M+H]⁺ 367.9596, found 367.9570; calcd for C₁₅H₁₃⁷⁹BrNOS₂ [M+H]⁺ 365.9616, found 365.9614.

2-(5-Methyl-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3s)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3s** as a yellow solid (19.3 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.14 (d, *J* = 8.0 Hz, 1H), 7.86-7,82 (m, 2H), 7.64 (s, 1H), 7.42-7.35 (m, 4H), 2.94 (s, 3H), 2.45 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 143.2, 140.48, 140.45, 139.7, 139.1, 134.8, 133.3, 129.6, 128.9, 126.9, 125.0, 124.8, 124.3, 122.0, 44.2, 21.4 ppm. HRMS (ESI): calcd for C₁₆H₁₆NOS₂ [M+H]⁺ 302.0668, found 302.0683.

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3t** as a yellow solid (23.1 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.32 (d, *J* = 8.4 Hz, 1H), 7.87-7.82 (m, 2H), 7.80-7.77 (m, 2H), 7.71 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.50-7.37 (m, 5H), 3.00 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 145.4, 142.8, 141.8, 138.9, 138.0, 134.0, 132.9, 129.5, 129.3, 128.9, 127.5, 127.4, 127.2, 125.1, 125.0, 124.4, 122.1, 120.6, 44.3 ppm. C₂₁H₁₈NOS₂ [M+H]⁺ 364.0824, found 364.0826.

2-(3-(S-Methylsulfonimidoyl)naphthalen-2-yl)benzo[b]thiophene (3u)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3u** as a yellow solid (22.3 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.82 (s, 1H), 8.06-8.04 (m, 2H), 7.92 (d, *J* = 7.2 Hz, 1H), 7.88-7.85 (m, 2H), 7.73 (s, 1H), 7.72-7.65 (m, 2H), 7.44-7.38 (m, 2H), 3.01 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 140.5, 139.8, 139.5, 139.1, 134.3, 134.2, 131.9, 130.3, 129.7, 129.3, 128.9, 128.4, 127.9, 127.4, 125.0, 124.9, 124.4, 122.0, 44.1 ppm. HRMS (ESI): calcd for C₁₉H₁₆NOS₂ [M+H]⁺ 338.0668, found 338.0667.

2-(5-Methoxy-2-(S-methylsulfonimidoyl)phenyl)benzo[b]thiophene (3v)

Following the general procedure. Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3v** as a yellow solid (16.5 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.20 (d, *J* = 8.8 Hz, 1H), 7.85-7.82 (m, 2H), 7.64 (s, 1H), 7.42-7.35 (m, 2H), 7.07-7.02 (m, 2H), 3.89 (s, 3H), 2.93 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 162.2, 140.4, 139.6, 138.9, 135.4, 135.1, 131.3, 126.8, 125.0, 124.9, 124.4, 122.1, 119.7, 113.7, 55.9, 44.6 ppm. HRMS (ESI): calcd for C₁₆H₁₅NNaO₂S₂ [M+Na]⁺ 340.0436, found 340.0433.

V. Mechanistic studies

Scheme S1. H/D exchange experiments of 1a

A flame-dried Schlenk with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 5 μ mol), Ag₂O (69.5 mg, 0.3 mmol), AgOTFA (6.6 mg, 30 umol), Na₂HPO₄ (56.8 mg, 0.4 mmol), *S*-(4-bromophenyl)-*S*-methyl sulfoximine (1a, 0.1 mmol) and D₂O (20 equiv) in HFIP (1 mL) under an N₂ atmosphere. The resulting mixture was stirred at 150 °C in oil bath for 20 min and then diluted with 5 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product. The deuterated ratio was

calculated from ¹H NMR analysis.

Fig. S1. H/D exchange experiments of 1a

Scheme S2. H/D exchange experiments of 2a

A flame-dried Schlenk with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 5.0 μ mol), Ag₂O (69.5 mg, 0.3 mmol), AgOTFA (6.6 mg, 30.0 μ mol), Na₂HPO₄ (56.8 mg, 0.4 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol) and D₂O (20.0 equiv) in HFIP (1.0 mL) under an N₂ atmosphere. The resulting mixture was stirred at 150 °C in oil bath for 20 min and then diluted with 5 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product. The deuterated ratio was calculated from ¹H NMR analysis.

Fig. S2. H/D exchange experiments of 2a

Synthesis of $[D_4]$ -1a: A flame-dried two-neck round-bottom flask with a magnetic stir bar was charged with 1,4-dibromobenzene- d_4 (10.0 mmol) and THF (20.0 mL) under an N₂ atmosphere. The solution was cooled to -78 °C and *n*-BuLi (2.5 mol/L in hexane, 11.0 mmol, 1.1 equiv) was added dropwise. After stirring for 1 h at -78 °C, dimethyl disulfide (12.0 mmol, 1.2 equiv) was added. The mixture was allowed to stir overnight, and 1.0 M HCl aq. was added. The organic layer was separated, washed with H₂O and saturated aqueous NaHCO₃ solution, dried over Na₂SO₄, and concentrated in vacuo. Column chromatography (eluent: hexane) was performed to give 4-bromothioanisole d_4 as white solid (1.7 g, 82% yield).

To a 50 mL round bottom flask equipped with a suitable magnetic stir bar, $(NH_4)_2CO_3$ (0.288 g, 1.5 equiv) was added the stirred solution of 4-bromothioanisoled4 (2.0 mmol, 1.0 equiv) in MeOH (20.0 mL). After stirred five minutes, PhI(OAc)₂ (1.482 g, 2.3 equiv) was added and the solution was stirred at room temperature for 2 h. After disappearance of the raw material detected by TLC (petroleum ether/EtOAc = 1:1), the solvent was removed under reduced pressure. Column chromatography (eluent: petroleum ether/EtOAc = 1/1) was performed to give [D4]-**1a** as white solid (348 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.10 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.4, 132.2 (t, *J*_{C-D} = 24.9 Hz), 129.0 (t, *J*_{C-D} = 25.9 Hz), 128.2, 46.2 ppm. HRMS (ESI): calcd for C₇H₅D4⁸¹BrNOS₂ [M+H]⁺ 239.9813, found 239.9794; calcd for C₇H₅D4⁷⁹BrNOS₂ [M+H]⁺ 237.9834, found 237.9815.

Scheme S3. Kinetic isotope experiments of 1a

A flame-dried Schlenk with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (3.1 mg, 5.0 μ mol), Ag₂O (69.5 mg, 0.3 mmol), AgOTFA (6.6 mg, 30.0 μ mol), Na₂HPO₄ (56.8 mg, 0.4 mmol), **1a** or [D4]**-1a** (0.3 mmol), benzo[*b*]thiophene (**2a**, 0.1 mmol) in HFIP (1.0 mL) under an N₂ atmosphere. The resulting mixture was stirred at 150 °C in oil bath for indicated time and then diluted with 5.0 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product. The yield of **3a** was determined by ¹H NMR analysis of the crude product using dibromomethane (0.15 mmol, 10.5 μ L) as internal standard. A kinetic isotope effect (KIE) value (k_H/k_D = 0.024/0.020 = 1.20) was obtained.

Fig. S3. Kinetic isotope experiments of 1a

A flame-dried Schlenk with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (3.1 mg, 5.0 μ mol), Ag₂O (69.5 mg, 0.3 mmol), AgOTFA (6.6 mg, 30.0 μ mol), Na₂HPO₄ (56.8 mg, 0.4 mmol), *S*-(4-bromophenyl)-*S*-methyl sulfoximine (1a, 0.3 mmol), benzo[*b*]thiophene (2a, 0.1 mmol) or deuterated benzothiophene ([D₁]-2a, 0.1 mmol) in HFIP (1.0 mL) under an N₂ atmosphere. The resulting mixture was stirred at 150 °C in oil bath for indicated time and then diluted with 5 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product. The yield of 3a was determined by ¹H NMR analysis of the crude product using dibromomethane (0.15 mmol, 10.5 μ L) as internal standard. A kinetic isotope effect (KIE) value (k_H/k_D =

0.024/0.019 = 1.26) was obtained.

Fig. S4. Kinetic isotope experiments of 2a

VI. Synthesis of BTBT derivatives

Synthesis of 4: **3** (0.1 mmol, 1.0 equiv) was dissolved in CHCl₃ (2.0 mL) under air and *t*-BuONO (1.1 equiv) was added. The mixture was stirred at room temperature for 2 h. the solvent and *t*-BuONO were removed under reduced pressure. The residue was subjected to the next reaction without further purification.⁵

The corresponding crude sulfoxide was placed in a Schlenk tube and DCE (1.5 mL) was added. With continuous N₂ streaming into the tube, TfOH (0.75 mL) was added dropwise. After stirring 24 hours at room temperature, H₂O (2.65 mL) and pyridine (0.35 mL) was charged, and the resulting mixture was stirred for 1 hour at 120 °C. The mixture was poured into 2.5 mL of 2 M aqueous HCl and diluted with H₂O and dichloromethane. The organic layer was separated, and the aqueous layer was extracted

with dichloromethane three times. The combined organic extracts was washed with H₂O and brine, dried over Na₂SO₄, and concentrated in vacuo. The obtained crude material was purified through column chromatography (eluent: petroleum ether/EtOAc = 40/1) to give the cyclized product.⁶

3-Bromobenzo[*b*]benzo[4,5]thieno[2,3-*d*]thiophene (4a)

Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 40/1, v/v) afforded **4a** as a white solid (20.4 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (s, 1H), 7.93 (d, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 9.2 Hz, 1H), 7.51-7.42 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.5, 140.9, 137.6, 135.0, 134.8, 132.9, 128.0, 125.6, 125.4, 125.2, 124.4, 124.2, 121.9, 119.0 ppm. HRMS (ESI): calcd for C₁₄H₈⁷⁹BrS₂ [M+H]⁺ 318.9245, found 318.9251.

3-Fluorobenzo[*b*]benzo[4,5]thieno[2,3-*d*]thiophene (4b)

Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 40/1, v/v) afforded **4b** as a white solid (16.3 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.84 (dd, *J* = 8.8 Hz, 4.8 Hz, 1H), 7.55 (dd, *J* = 9.2 Hz, 2.4 Hz, 1H), 7.49-7.41 (m, 2H), 7.16 (td, *J* = 8.8 Hz, 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 161.1 (d, *J*_{C-F} = 241.7 Hz), 142.4, 137.5, 135.7, 134.1 (d, *J*_{C-F} = 9.9 Hz), 133.0, 132.8 (d, *J*_{C-F} = 4.3 Hz), 125.6, 125.2 (d, *J*_{C-F} = 9.3 Hz), 125.1, 124.2, 121.9, 113.6 (d, *J*_{C-F} = 24.8 Hz), 107.8 (d, *J*_{C-F} = 24.0 Hz) ppm. HRMS (ESI): calcd for C₁₄H₈FS₂ [M+H]⁺ 259.0046, found 259.0046. The ¹H NMR and ¹³C NMR of **4b** are consistent with the previous report.⁷

3-Chlorobenzo[b]benzo[4,5]thieno[2,3-d]thiophene (4c)

Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 40/1, v/v) afforded **4c** as a yellow solid (11.8 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.94-7.81 (m, 4H), 7.49-7.41 (m, 2H), 7.36 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H). ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.5, 140.4, 135.2, 134.3, 132.9, 132.5, 131.3, 125.6, 125.4, 125.2, 125.1, 124.2, 121.9, 121.4 ppm. The ¹H NMR and ¹³C NMR of **4c** are consistent with the previous report.⁸

3-Phenylbenzo[b]benzo[4,5]thieno[2,3-d]thiophene (4d)

Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 40/1, v/v) afforded **4d** as a white solid (17.1 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (s, 1H), 7.97-7.88 (m, 3H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.50-7.36 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.4, 141.4, 141.0, 140.3, 138.6, 134.2, 133.8, 133.6, 133.2, 129.0, 127.6, 125.2, 125.1, 124.7, 124.4, 124.2, 121.8, 120.1 ppm. HRMS (ESI): calcd for C₂₀H₁₃S₂ [M+H]⁺ 317.0453, found 317.0451.

VII. Synthesis of thermally activated delayed fluorescence molecules

According to the conditions (Table S5, Entry 6). Purification *via* column chromatography on silica gel (petroleum ether/EtOAc) afforded **3a** as a yellow solid (21.2 mg, 58% yield) and **5a** as a yellow solid (2.2 mg, 6%).

Intramolecular annulation of 3a: a Schlenk tube (25 mL) equipped with a stir bar was loaded with 2-(5-bromo-2-(*S*-methylsulfonimidoyl)phenyl)benzo[*b*]thiophene **3a** (36.5 mg, 0.1 mmol), Pd(OAc)₂ (10 mol%) and PhI(OAc)₂ (2.0 equiv). Then, dry toluene (2.0 mL) was added, and the mixture was allowed to stir at 120 °C in oil bath for 24 h. After cooling to room temperature, the mixture was filtered through a short celite pad and washed with dichloromethane (3 × 20 mL). The filtrate was concentrated, and the product was purified by column chromatography using silica gel as stationary phase and a mixture of hexane and ethyl acetate as eluent to give pure product 2-bromo-5-methylbenzo[*e*]benzo[4,5]thieno[3,2-*c*][1,2]thiazine 5-oxide (**5a**) as a yellow solid (27.5 mg, 76% yield).⁹ ¹H NMR (400 MHz, CDCl₃): δ = 8.06-8.04 (m, 1H), 7.79-7.73 (m, 3H), 7.57 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.46-7.39 (m, 2H), 3.63 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 141.5, 138.2, 135.5, 134.2, 130.0, 128.4, 127.4, 126.8, 126.1, 124.7, 123.0, 122.9, 119.2, 109.5, 45.8 ppm. HRMS (ESI): calcd for C₁₅H₁₁⁷⁹BrNOS₂ [M+H]⁺ 363.9460, found 363.9462.

Synthesis of 7: a Schlenk tube with a magnetic stir bar was charged with Pd(PPh₃)₄ (2.3 mg, 2.0 mol%), Na₂CO₃ (42.4 mg, 4.0 equiv), **5a** (36.3 mg, 0.1 mmol, 1.0 equiv), aryl borates **6** (1.1 equiv, 0.11 mmol), DMF (1.4 mL) and H₂O (0.7 mL) under an N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then

removes solvent under vacuum. The solution was filtered through a celite pad and washed with 10-25 mL of dichloromethane. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to provide the desired product.¹⁰

2-(4-(9H-Carbazol-9-yl)phenyl)-5-methylbenzo[e]benzo[4,5]thieno[3,2-

c][1,2]Thazine 5-oxide (7a)

Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 5/1, v/v) afforded **7a** as a yellow solid (38.9 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.18 (d, *J* = 7.6 Hz, 2H), 8.11-8.09 (m, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.94-7.92 (m, 2H), 7.84-7.75 (m, 5H), 7.53-7.43 (m, 6H), 7.33 (t, *J* = 7.6 Hz, 2H), 3.72 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 146.9, 145.6, 141.0, 141.0, 140.8, 129.2, 129.1, 127.8, 127.7, 127.1, 126.3, 126.2, 126.0, 125.5, 124.6, 123.7, 123.4, 123.0, 122.6, 120.61, 120.58, 120.4, 109.9, 109.8, 45.9 ppm. HRMS (ESI): calcd for C₃₃H₂₃N₂OS₂ [M+H]⁺ 527.1246, found 527.1245.

2-(4-(3,6-Di-*tert*-butyl-9*H*-carbazol-9-yl)phenyl)-5-methylbenzo[*e*]benzo[4,5] thieno[3,2-*c*][1,2]thiazine 5-oxide (7b)

Purification *via* column chromatography on silica gel (petroleum ether/EtOAc = 5/1, v/v) afforded **7b** as a yellow solid (51.7 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.17$ (s, 2H), 8.11-8.08 (m, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 2H),

7.84-7.78 (m, 3H), 7.74 (d, J = 8.4 Hz, 2H), 7.52-7.42 (m, 6H), 3.72 (s, 3H), 1.49 (s, 18H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 145.6$, 145.5, 143.2, 138.9, 137.8, 137.5, 135.7, 133.1, 131.8, 128.8, 127.0, 126.9, 125.8, 125.2, 124.4, 123.9, 123.7, 123.6, 122.9, 122.8, 122.4, 119.4, 116.3, 109.2, 45.7, 34.8, 32.0 ppm. HRMS (ESI): calcd for C₄₁H₃₉N₂OS₂ [M+H]⁺ 639.2498, found 639.2493.

VIII. Single-crystal X-ray structure of 3v

Table S6. Crystaldata and structure refinement for 3v

Identification code	3v
Empirical formula	C16H15NO2S2
Formula weight	317.41
Temperature/K	150.0
Crystal system	monoclinic
Space group	P21/c
a/Å	7.9599(3)
b/Å	11.6425(4)
c/Å	15.6846(4)
α/°	90
β/°	95.3910(10)
γ/°	90
Volume/Å ³	1447.11(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.457

μ/mm^{-1}	0.371
F(000)	664.0
Crystal size/mm ³	0.43 imes 0.25 imes 0.17
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	6.22 to 55.054
Index ranges	$-10 \le h \le 10, -15 \le k \le 15, -19 \le l \le 20$
Reflections collected	39620
Independent reflections	3292 [Rint = 0.0821, Rsigma = 0.0370]
Data/restraints/parameters	3292/7/215
Goodness-of-fit on F2	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0399$, $wR_2 = 0.0877$
Final R indexes [all data]	$R_1 = 0.0628$, $wR_2 = 0.0967$
Largest diff. peak/hole / e Å ⁻³	0.45/-0.36

IX. References

- (1) Y. Xie, B. Zhou, S. Zhou, S. Zhou, W. Wei, J. Liu, Y. Zhan, D. Cheng, M. Chen, Y.
- Li, B. Wang, X. Xue and Z. Li, *ChemistrySelect*, 2017, 2, 1620-1624.

(2) H. L. Aalten, G. van Koten, D. M. Grove, T. Kuilman, O. G. Piekstra, L. A. Hulshof and R. A. Sheldon, *Tetrahedron*, **1989**, *45*, 5565-5578.

- (3) E. Zhang, J. Tang, S. Li, P. Wu, J. E. Moses and K. B. Sharpless, *Chem. Eur. J.*, 2016, 22, 5692-5697.
- (4) S. Lou and G. C. Fu, Adv. Synth. Catal., 2010, 352, 2081-2084.
- (5) T. Zhou, P.-F. Qian, J.-Y. Li, Y.-B. Zhou, H. C. Li, H.-Y. Chen and B.-F. Shi, *J. Am. Chem. Soc.*, **2021**, *143*, 6810-6816.
- (6) S. Yang, R. Cheng, M. Zhang, Z. Bin and J. You, ACS Catal., 2019, 9, 6188-6193.
- (7) K. Mitsudo, R. Matsuo, T. Yonezawa, H. Inoue, H. Mandai and S. Suga, Angew. Chem. Int. Ed. 2020, 59, 7803-7807.
- (8) K. Mitsudo, N. Habara, Y. Kobashi, Y. Kurimoto, H. Mandai and S. Suga, *Synlett*, **2020**, *31*, 1947-1952.
- (9) R. K. Chinnagolla, A. Vijeta and M. Jeganmohan, *Chem. Commun.*, **2015**, *51*, 12992-12995.
- (10) M. Wang, M. Zhang, Y. Luo, Z. Liu, C. Yang, J. Lan, D. Wu and J. You, Org. Lett., 2020, 22, 135-139.

X. Copies of ¹H and ¹³C NMR spectra

¹³C NMR (100 MHz) spectrum of **3a** in CDCl₃

¹³C NMR (100 MHz) spectrum of **3b** in CDCl₃

S33

110 100 f1 (ppm) 90 80

70

140 130 120

-1

20 10 0

30

20

210 200 190 180 170 160 150

¹H NMR (400 MHz) spectrum of **3g** in CDCl₃

S37

^1H NMR (400 MHz) spectrum of 3i in CDCl3

^1H NMR (400 MHz) spectrum of **31** in CDCl₃

¹³C NMR (100 MHz) spectrum of **3l** in CDCl₃

¹H NMR (400 MHz) spectrum of **3m** in CDCl₃

¹³C NMR (100 MHz) spectrum of **3m** in CDCl₃

¹H NMR (400 MHz) spectrum of **3n** in CDCl₃

¹H NMR (400 MHz) spectrum of **30** in CDCl₃

¹H NMR (400 MHz) spectrum of 3p in CDCl₃

¹³C NMR (100 MHz) spectrum of **3q** in CDCl₃

¹H NMR (400 MHz) spectrum of **3r** in CDCl₃

¹³C NMR (100 MHz) spectrum of **3t** in CDCl₃

¹³C NMR (100 MHz) spectrum of **3v** in CDCl₃

¹³C NMR (100 MHz) spectrum of [D4]-1a in CDCl₃

S53

¹H NMR (400 MHz) spectrum of **4c** in CDCl₃

¹H NMR (400 MHz) spectrum of **5a** in CDCl₃

S58

S59