Supporting Information

Application of pyrrolo-protected amino aldehydes in the stereoselective synthesis of anti 1,2-amino alcohols

M. Sauer ${ }^{1}$ and C. Beemelmanns $s^{1,2^{*}}$
${ }^{1}$ Research group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute (HKI), Beutenbergstraße 11a, o7745 Jena, Germany
${ }^{2}$ Biochemistry of Microbial Metabolism, Institute of Biochemistry, Leipzig University, Johannisallee 2123, Leipzig 04103, Germany
*Correspondence to: christine.beemelmanns@leibniz-hki.de

Table of Contents

1 General Methods, Materials and Instrumentation 2
2 Experimental Procedures and Characterization Data 3
2.1 General procedures 3
2.2 Synthesis of aldehydes, precursors and alkyl iodides7
2.3 Nucleophilic Addition and CBS reduction 19
2.3 Deprotection. 35
2.5 Determination of Enantiomeric Excess 38
3 References 42
4 NMR Spectra 43

1 General Methods, Materials and Instrumentation

Unless otherwise stated all reactions of air/water sensitive substances were carried out using standard Schlenk techniques under a positive pressure of argon. All reagents and solvents for synthesis were purchased from Acros Organics, Alfa Aesar, Carl Roth, Sigma Aldrich, TCI, Fluorochem, Th. Geyer and VWR and used without further purification. All anhydrous solvents were purchased from Acros Organics.

NMR measurements were performed on a Bruker AVANCE II 300 MHz and a Bruker AVANCE III 500 MHz . The chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak of $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{1} \mathrm{H}: 7.16 \mathrm{ppm},{ }^{13} \mathrm{C}: 128.06 \mathrm{ppm}\right), \mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26 \mathrm{ppm}\right.$, singlet; ${ }^{13} \mathrm{C}: 77.16 \mathrm{ppm}$, triplet) and $\mathrm{CD}_{3} \mathrm{OD}\left({ }^{1} \mathrm{H}: 3.31 \mathrm{ppm}\right.$, quintet; ${ }^{13} \mathrm{C}: 49.00 \mathrm{ppm}$, septet).

LC-ESI-HRMS measurements were carried out on an Accela UPLC system (Thermo Scientific) coupled with a Kinetex Phenyl-Hexyl column ($50 \times 2.1 \mathrm{~mm}$, particle size $1.7 \mu \mathrm{~m}$) combined with a Q-Exactive mass spectrometer (Thermo Scientific) equipped with an electrospray ion (ESI) source.

Chiral HPLC was performed on a Shimadzu HPLC system using a Lux ${ }^{\oplus} 5 \mu \mathrm{~m}$ cellulose-1 (250 x 4.6 mm) column (UV detection at 220 and 254 nm)

Flash chromatography was performed on a Biotage Isolera Prime.

IR spectra were recorded on an FT/IR-410o ATR spectrometer (JASCO).
Optical rotations were recorded on a P-1020 polarimeter (JASCO) at 589 nm using a 50 mm cell and the solvent and concentration ($\mathrm{g} / \mathrm{1oo} \mathrm{~mL}$) indicated.

2 Experimental Procedures and Characterization Data

2.1 General procedures

General Procedure 1: Synthesis of pyrroles 2a-f

A solution of amino acid methyl ester hydrochloride 1 (2 equiv.) in MeOH (o. 5 M) was treated with triethyl amine (2 equiv.) followed by hexane-2,5-dione (1 equiv.) and stirred at room temperature for 16 h. The solvent was evaporated and the residue was taken up in water and dichloromethane. The aqueous layer was extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated. The residue was purified by column chromatography to yield the pyrrole 2.

Conditions Paal-Knorr-Synthesis

Entry	1 e (equiv.)	Ketone (equiv.)	Solvent (M)	$\begin{gathered} \mathrm{NEt}_{3} \\ \text { (equiv.) } \end{gathered}$	Temp.	Time	Yield
1	1	1	MeOH (0.3)	1	r.t.	2.5 h	20\%
2	1	1	MeOH (0.5)	1	r.t.	16h	49\%
3	1	1	MeOH (0.5)	2	r.t.	16h	62\%
4	1	1	MeOH (0.5)	2	r.t.	3d	21\%
5	2	1	MeOH (0.5)	2	r.t.	16h	71\%
6	2	1	MeOH (0.5)	2	r.t.	3d	64\%
7	1	2	MeOH (0.5)	1	r.t.	16h	36\%
8	2	1	MeOH (0.5)	4	r.t.	16h	21\%
9	2	1	MeOH (0.5)	4	r.t.	3d	24\%
10	1	1	$\mathrm{MeOH}(1)$	1	$40^{\circ} \mathrm{C}$	16h	47\%
11	1	1	MeOH (0.5)	1	$40^{\circ} \mathrm{C}$	16h	41%
12	2	1	MeOH (0.5)	2	$40^{\circ} \mathrm{C}$	16h	59\%
13	1	1	MeOH (0.5)	2	reflux	16h	53\%
14	2	1	MeOH (0.5)	4	reflux	16h	28\%
15	1	1	$\mathrm{AcOH}(1)$	-	reflux	16h	decomposing
16	1	1	$\mathrm{AcOH}(1)$	-	r.t.	16h	decomposing
17	1	1	ACN (1)	1	r.t	16h	Suspension, no conversion
18	1	1	DMF (1)	1	r.t	16h	Suspension, no conversion

General Procedure 2: Synthesis of Weinreb amides 4a-f

A modified procedure was used: ${ }^{1}$ A mixture of methyl ester $\mathbf{2 a - d}, \mathbf{3 a}, \mathbf{b}$ (1 equiv.) and $\mathrm{N}, \mathrm{O}-$ dimethyl hydroxylamine hydrochloride (1.55 equiv.) in dry THF (0.5 M) was cooled to $-20^{\circ} \mathrm{C}$ and treated slowly with $i-\mathrm{PrMgCl}$ (3 equiv., 2 M in THF). The reaction mixture was stirred for additional 30 min , quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo. The crude residue was purified by column chromatography to yield the Weinreb amide 4a-f.

General Procedure 3: Synthesis of aldehydes 5a-f

A solution of Weinreb amide $\mathbf{4 a}$-f (1 equiv.) in dichloromethane (0.2 M) was cooled to $-\mathbf{2 0}{ }^{\circ} \mathrm{C}$, treated slowly with DIBAL-H (1.3 equiv., 1 M in hexane) and stirred at $-20^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched by the addition of a small amount methanol followed by saturated K-Natartrate solution, warmed to room temperature and extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo $\left(25^{\circ} \mathrm{C}\right)$. The aldehyde $\mathbf{5 a - f}$ was obtained as slightly yellow oil which was used without further purification in the next step. To obtain analytical pure sample the aldehyde $\mathbf{5 a - f}$ was purified by column chromatography (o to 40% EtOAc in cyclohexane (R $=\mathrm{Ph}, \mathrm{Me})$ or o to 15% EtOAc in cyclohexane $(\mathrm{R}=\mathrm{OTBS})$, linear gradient $)$.

General Procedure 4: Addition of Grignard reagents

A solution of aldehyde $\mathbf{5 a}, \mathbf{c}$ (1 equiv.) in dry THF (0.3 M) was cooled to $\mathrm{o}^{\circ} \mathrm{C}$ and treated dropwise with a solution of Grignard reagent (1.2 equiv.). The reaction mixture was stirred for 1 h , quenched by the addition of saturated ammonium chloride solution and extracted with ethyl
acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo. The crude residue was purified by column chromatography (o to 40% EtOAc in cyclohexane, linear gradient) to yield the alcohol 6,8-11.

General Procedure 5: Generation and addition of Lithium reagents

5A: Lithium reagent (1 equiv.) was dissolved in dry diethyl ether (0.3 M) and cooled to $-78^{\circ} \mathrm{C}$. A solution of aldehyde 5 (1.2 equiv.) in dry diethyl ether (0.3 M) was added dropwise, stirred at $-78^{\circ} \mathrm{C}$ for lh , quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo. The crude residue was purified by column chromatography (o to 40% EtOAc in cyclohexane ($\mathrm{R}=\mathrm{Ph}, \mathrm{Me}$) or o to 15% EtOAc in cyclohexane ($R=$ OTBS), linear gradient) to yield the alcohol 12-15, 18-21.

5B: A modified procedure was used: ${ }^{2}$ Alkyne (1 equiv.) was dissolved in dry diethyl ether (0.3 M), cooled to $-78^{\circ} \mathrm{C}$, treated with n-butyl lithium (1 equiv., 2.5 M in pentane) and stirred for 1 l . A solution of aldehyde 5 (1.2 equiv.) in dry diethyl ether (0.3 M) was added dropwise, stirred at $-78^{\circ} \mathrm{C}$ for 1 h , quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo. The crude residue was purified by column chromatography (o to 40% EtOAc in cyclohexane ($\mathrm{R}=\mathrm{Ph}, \mathrm{Me}$) or o to $15 \% \mathrm{EtOAc}$ in cyclohexane, linear gradient) to yield the alcohol 23-25, 27-29.
${ }_{5} \mathrm{C}$: Alkyl iodide (1 equiv.) was dissolved in dry diethyl ether (0.1 M), cooled to o ${ }^{\circ} \mathrm{C}$, treated with t-BuLi (2.0 equiv.) and stirred for 20 min . Afterward a solution of aldehyde $\mathbf{5 a}, \mathbf{b}$ (1.2 equiv.) in dry diethyl ether was added dropwise, stirred for th quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The residue was purified by column chromatography (o to $20 \% \mathrm{EtOAc}$ in cyclohexane, linear gradient) to yield the alcohol 16, 17.

General Procedure 6: Deprotection

A modified procedure was used: ${ }^{3}$ To a solution of alcohol (1 equiv.) in ethanol and water (0.05 M, 2:1) was added hydroxylamine hydrochloride (10 equiv.) and stirred at $140{ }^{\circ} \mathrm{C}$ under microwave irradiation for 30 min . After cooling, the reaction mixture was directly injected to column chromatography (C18, o - 100\% acetonitrile in water $+\mathrm{o} .1 \%$ formic acid, linear gradient, UV detection at 208 nm) to yield the amino alcohol.

Conditions Deprotection

A: $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ (1o equiv.), ethanol, water (2:1, 0.05 M), B: 10% conc. HCl in ethanol (0.4 M)

Entry	Conditions	Temp. $\left[{ }^{\circ} \mathbf{C}\right]$	Time	Yield
1	A	120	1h (microwave)	95%
2	A	140	$30 \min$ (microwave)	95%
3	A	reflux	18 h	49%
4	B	120	$15 \min$ (microwave)	60%
5	B	120	$30 \min$ (microwave)	66%
6	B	120	1h (microwave)	71%

2.2 Synthesis of aldehydes, precursors and alkyl iodides

Methyl (S)-2-(2,5-dimethyl-1H-pyrrol-1-yl)propanoate 2a

According to general procedure 1. L-Alanine methyl ester hydrochloride $\mathbf{1 a}$ (400 mg , $2.87 \mathrm{mmol}, 2$ equiv.), triethyl amine ($0.40 \mathrm{~mL}, 2.87 \mathrm{mmol}, 2$ equiv.) and hexane-2,5dione (0.17 mL , 1.43 mmol , 1 equiv.) in MeOH (5.7 mL) were used. After column chromatography (o to 40\% EtOAc in cyclohexane, linear gradient) the pyrrole 2 a ($220 \mathrm{mg}, 85 \%$) was yield as slightly yellow oil.
$[\alpha]_{D}^{24}=-41.1(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.96(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 1.35$ (d, $J=7 \cdot 3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=171.69,127.42,107.39,52.56,51.83,17.43,13.20 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=3098(\mathrm{w}), 2991(\mathrm{w}), 2948(\mathrm{w}), 1734$ (s), 1520 (w), 1455 (m), 1433 (m), 1398 (s), 1299 (m), 1223 (s), 1111 (s), 1075 (m), 1047 (m), 1002 (w), 968 (m), 955 (m), 858 (m), 763 (s), 745 (s), 728 (m) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$182.1176, found 182.1171 .

Methyl (R)-2-(2,5-dimethyl-1H-pyrrol-1-yl)propanoate 2b

According to general procedure 1. D-Alanine methyl ester hydrochloride 1 (400 2,5-dione ($0.17 \mathrm{~mL}, 1.43 \mathrm{mmol}$, 1 equiv.) in $\mathrm{MeOH}(5.7 \mathrm{~mL}$) were used. After column chromatography (o to 40\% EtOAc in cyclohexane, linear gradient) the pyrrole $\mathbf{2 b}$ ($207 \mathrm{mg}, 80 \%$) was yield as colorless oil.
$[\alpha]_{D}^{24}=44.3(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.93(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}), 1.35$ (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=171.71,127.42,107.33,52.54,51.87,17.43$, 13.19 ppm.

IR (ATR) $\tilde{v}=3099$ (w), 2991 (w), 2929 (w), 1734 (s), 1521 (w), 1455 (m), 1433 (m), 1398 (s), 1300 (m), 1222 (s), 1111 (s), 1074 (m), 1047 (m), 1002 (w), 968 (m), 955 (m), 858 (m), 763 (s), 745 (s), 728 (m) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$182.1176, found 182.1170 .

Methyl (S)-2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-phenylpropanoate 2c

According to general procedure 1. L-Phenylalanine methyl ester hydrochloride ic ($619 \mathrm{mg}, 2.87 \mathrm{mmol}, 2$ equiv.), triethyl amine ($0.40 \mathrm{~mL}, 2.87 \mathrm{mmol}, 2$ equiv.) and hexane-2,5-dione ($0.17 \mathrm{~mL}, 1.43 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}(5.7 \mathrm{~mL})$ were used. After column chromatography (o to 40% EtOAc in cyclohexane, linear gradient) the pyrrole 2 c (302 $\mathrm{mg}, 82 \%$) was yield as slightly yellow oil.
$[\alpha]_{D}^{24}=-129.2(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.05-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.82-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{dd}, \mathrm{J}=$ $10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=13.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}$, 6H) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=171.03,137.83,129.68,128.63,128.35,127.01,107.41,59.23,51.93$, 38.04, 13.14 ppm .

IR (ATR) $\tilde{v}=3029$ (w), 2949 (w), 2887 (w), 1738 (s), 1521 (w), 1496 (w), 1436 (m), 1397 (s), 1292 (m), 1277 (m), 1222 (s , 1168 (m), 1083 (w), 1050 (w), 987 (m), 903 (w), 823 (w), $750(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 258.1489$, found 258.1478 .

Methyl (\boldsymbol{R})-2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-phenylpropanoate 2d

According to general procedure 1. D-Phenylalanine methyl ester hydrochloride $\mathbf{1 d}$ ($270 \mathrm{mg}, 1.25 \mathrm{mmol}$, 2 equiv.), triethyl amine ($0.17 \mathrm{~mL}, 1.25 \mathrm{mmol}, 2$ equiv.) and hexane-2,5-dione (0.07 mL , $0.63 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}(2.5 \mathrm{~mL}$) were used. After column chromatography (o to 40% EtOAc in cyclohexane, linear gradient) the pyrrole $\mathbf{2 d}$ ($126 \mathrm{mg}, 78 \%$) was yield as slightly yellow oil.
$[\alpha]_{\mathrm{D}}^{20}=141.0(\mathrm{c}=0.54, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.06-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{dd}, J=$ $10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=13.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}$, 6H) ppm.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=171.02,137.83,129.69,128.63,127.01,107.41,59.23,51.92,38.05$, 13.16 ppm.

IR (ATR) $\tilde{v}=2926(\mathrm{w}), 1738$ (s$), 1522(\mathrm{w}), 1496$ (w), 1436 (m), 1398 (s$), 1277$ (m), 1223 (s), 1169 (m), 1083 (w), 1050 (w), 987 (w), 903 (w), 752 (s), $700(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 258.1489$, found 258.1485 .

Methyl (S)-2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-hydroxypropanoate $2 e$

According to general procedure 1.: L-serine methyl ester hydrochloride $\mathbf{1 e}$ (400 $\mathrm{mg}, 2.58 \mathrm{mmol}, 2$ equiv.), hexane-2,5-dione ($0.15 \mathrm{~mL}, 1.29 \mathrm{mmol}, 1$ equiv.) and triethylamine ($0.36 \mathrm{~mL}, 2.58 \mathrm{mmol}, 2$ equiv.) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ were used. After column chromatography (o to 50% EtOAc in cyclohexane, linear gradient) the pyrrole $2 \mathbf{2 e}$ (181 $\mathrm{mg}, 71 \%)$ was obtained as colorless oil.
$[\alpha]_{\mathrm{D}}^{24}=-53.7(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.91(\mathrm{~s}, 2 \mathrm{H}), 4.6 \mathrm{o}(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dt}, J=12.4,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{dt}, J=12.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} C^{1}\{1 \mathrm{H}\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=170.74,128.30,107.55,62.33,59.03,51.82,13.13 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3527$ (m), 2942 (w), 2897 (w), 1734 (s$), 1718$ (s$), 1433$ (w), 1399 (s$), 1314$ (m), 1293 (s$)$, 1255 (w), 1200 (s), 1058 (s), 1043 (s), 1024 (w), 984 (s), 903 (w), 805 (w), 760 (s), 741 (m) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 198.1125$, found 198.1118 .

Methyl (R)-2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-hydroxypropanoate $2 f$

According to general procedure i: D-serine methyl ester hydrochloride $\mathbf{1 e}$ (400 mg , $2.58 \mathrm{mmol}, 2$ equiv.), hexane-2,5-dione ($0.15 \mathrm{~mL}, 1.29 \mathrm{mmol}, 1$ equiv.) and triethylamine ($0.36 \mathrm{~mL}, 2.58 \mathrm{mmol}, 2$ equiv.) in MeOH (5.0 mL) were used. After column chromatography (o to 50% EtOAc in cyclohexane, linear gradient) the pyrrole $2 f$ (171 $\mathrm{mg}, 67 \%$) was obtained as colorless oil.
$[\alpha]_{D}^{24}=-61.3(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.92(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=11.7,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{dt}, J=11.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} C^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=170.81,128.35,107.61,62.36,58.98,51.80,13.12 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=3534$ (m), 2942 (w), 2897 (w), 1734 (s , 1719 (s), 1433 (w), 1399 (s$), 1314$ (m), 1293 (s), 1255 (w), 1200 (s), 1058 (s), 1043 (s), 1024 (w), 984 (s), 903 (w), 805 (w), 760 (s), 741 (m) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 198.1125$, found 198.1117 .

$\boldsymbol{N}^{\mathrm{T}}, \boldsymbol{N}^{4}$-Dimethoxy- $\boldsymbol{N}^{1}, \boldsymbol{N}^{4}$-dimethylsuccinamide S-2

According literature procedure: ${ }^{4}$ Succinyl chloride $\mathbf{S - 1}(3.6 \mathrm{~mL}, 32.3 \mathrm{mmol}$, 1 equiv.) was dissolved in dichloromethane, cooled to $-20{ }^{\circ} \mathrm{C}$ and treated with N, O-dimethyl hydroxylamine hydrochloride ($9.45 \mathrm{~g}, 36.896 .9 \mathrm{mmol}, 3$ equiv.), DMAP ($395 \mathrm{mg}, 3.23 \mathrm{mmol}$, o.1 equiv.) and triethyl amine ($27 \mathrm{~mL}, 194 \mathrm{mmol}, 6$ equiv.). The reaction mixture was quenched by the addition of saturated NaHCO_{3} solution and extracted with dichloromethane. The combined organic layers were washed with 1 M aq. HCl and brine, dried over magnesium sulfate, filtrated and concentrated in vacuo to obtain the Weinreb amide S-2 (5.60g, 85\%), which was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.64,61.32,32.32,26.57 \mathrm{ppm}$.
The analytical data are in accordance with published data. ${ }^{4}$

Octane-3,6-dione S-3

To a solution of Weinreb amide S-2 ($500 \mathrm{mg}, 2.45 \mathrm{mmol}, 1$ equiv.) in diethyl ether (15 mL) was added $\mathrm{EtMgBr}(3.3 \mathrm{~mL}, 9.8 \mathrm{mmol}, 4$ equiv., 3 M) at room temperature. The reaction mixture was stirred for 1 h , quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over dried over magnesium sulfate, filtrated and concentrated in vacuo. The residue was purified by column chromatography (o to 40% EtOAc in cyclohexane) to yield the diketone S-3 ($195 \mathrm{mg}, 56 \%$) as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.68(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=210.24,36.07,35.80,7.92 \mathrm{ppm}$.
The analytical data are in accordance with published data. ${ }^{5}$

Methyl (S)-2-(2,5-diethyl-1H-pyrrol-1-yl)propanoate 2 g

According to general procedure 1. L-Alanine methyl ester hydrochloride $1 \mathbf{1 a}$ (100 $\mathrm{mg}, 0.72 \mathrm{mmol}, 1$ equiv.), triethyl amine ($0.20 \mathrm{~mL}, 1.44 \mathrm{mmol}, 2$ equiv.) and octane-3,6-dione S-3 ($102 \mathrm{mg}, 0.72 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}(1.4 \mathrm{~mL}$) were used. After column chromatography (o to 40% EtOAc in cyclohexane, linear gradient) the pyrrole $\mathbf{2 g}$ (49.7 $\mathrm{mg}, 33 \%$) was yield as slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=6.05(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{ddt}, J=17.7$, $15.4,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.

```
\mp@subsup{}{}{13}C{1'H}-NMR (75 MHz, C}\mp@subsup{}{6}{}\mp@subsup{\textrm{D}}{6}{})\delta=171.92, 133.79, 105.38, 52.21, 51.83, 20.51, 17.74, 13.53 ppm.
```


Methyl (S)-3-((tert-butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)propanoate $3 \mathbf{3}$

To a stirred solution of alcohol 2 e (3.00 g , 15.2 mmol , 1 equiv.) in dry DMF (20 mL) was added imidazole ($1.35 \mathrm{~g}, 19.8 \mathrm{mmol}, 1.3$ equiv.) followed by $\operatorname{TBSCl}(2.98 \mathrm{~g}, 19.8 \mathrm{mmol}, 1.3$ equiv.). The reaction mixture was stirred at room temperature for 16 h and quenched by the addition of water. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous magnesium sulfate and concentrated in vacuo. The crude product was purified by column chromatography (o to 15% EtOAc in cyclohexane, linear gradient) to yield the TBS-protected alcohol 3 a ($4.56 \mathrm{~g}, 96 \%$) as slightly yellow oil.
$[\alpha]_{D}^{24}=-31.1(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.97(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=10.5,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{dd}, J=10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=169.93,128.19,107.44,63.27,59.28,51.67,25.94,18.38,13.37,-5.63$, -5.75 ppm .

IR (ATR) $\tilde{v}=2950(\mathrm{w}), 2927(\mathrm{w}), 2891(\mathrm{w}), 2856(\mathrm{w}), 1734(\mathrm{~s}), 1402(\mathrm{~m}), 1294(\mathrm{~m}), 1251(\mathrm{~m}), 1212$ (m), 1124 (m), 1080 (s), 1046 (w), 1026 (w), 993 (m), 916 (m), 836 (), 780 (m), 752 (m), 733 (w), $666(\mathrm{w}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 312.1990$ found 312.1979.

Methyl (R)-3-((tert-butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)propanoate

 3b

To a stirred solution of alcohol $\mathbf{2 f}$ ($729 \mathrm{mg}, 3.70 \mathrm{mmol}$, 1 equiv.) in dry DMF (5 mL) was added imidazole ($327 \mathrm{mg}, 4.8 \mathrm{mmol}$, 1.3 equiv.) followed by $\operatorname{TBSCl}(723 \mathrm{mg}, 4.8 \mathrm{mmol}, 1.3$ equiv.). The reaction mixture was stirred at room temperature for 16 h and quenched by the addition of water. The aqueous layer was extracted with ethyl aceteate. The combined organic layers were washed with water and brine, dried over anhydrous magnesium sulfate and concentrated in vacuo. The crude product was purified by column chromatography (o to 15% EtOAc in cyclohexane, linear gradient) to yield the TBS-protected alcohol $3 \mathbf{b}(1.06 \mathrm{~g}, 92 \%)$ as colorless oil.
$[\alpha]_{D}^{24}=35.4(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.97(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=10.5,5.3 \mathrm{~Hz}$, 1 H), $3.95(\mathrm{dd}, J=10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.18(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=169.93,128.19,107.44,63.27,59.29,51.67,25.94,18.38,13.38$, 5.63, -5.75 ppm .

IR (ATR) $\tilde{v}=2951$ (w), 2927 (w), 2892 (w), 2856 (w), 1734 (s), 1402 (m), 1294 (m), 1253 (m), 1212 (m), 1124 (m), 1080 (s), 1046 (w), 1026 (w), 993 (m), 916 (m), 836 (s), $780(\mathrm{~m}), 752(\mathrm{~m}), 733(\mathrm{w})$, $666(\mathrm{w}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 312.1990$ found 312.198o.

(S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-methoxy-N-methylpropanamide 4a

According to General Procedure 2. Methyl ester $2 \mathbf{2 a}(4.3 \mathrm{~g}, 23.7 \mathrm{mmol}$, 1 equiv.), $\mathrm{N}, \mathrm{O}-$ dimethyl hydroxylamine hydrochloride ($3.59 \mathrm{~g}, 36.8 \mathrm{mmol}, 1.55$ equiv.) and $i-$ $\mathrm{PrMgCl}(36 \mathrm{~mL}, 71.1 \mathrm{mmol}$, 3 equiv., 2 M in THF) in THF (47 mL) were used to yield the Weinreb amide $\mathbf{4 a}(4.75 \mathrm{~g}, 95 \%)$ as colorless solid.
$[\alpha]_{D}^{24}=-227.5(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.90(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.8 \mathrm{o}(\mathrm{s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (s, 6H), 1.35 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$) ppm.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=172.55,127.56,106.83,59.89,51.31,32.58,17.45,13.05 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=2974(\mathrm{w}), 2940(\mathrm{w}), 1656$ (s$), 1558(\mathrm{w}), 1507(\mathrm{w}), 1457(\mathrm{~m}), 1441(\mathrm{~m}), 1398(\mathrm{~s}), 1296$ (m), 1175 (m), 1069 (w), 1020 (w), $981(\mathrm{~s}), 790(\mathrm{~m}), 746$ (s) cm^{-1}.

HR-MS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$211.1441, found 211.1431.

(R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-methoxy- N -methylpropanamide 4b

According to General Procedure 2. Methyl ester $\mathbf{2 b}$ ($1.70 \mathrm{~g}, 9.36 \mathrm{mmol}, 1$ equiv), N, O-dimethyl hydroxylamine hydrochloride ($2.63 \mathrm{~g}, 14.5 \mathrm{mmol}, 1.55$ equiv.) and i $\operatorname{PrMgCl}(14.0 \mathrm{~mL}, 28.1 \mathrm{mmol}, 3$ equiv., 2 M in THF) in THF (19 mL) were used to yield the Weinreb amide $\mathbf{4} \mathbf{b}(1.79 \mathrm{~g}, 91 \%)$ as colorless solid.
$[\alpha]_{D}^{24}=215.5(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.91(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.8 \mathrm{o}(\mathrm{s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (s, 6H), $1.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=172.54,127.58,106.87,59.91,51.34,32.61,17.46,13.06 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=2973(\mathrm{w}), 2940(\mathrm{w}), 1657$ (s$), 1558$ (w), 1507 (w), 1457 (m), 1441 (m), 1398 (s$), 1296$ (m), 1176 (m), 1069 (w), 1019 (w), 981 (s$), 790(\mathrm{~m}), 746$ (s) cm^{-1}.

HR-MS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$211.1441, found 211.1430.

(S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-methoxy-N-methyl-3-phenylpropanamide 4 c

According to General Procedure 2. Methyl ester 2c ($6.43 \mathrm{~g}, 25.0 \mathrm{mmol}$, 1 equiv.), N, O-dimethyl hydroxylamine hydrochloride ($3.78 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.55$ equiv.) and $i-\mathrm{PrMgCl}(37 \mathrm{~mL}$, $75.0 \mathrm{mmol}, 3$ equiv., 2 M in THF) in THF (50 mL) were used to yield the Weinreb amide $\mathbf{4 c}(7.12 \mathrm{~g}, 99 \%)$ as colorless solid.
$[\alpha]_{D}^{24}=-271.2(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.07-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 4.88$ (dd, $J=10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=13.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.8 \mathrm{o}(\mathrm{s}, 3 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=171.87,138.42,130.05,128.47,128.34,126.75,106.88,59.94,57.97$, 38.13, 32.50, 13.03 ppm .

IR (ATR) $\tilde{v}=3034(\mathrm{w}), 2970(\mathrm{w}), 2930(\mathrm{w}), 2891(\mathrm{w}), 1665$ (s$), 1541(\mathrm{w}), 1456$ (w), 1396 (s$), 1366$ (m), 1295 (m), 1173 (m), 1114 (w), 1080 (w), 1041 (w), 992 (s), 794 (w), 751 (s), 696 (s) cm ${ }^{-1}$.

HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$287.1754, found 287.1744.

(R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-methoxy-N-methyl-3-phenylpropanamide 4d

According to General Procedure 2. Methyl ester 2 d ($1.04 \mathrm{~g}, 4.04 \mathrm{mmol}, 1$ equiv.), N, O-dimethyl hydroxylamine hydrochloride ($616 \mathrm{mg}, 6,26 \mathrm{mmol}, 1.55$ equiv.) and $i-\mathrm{PrMgCl}(6.0 \mathrm{~mL}, 12.1 \mathrm{mmol}, 3$ equiv., 2 M in THF) in THF (8 mL) were used to yield the Weinreb amide $\mathbf{4 d}(1.13 \mathrm{~g}, 98 \%)$ as colorless solid.
$[\alpha]_{\mathrm{D}}^{20}=276.4(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.08-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=$ $10.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{dd}, J=13.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.27(\mathrm{dd}, J=13.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.8 \mathrm{o}(\mathrm{s}, 3 \mathrm{H}), 2.50(\mathrm{~s}$, 3H), 1.96 (s, 6H) ppm.
${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=171.86,138.40,130.05,128.47,126.75,106.87,59.93,57.98,38.12$, 32.49, 13.04 ppm .

IR (ATR) $\tilde{v}=3034$ (w), 2930 (w), 1666 (s$), 1455$ (w), 1395 (s$), 1367$ (m), 1294 (m), 1173 (m), 1114 (w), 1079 (w), 1041 (w), 992 (s), 794 (w), 751 (s), 696 (s), 559 (s) cm ${ }^{-1}$.

HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 287.1754$, found 287.1748 .

(S)-3-((tert-Butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)-N-methoxy-Nmethylpropanamide 4 e

According to General Procedure 2. Methyl ester 3 a ($6.25 \mathrm{~g}, 20.1 \mathrm{mmol}$, 1 equiv.), N, O-dimethyl hydroxylamine hydrochloride ($3.03 \mathrm{~g}, 31.1 \mathrm{mmol}, 1.55$ equiv.) and $i-\mathrm{PrMgCl}(30 \mathrm{~mL}, 60.3 \mathrm{mmol}, 3$ equiv., 2 M in THF) in THF (5.8 mL) were used to yield the Weinreb amide $\mathbf{4 e}(6.62 \mathrm{~g}, 97 \%)$ as colorless solid.
$[\alpha]_{D}^{24}=-162.6(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.89(\mathrm{~s}, 2 \mathrm{H}), 4.95$ (dd, $\left.J=9.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29$ (dd, $J=10.8,4.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.10(\mathrm{dd}, \mathrm{J}=10.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 10 \mathrm{H}),-0.05$ ($\mathrm{s}, 3 \mathrm{H}$), -0.09 ($\mathrm{s}, 3 \mathrm{H}$) ppm.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=171.10,128.61,106.89,63.69,60.03,57.42,32.06,26.04,18.44\right.$, 13.37, $-5.60,-5.74 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=2927(\mathrm{w}), 2893(\mathrm{w}), 2855(\mathrm{w}), 1734(\mathrm{w}), 1667(\mathrm{~s}), 1541(\mathrm{w}), 1458(\mathrm{w}), 1399(\mathrm{~s}), 1386(\mathrm{~m})$, 1295 (w), 1252 (m), 1136 (m), 118 (m), 1063 (w), 991 (m), 857 (s), 832 (s , 781 (s$), 743$ (s$), 664$ (w) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 341.2255$ found 341.2244 .

(R)-3-((tert-Butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)-N-methoxy-Nmethylpropanamide $4 f$

According to General Procedure 2. Methyl ester 3b ($906 \mathrm{mg}, 2.91 \mathrm{mmol}, 1$ equiv.), N, O-dimethyl hydroxylamine hydrochloride ($818 \mathrm{mg}, 4.51 \mathrm{mmol}, 1.55$ equiv.) and $i-\mathrm{PrMgCl}(4.4 \mathrm{~mL}, 8.73 \mathrm{mmol}, 3$ equiv., 2 M in THF) in THF (5.8 mL) were used to yield the Weinreb amide $\mathbf{4 f}$ ($892 \mathrm{mg}, 90 \%$) as colorless solid.
$[\alpha]_{D}^{24}=168.6(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.91(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{dd}, J=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=10.8,4.9 \mathrm{~Hz}$, 1 H), $4.12(\mathrm{dd}, J=11.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 10 \mathrm{H}),-0.04(\mathrm{~s}$, 3H), -0.o8 (s, 3H) ppm.
$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=171.10,128.61,106.87,63.68,60.00,57.39,32.03,26.03,18.44,13.39$, $-5.61,-5.76 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=2927(\mathrm{w}), 2855(\mathrm{w}), 1734(\mathrm{w}), 1667$ (s$), 1541(\mathrm{w}), 1457(\mathrm{w}), 1399(\mathrm{~s}), 1387(\mathrm{~m}), 1295(\mathrm{w})$, 1252 (m), 1136 (m), 1118 (m), 1064 (w), 991 (m), 857 (s), 833 (s), 780 (s), 744 (s), 663 (w) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 341.2255$ found 341.2244 .
(S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)propanal 5a

According to General Procedure 3. Weinreb amide 4 a ($1.00 \mathrm{~g}, 4.76 \mathrm{mmol}, 1$ equiv.) and DIBAL-H ($6.2 \mathrm{~mL}, 6.19 \mathrm{mmol}, 1.3$ equiv., M in hexane) in dichloromethane (24 mL) were used to yield the aldehyde $\mathbf{5 a}$ (quant.) as yellow oil.
$[\alpha]^{24} \mathrm{D}=-18.8(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=9.16(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 6 \mathrm{H}), 1.10$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$) ppm.
${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=198.80,127.34,107.90,59.58,14.55,13.06 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=2984(\mathrm{w}), 2926(\mathrm{w}), 2812(\mathrm{w}), 1737$ (s$), 1520(\mathrm{~m}), 1444$ (m), 1396 (s), 1295 (s$), 1200$ (w$)$, 1051 (m), 1019 (m), 1003 (m), 853 (m), 754 (s), 714 (w) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 152.1070$ found 152.1067 .

(R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)propanal 5b

According to General Procedure 3. Weinreb amide $\mathbf{4 b}$ ($1.40 \mathrm{~g}, 6.66 \mathrm{mmol}, 1$ equiv.) and DIBAL-H ($8.7 \mathrm{~mL}, 8.66 \mathrm{mmol}, 1.3$ equiv.,1 M in hexane) in dichloromethane (33 mL) were used to yield the aldehyde $\mathbf{5} \mathbf{b}$ (quant.) as yellow oil.
$[\alpha]^{24} \mathrm{D}=20.8(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=9.18(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 5 \mathrm{H}), 1.11(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=198.74,127.35,107.93,59.59,14.55,13.06 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=2980(\mathrm{w}), 2926(\mathrm{w}), 2812(\mathrm{w}), 1737(\mathrm{~s}), 1520(\mathrm{~m}), 1444$ (m), 1396 (s), 1295 (s), 1200 (w), 1051 (m), 1019 (m), 1003 (m), 853 (m), 753 (s), 714 (w) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$152.1070 found 152.1067.

(S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-3-phenylpropanal 5c

According to General Procedure 3. Weinreb amide 4 C ($1.12 \mathrm{~g}, 3.90 \mathrm{mmol}, 1$ equiv.) and DIBAL-H ($5.1 \mathrm{~mL}, 5.07 \mathrm{mmol}, 1 \mathrm{M}$ in hexane, 1.3 equiv.) in dichloromethane (24 mL) were used to yield the aldehyde $\mathbf{5 c}$ (quant.) as yellow oil.
$[\alpha]^{24} \mathrm{D}=-88.5(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=9.20(\mathrm{~s}, 1 \mathrm{H}), 7.04-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.68-6.59(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H})$, $4.02(\mathrm{dd}, J=10.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=13.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}$, 6H) ppm.
${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=198.07$, 137.59, 129.64, 128.63, 126.93, 107.90, 66.28, 35.67, 12.96 ppm.

IR (ATR) $\tilde{v}=2930(\mathrm{w}), 2828(\mathrm{w}), 1732(\mathrm{~s}), 1601(\mathrm{w}), 1519(\mathrm{w}), 1574(\mathrm{w}), 1454(\mathrm{~m}), 1394(\mathrm{~s}), 1293(\mathrm{~s})$, 1248(w), 1071 (w), 1088 (w), 1019 (w), 760 (s), 700 (s), 499 (s) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 228.1383$ found 228.1373 .

(R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-3-phenylpropanal 5d

According to General Procedure 3. Weinreb amide $\mathbf{4 d}$ ($500 \mathrm{mg}, 1.74 \mathrm{mmol}, 1$ equiv.) and DIBAL-H ($2.3 \mathrm{~mL}, 2.26 \mathrm{mmol}, 1 \mathrm{M}$ in hexane, 1.3 equiv.) in dichloromethane (8.7 mL) were used to yield the aldehyde $\mathbf{5 d}$ (quant.) as yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=9.21(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H})$, $4.04(\mathrm{dd}, J=10.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=13.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}$, 6H) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=198.01,137.61,129.64,128.63,126.93,107.93,66.30,35.71,12.96$ ppm.
(S)-3-((tert-Butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)propanal 5e

According to General Procedure 3 with slightly modifications. Weinreb amide $4 \mathbf{e}$ ($1.13 \mathrm{~g}, 3.32 \mathrm{mmol}$, 1 equiv.) and DIBAL-H ($4.3 \mathrm{~mL}, 4.31 \mathrm{mmol}$, 1.3 equiv., 1 M in hexane) in dichloromethane (17 mL) were used to yield the aldehyde $\mathbf{5 e}$ (quant.) as yellow oil.
$[\alpha]^{24} \mathrm{D}=-4.2(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=9.17(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.68(\mathrm{~m}, 1 \mathrm{H})$, 1.96 (s, 6H), 0.85 (s, 10H), -0.11 (s, 3H), -0.16 (s, 3H) ppm.
${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=197.79,107.89,66.29,62.09,25.90,18.34,13.27,-5.74,-5.84 \mathrm{ppm}$. IR (ATR) $\tilde{v}=2955$ (w), 2928 (w), 2856 (w), 1735 (m), 1471 (w), 1399 (m), 1295 (w), 1254 (m), 1124 (m), 1101 (m), 938 (w), 835 (s , 777 (s), 754 (s), 688 (w) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 282.1884$ found 282.1877 .

According to General Procedure 3. Weinreb amide $\mathbf{4 f}$ ($1.00 \mathrm{~g}, 2.94 \mathrm{mmol}, 1$ equiv.) and DIBAL-H ($3.8 \mathrm{~mL}, 3.82 \mathrm{mmol}, 1.3$ equiv., 1 M in hexane) in dichloromethane (15 mL) were used to yield the aldehyde $\mathbf{5} \mathbf{f}$ (quant.) as yellow oil.
$[\alpha]^{24} \mathrm{D}=1.3(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=9.18(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.69(\mathrm{~m}, 1 \mathrm{H})$, $1.96(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 8 \mathrm{H}),-0.13\left(\mathrm{~d}, J=13.9 \mathrm{~Hz},{ }_{5} \mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=197.74,107.92,66.33,62.11,25.91,18.35,13.26,-5.73,-5.82 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=2951(\mathrm{w}), 2928(\mathrm{w}), 2856(\mathrm{w}), 1735(\mathrm{~m}), 1471(\mathrm{w}), 1399(\mathrm{~m}), 1295(\mathrm{w}), 1254$ (m), 1124 (m), 938 (w), 835 (s), 777 (s$), 753$ (s$), 668(\mathrm{w}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 282.1884$ found 282.1876 .

1-Iodo pentadecane S-4

A modified procedure was used: ${ }^{6}$ A solution of 1 -bromopentadecane ($0.5 \mathrm{~mL}, 500 \mathrm{mg}, 1.70 \mathrm{mmol}$, 1 equiv.) and sodium iodide (765 mg , $5.1 \mathrm{mmol}, 3$ equiv.) in dry acetone ($34 \mathrm{~mL}, 0.05 \mathrm{M}$) was stirred at room temperature for 20 . The reaction mixture was quenched by the addition of water and extracted with dichloromethane. The combined organic layers were washed with sat. sodium thiosulfate solution and brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo. The iodide S-4 (539 mg, 94\%) was obtained as slightly yellow oil and used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.26(\mathrm{~s}, 22 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=33.75,32.08,30.68,29.84,29.81,29.77,29.71,29.58,29.51,28.71$, 22.85, 14.27, 7.49 ppm.

The analytical data are in accordance with published data. ${ }^{7}$

1-Iodo nonane S-5

A modified procedure was used: ${ }^{6}$ A solution of 1-bromononane ($0.32 \mathrm{~mL}, 352 \mathrm{mg}, 1.70 \mathrm{mmol}, 1$ equiv.) and sodium iodide ($765 \mathrm{mg}, 5.1 \mathrm{mmol}, 3$ equiv.) in dry acetone ($34 \mathrm{~mL}, 0.05 \mathrm{M}$) was stirred at room temperature for $20 h$. The reaction mixture was quenched by the addition of water and extracted with dichloromethane. The combined organic layers were washed with sat. sodium thiosulfate solution and brine, dried over MgSO_{4}, filtrated and concentrated in vacuo. The iodide S-5 ($416 \mathrm{mg}, 96 \%$) was obtained as slightly yellow oil and used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.17(\mathrm{~m}, 12 \mathrm{H})$, o. 99 - 0.78 (m, 3H) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=33.72,31.98,30.66,29.53,29.37,28.70,22.81,14.26,7.61 \mathrm{ppm}$.

2.3 Nucleophilic Addition and CBS reduction

2.3.1 Addition of Grignard reagents

(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)octan-3-ol 6

According to General Procedure 4. Aldehyde 5a (100.0 mg , $0.66 \mathrm{mmol}, 1$ equiv.) and butyl magnesium bromide (0.8 mL , $0.79 \mathrm{mmol}, 1.2$ equiv., 1 M in THF) in THF (2.2 mL) were used to yield the anti-amino alcohol 6a ($83.0 \mathrm{mg}, 60 \%$) and syn-amino alcohol $\mathbf{6 b}$ ($21.0 \mathrm{mg}, 15 \%$) as slightly yellow oils.

anti-amino alcohol 6a

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=6.00(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{dq}, J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.6 \mathrm{o}(\mathrm{tdd}, J=8.6,5.8,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.02(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.35,107.68,74.33,56.87,33.98,28.13,22.78,17.26,14.22 \mathrm{ppm}$. syn-amino alcohol 6b
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.98(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{dq}, J=9.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{tt}, J=9.2,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.13(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H) ppm.

```
\mp@subsup{}{}{13}C{[1H}-NMR (126 MHz, C6 D }\mp@subsup{}{6}{}\mathrm{ ) }\delta=107.62, 73.63, 57.41, 33.85, 27.85, 23.24, 17.00, 14.39 ppm.
```


To a solution of (R)-(-)-2-methyl-CBS-oxazaborolidine (66.5 mg , 0.24 mmol , o. 5 equiv.) in THF (2.4 mL) was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}\left(0.31 \mathrm{~mL}, 0.63 \mathrm{mmol}, 1.3\right.$ equiv., 2 M solution in THF) at $\mathrm{o}^{\circ} \mathrm{C}$, and the solution was stirred for 15 min . A solution of ketone 7 ($100 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.0$ equiv.) in THF (1.4 mL) was then added dropwise at $\mathrm{o}^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 1 h . The cooling bath was removed and the reaction mixture was stirred additional 2 h , quenched by the addition of MeOH and concentrated under reduced pressure. The crude residue was purified by column chromatography (o to $20 \% \mathrm{EtOAc}$ in cyclohexane, linear gradient) to yield the syn-alcohol $\mathbf{6 b}(97 \mathrm{mg}, 97 \%)$ as single diastereomer.
$[\alpha]_{\mathrm{D}}^{20}=-25.2(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.59(\mathrm{~m}$, $1 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.17(\mathrm{~m}, 5 \mathrm{H}), 1.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H) ppm.
$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.59,73.65,57.41,33.87,27.85,23.23,17.01,14.37 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3455$ (br, w), 2953 (m), 2860 (m), 1519 (w), 1443 (m), 1394 (s), 1291 (s), 1198 (w), 1104 (w), 999 (m), 912 (w), 749 (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 210.1852$ found 210.1848.
(2S,3R)-2-(2,5-dimethyl-1H-pyrrol-1-yl)heptan-3-ol 6

To a solution of (S)-(+)-2-methyl-CBS-oxazaborolidine ($66.5 \mathrm{mg}, 0.24 \mathrm{mmol}$, 0.5 equiv.) in THF $(2.4 \mathrm{~mL})$ was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}\left(0.31 \mathrm{~mL}, 0.63 \mathrm{mmol}, 1.3\right.$ equiv., 2 M solution in THF) at $\mathrm{o}^{\circ} \mathrm{C}$, and the solution was stirred for 15 min . A solution of ketone $\mathbf{8}(100 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.0$ equiv.) in THF $(1.4 \mathrm{~mL})$ was then added dropwise at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for h . The cooling bath was removed and the reaction mixture was stirred additional 5 h , quenched by the addition of MeOH and concentrated under reduced pressure. The crude residue was purified by column chromatography (o to $20 \% \mathrm{EtOAc}$ in cyclohexane, linear gradient) to yield the anti-amino alcohol $\mathbf{6 a}(76.4 \mathrm{mg}, 76 \%)$ and syn-amino alcohol $\mathbf{6 b}$ ($15.7 \mathrm{mg}, 16 \%$) as slightly yellow oils.

(S)-2-(2,5-dimethyl-1H-pyrrol-1-yl)heptan-3-one 7

Weinreb amide 4 a ($500 \mathrm{mg}, 2.38 \mathrm{mmol} 1$ equiv.) was dissolved in dry diethyl ether (8.0 mL), cooled to $-78^{\circ} \mathrm{C}$, treated with n-BuLi ($1.24 \mathrm{~mL}, 3.09 \mathrm{mmol}, 1.3$ equiv., 2.5 M in hexane) and stirred for 1 h . The reaction mixture was quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over magnesium sulfate, filtrated and concentrated in vacuo. The crude residue was purified by column chromatography (o to 30% EtOAc in cyclohexane, linear gradient) to yield the ketone 7 ($424 \mathrm{mg}, 86 \%$) as slightly yellow oil.
$[\alpha]_{D}^{20}=-169.8(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.98(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}$, 6 H), $1.78(\mathrm{dt}, J=17.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-0.98(\mathrm{~m}, 2 \mathrm{H})$, $0.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{\{ } \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=207.36,127.37,107.92,59.10,38.20,25.91,22.50,15.56,14.04,13.25$ ppm.

IR (ATR) $\tilde{v}=2957(\mathrm{~m}), 2930(\mathrm{~m}), 2871(\mathrm{~m}), 1719(\mathrm{~s}), 1520(\mathrm{w}), 1443(\mathrm{~m}), 1396(\mathrm{~s}), 1295(\mathrm{~s}), 1065(\mathrm{~m})$, $1020(\mathrm{w}), 752(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 208.1696$ found 208.1692 .

(3R,4S)-4-(2,5-Dimethyl-1H-pyrrol-1-yl)pent-1-yn-3-ol 8

According to General Procedure 4. Aldehyde $5 \mathrm{5a}$ ($50.0 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv.) and ethynyl magnesium bromide ($0.79 \mathrm{~mL}, 0.40 \mathrm{mmol}, 1.2$ equiv. 0.5 M in THF) in THF (1.1 mL) were used to yield the amino alcohol 8 ($46.0 \mathrm{mg}, 79 \%$, 4:1 dr) as slightly yellow oil (NMR assignment of anti-isomer).
$[\alpha]_{\mathrm{D}}^{20}=-26.0(\mathrm{c}=0.33, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.99(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dq}, J=8.4,7.0 \mathrm{~Hz}, \mathrm{iH})$, $2.15(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=128.62,106.79,82.35,74.46,65.32,56.13,16.32,14.53 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3386(\mathrm{br}, \mathrm{m}), 3240(\mathrm{~m}), 2923(\mathrm{~m}), 1520(\mathrm{w}), 1445(\mathrm{w}), 1393(\mathrm{~s}), 1293(\mathrm{~s}), 1065(\mathrm{~m}), 1015$ (s), 755 (s), $656(\mathrm{~m}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 178.1226$ found 178.1224 .

(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-phenyloct-7-en-3-ol 9

According to General Procedure 4. Aldehyde 5c ($50.0 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1 equiv.) and 4-pentenylmagnesium bromide ($0.53 \mathrm{~mL}, 0.26 \mathrm{mmol}, 1.2$ equiv. 0.5 M in THF) in THF (0.7 mL) were used to yield the amino alcohol 9 ($54.0 \mathrm{mg}, 83 \%$, 4:1 dr) as slightly yellow oil (NMR assignment of anti-isomer).
$[\alpha]_{D}^{20}=-82.1(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 3 \mathrm{H}), 5.82-5.71(\mathrm{~m}, 3 \mathrm{H}), 5.57$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{td}, J=9.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=10.7,9.4,3.5 \mathrm{~Hz}$, 1 H), $3.41(\mathrm{dd}, J=13.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=13.5,10.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62-$ $1.36(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=139.12,138.54,130.20,129.18,128.37,126.40,114.80$, 108.35, 105.05, 73.26, 64.14, 37.71, 33.63, 33.47, 24.89, 15.58, 13.13 ppm .

IR (ATR) $\tilde{v}=3434$ (br, w), 2927 (m), 2859 (w), 1495 (w), 1454 (w), 1394 (s), 1291 (m), 995 (w), 910 (m), 751 (s), 699 (s$), 604(\mathrm{w}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 298.2165$ found 298.2161.
(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-phenyloctan-3-ol 10

According to General Procedure 4. Aldehyde 5c ($200.0 \mathrm{mg}, 0.89 \mathrm{mmol}, 1$ equiv.) and pentyl magnesium bromide (0.54 mL , 1.07 mmol , 1.2 equiv. 2 M in $\mathrm{Et}_{2} \mathrm{O}$) in THF (2.9 mL) were used to yield the amino alcohol $10(185 \mathrm{mg}, 69 \%, 4: 1 \mathrm{dr})$ as slightly yellow oil (NMR assignment of anti-isomer).
$[\alpha]_{D}^{20}=-72.9(c=0.82, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.55(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=10.6,9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.6$,
$3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=13.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.10$ (m, 6H), o.86 (t, J=6.9 Hz, 3 H) ppm.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=139.21,130.25,129.22,128.39,126.41,108.31,105.02,73.46,64.18$, 37.80, $34.10,31.67,25.28,22.77,15.59,14.10,13.16 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=3446$ (br, w), 2926 (m), 2856 (m), 1518 (w), 1495 (w), 1455 (w), 1394 (s , 1291 (m), 1028 (m), 927 (w), 750 (s$), 699$ (s$), 550(\mathrm{w}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 300.2322$ found 300.2318 .

(3R,4S)-4-(2,5-Dimethyl-1H-pyrrol-1-yl)-5-phenylpent-1-yn-3-ol 11

According to General Procedure 4. Aldehyde 5c ($50.0 \mathrm{mg}, 0.22 \mathrm{mmol}, 1$ equiv.) and ethynylmagnesium bromide ($0.53 \mathrm{~mL}, 0.26 \mathrm{mmol}, 1.2$ equiv. 0.5 M in THF) in THF (0.7 mL) were used to yield the amino alcohol $\mathbf{1 1}(37.3 \mathrm{mg}, 67 \%, 3: 1 \mathrm{dr}$) as slightly yellow oil (NMR assignment of anti-isomer).
$[\alpha]_{D}^{20}=-120.4(c=0.13, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.24-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 3 \mathrm{H}), 5.82(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=9.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{ddd}, J=10.5,9.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J$ $=13.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.7,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 4 \mathrm{H}), 2.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.39,130.79,129.14,128.50,126.66,108.55,105.15,82.19,74.84$, 64.37, 63.15, 36.86, 15.61, 13.16 ppm .

IR (ATR) $\tilde{v}=3391$ (br, w), 3282 (w), 2925 (w), 1520 (w), 1495 (w), 1454 (m), 1393 (s , 1291 (s), 1041 (m), 937 (m), 752 (s$), 655(\mathrm{~m}), 555(\mathrm{w}), 513(\mathrm{w}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 254.1539$ found 254.1536 .

2.3.2 Addition of lithium reagents

(2R,3S)-3-(2,5-Dimethyl-1H-pyrrol-1-yl)butan-2-ol 12

According to General Procedure 5A. Methyl lithium ($0.24 \mathrm{~mL}, 0.39 \mathrm{mmol}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1$ equiv.) in dry diethyl ether (1.3 mL) and aldehyde $5 \mathrm{a}(70 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (1.5 mL) were used to yield the alcohol 12 ($54 \mathrm{mg}, 83 \%$, >20:1 dr) as colorless oil.
$[\alpha]_{\mathrm{D}}^{24}=2.8(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.96(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 0.77(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (75 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.63,70.67,57.74,20.86,17.23,14.55 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3445$ (br, w), 2971 (m), 2928 (m), 1519 (w), 1456 (w), 1395 (s), 1373 (m), 1293 (s), 1153 (w), 1094 (m), 1014 (m), 1000 (m), 975 (w), 909 (m), $830(\mathrm{w}), 747$ (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 168.1383$ found 168.1379 .

(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)heptan-3-ol 13

According to General Procedure 5A. n-Butyl lithium (0.16 mL , $0.39 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (1.3 mL) and aldehyde $5 \mathrm{a}(70 \mathrm{mg}, 0.46$ mmol, 1.2 equiv.) in dry diethyl ether (1.5 mL) were used to yield the alcohol 13 ($72 \mathrm{mg}, 88 \%$, >20:1 dr) as slightly yellow oil.
$[\alpha]_{D}^{24}=20.0(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.98(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.6 \mathrm{o}(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}$, $6 \mathrm{H}), 1.34(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.18-0.99(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.35,74.29,56.86,33.94,28.14,22.78,17.22,14.24 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=3446$ (br, w), 2931 (m), 2871 (m), 1519 (w), 1457 (m), 1395 (s), 1293 (s), 1200 (w), 1113 (w), 1088 (w), 999 (s), $900(\mathrm{w}), 749$ (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 210.1852$ found 210.1845 .

(2R,3S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)heptan-3-ol S-6

According to General Procedure 5A. n-Butyl lithium ($0.12 \mathrm{~mL}, 0.30 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (1.0 mL) and aldehyde $\mathbf{5} \mathbf{b} \mathbf{(5 4 . 0 \mathrm { mg } , 0 . 3 6}$ mmol, 1.2 equiv.) in dry diethyl ether (1.2 mL) were used to yield the alcohol S-6 ($52.1 \mathrm{mg}, 83 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.99(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{dq}, J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.12$ $(\mathrm{s}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-\mathrm{o} .88(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.41,74.28,56.85,33.94,28.12,22.77,17.25,14.24 \mathrm{ppm}$.

(2S,3R,4rac)-2-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylhexan-3-ol 14

According to General Procedure 5A. sec-Butyl lithium (0.22 mL , $0.28 \mathrm{mmol}, 1.3 \mathrm{M}$ in cyclohexane/hexane, 1 equiv.) in dry diethyl ether (0.9 mL) and aldehyde 5a ($50.0 \mathrm{mg}, 0.33 \mathrm{mmol}$, 1.2 equiv.) in dry diethyl ether (1.1 mL) were used to yield the alcohol 14 ($45.7 \mathrm{mg}, 78 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{20}=7.4(c=0.36, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=6.00(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.07-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 1 \mathrm{H})$, 3.72 (ddd, $J=9.3,6.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{ddd}, J=8.0,6.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 12 \mathrm{H}), 1.51-1.33(\mathrm{~m}$, $2 \mathrm{H}), 1.30(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{ddd}, J=37.9,12.2,5.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.95(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{o} .83(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-0.66(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.82,78.59,75.75,54.18,53.99,36.22,35.40,30.24,27.52$, 22.79, 18.00, 16.89, 16.50, 14.59, 12.28, 12.04, 11.83 ppm.

IR (ATR) $\tilde{v}=3466$ (br, w), 2961 (m), 2927 (m), 1518 (w), 1456 (m), 1394 (s), 1293 (s), 1213 (w), 1111 (w), 988 (s), 749 (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 210.1852$ found 210.1848 .

(3R,4S)-4-(2,5-dimethyl-1H-pyrrol-1-yl)-2,2-dimethylpentan-3-ol 15

According to General Procedure 5A. tert-Butyl lithium ($0.14 \mathrm{~mL}, 0.28 \mathrm{mmol}, 1.3 \mathrm{M}$ in cyclohexane/hexane, 1 equiv.) in dry diethyl ether (0.9 mL) and aldehyde 5 a (50.0 $\mathrm{mg}, 0.33 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (1.1 mL) were used to yield the alcohol 15 ($48.7 \mathrm{mg}, 78 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{20}=-25.3(c=0.32, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=6.01(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{qd}, J=7.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{~s}, 10 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=108.73,106.77,80.56,52.85,35.63,26.19,17.77,15.68,13.74 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3481$ (br, w), 2954 (m), 2869 (m), 1517 (w), 1478 (m), 1392 (s), 1294 (s$), 994$ (s$), 749$ (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 210.1852$ found 210.1849 .

(2S,3R)-2-(2,5-dDimethyl-1H-pyrrol-1-yl)octadecan-3-ol 16

According to General Procedure 5 C . 1-Iodopentadecane $\mathbf{S}-\mathbf{4}$ (50.0 mg , 0.15 mmol , 1.0 equiv.) and t-BuLi (0.16 mL , 0.30 mmol, 2.0 equiv., 1.9 M in pentane) in dry diethyl ether (1.5 mL) and aldehyde $5 \mathrm{a}(27.2 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether ($0.6 \mathrm{~mL}, 0.3 \mathrm{M}$) were used to yield the alcohol 16 ($37.8 \mathrm{mg}, 69 \%$, >20:1 dr) as slightly yellow oil.
$[\alpha]_{D}^{24}=-15.7(c=0.31, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.99(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{dq}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{td}, J=8.7,8.3,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 1.41-1.01(\mathrm{~m}, 31 \mathrm{H}), 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=107.68,74.37,56.92,34.35,32.37,30.22,30.17,30.10,29.86,26.06$, 23.15, 17.38, 14.39 ppm.

IR (ATR) $\tilde{v}=3447$ (br, w), 2922 (s), 2852 (s), 1733 (w), 1508 (m), 1457 (m), 1395 (m), 1294 (m), 1213 (w), 1092 (w), 1012 (m), 998 (m), 855 (m), 749 (s), 722 (w) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 364.3574$ found 364.3558 .

(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)dodecan-3-ol 17

According to General Procedure ${ }_{5} \mathrm{C}$. 1-Iodononane S-5 (70.0 mg, 0.28 mmol, 1.0 equiv.) and t-BuLi ($0.29 \mathrm{~mL}, 0.55 \mathrm{mmol}, 2.0$ equiv., 1.9 M in pentane) in dry diethyl ether (2.8 mL) and aldehyde $\mathbf{5 b}$ ($50.0 \mathrm{mg}, 0.33$ mmol, 1.2 equiv.) in dry diethyl ether (1.1 mL) were used to yield the alcohol 17 ($56.0 \mathrm{mg}, 72 \%$, >20:1 dr) as slightly yellow oil.
$[\alpha]_{D}^{24}=-15.8(c=0.24, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.99(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{dq}, J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.14(\mathrm{~s}, 7 \mathrm{H}), 1.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.31-0.97(\mathrm{~m}, 16 \mathrm{H}), 0.91(\mathrm{t}, J=7.0,6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.69,74.40,56.90,34.32,32.33,30.05,30.00,29.84,29.77$, 26.05, 23.12, 17.30, 14.39 ppm.

IR (ATR) $\tilde{v}=3447$ (br, w), 2922 (s), 2852 (s), 1733 (w), 1508 (m), 1457 (m), 1395 (m), 1294 (m), 1213 (w), 1092 (w), 1012 (m), 998 (m), 855 (m), 749 (s), 722 (w) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 280.2635$ found 280.2632.

(2R,3S)-3-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-phenylbutan-2-ol 18

According to General Procedure 5A. Methyl lithium (0.16 mL , $0.26 \mathrm{mmol}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1$ equiv.) in dry diethyl ether (0.9 mL) and aldehyde 5c ($70 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (1.0 mL) were used to yield the alcohol 18 ($53 \mathrm{mg}, 84 \%$, $>20: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{24}=-98.5(c=0.94, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.12-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{dd}, J=3.3,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.81(\mathrm{dd}, J=3.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.83(\mathrm{~m}, \mathrm{lH}), 3.72(\mathrm{ddd}, J=11.0,9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J$ $=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=13.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=139.67$, 130.06, 129.49, 128.55, 126.56, 125.62, 109.23, 105.96, 69.31, 65.49, 37.67, 21.09, 15.53, 13.30 ppm .

IR (ATR) $\tilde{v}=3446(\mathrm{br}, \mathrm{w}), 3027(\mathrm{w}), 2968(\mathrm{w}), 2930(\mathrm{w}), 2370(\mathrm{w}), 2312(\mathrm{w}), 1730(\mathrm{w}), 1507(\mathrm{w})$, 1455 (m), 1394 (s), 1293 (s), 1099 (m), 1012 (m), 973 (w), 923 (m), 876 (m), 750 (s), 697 (s) cm².

HR-MS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 244.1696$ found 244.1688.

(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-phenylheptan-3-ol 19

According to General Procedure 5A. n-Butyl lithium ($0.10 \mathrm{~mL}, 0.26 \mathrm{mmol}, 2.5$ M in hexane, 1 equiv.) in dry diethyl ether (0.9 mL) and aldehyde $\mathbf{5 c}^{\mathbf{c}}$ (70 mg, 0.31 mmol , 1.2 equiv.) in dry diethyl ether (1.0 mL) were used to yield the alcohol 19 ($61 \mathrm{mg}, 82 \%$, >20:1 dr) as slightly yellow oil.
$[\alpha]_{D}^{24}=-70.4(c=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.11-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.4,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.33-0.87(\mathrm{~m}, 7 \mathrm{H}), 0.79(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=139.72,130.08,129.56,128.56,126.58,125.70,109.28,106.03,72.94$, 64.61, 37.90, 33.95, 27.90, 22.73, 15.63, 14.27, 13.29 ppm.

IR (ATR) $\tilde{v}=3366(b r, w), 3028(\mathrm{w}), 2955(\mathrm{w}), 2931(\mathrm{w}), 2859(\mathrm{w}), 2373(\mathrm{w}), 2316(\mathrm{w}), 1735(\mathrm{w}), 1519$ (m), 1456 (m), 1394 (s), 1291 (m), 1214 (w), 1124 (w), 1028 (m), 998 (w), 968 (w) 928 (w), 901 (w), 750 (s), 699 (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 286.2165$ found 286.2155 .

(2R,3S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-phenylheptan-3-ol S-7

According to General Procedure 5A. n-Butyl lithium ($0.11 \mathrm{~mL}, 0.28 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (0.9 mL) and aldehyde $\mathbf{5}^{\mathbf{d}}(76.4 \mathrm{mg}, 0.34$ mmol, 1.2 equiv.) in dry diethyl ether (1.1 mL) were used to yield the alcohol S7 ($65 \mathrm{mg}, 81 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.11-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.4,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.35-0.88(\mathrm{~m}, 7 \mathrm{H}), 0.79(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{13}\left\{{ }^{\{ } \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=139.71,130.08,129.56,128.56,126.57,125.67,109.28,106.01,72.89$, 64.60, 37.89, 33.93, 27.89, 22.72, 15.64, 14.28, 13.30 ppm.
$(2 R, 3 S)-4-(($ tert-Butyldimethylsilyl)oxy)-3-(2,5-dimethyl-1H-pyrrol-1-yl)butan-2-ol 20

According to General Procedure 5A. Methyl lithium ($0.09 \mathrm{~mL}, 0.15 \mathrm{mmol}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1$ equiv.) in dry diethyl ether (0.5 mL) and aldehyde $\mathbf{5 e}$ ($50 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (0.6 mL) were used to yield the alcohol $2 \mathbf{0}$ ($34 \mathrm{mg}, 76 \%$, $>20: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{24}=4.1(c=0.32, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.94(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{dq}, J=12.3,6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=10.1,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{dt}, J=9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.8 \mathrm{o}(\mathrm{dd}, J=10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.09$ ($\mathrm{s}, 3 \mathrm{H}$), $0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 8 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-\mathrm{o.08}(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.35,109.03,106.63,68.88,65.13,63.74,30.22,25.94,20.79$, 18.29, 15.16, 13.75, -5.58, -5.66 ppm.

IR (ATR) $\tilde{v}=3443$ (br, w), 2955 (m), 2927 (m), 2855 (m), 2374 (w), 2316 (w), 1734 (w), 1520 (w), 1397 (m), 1295 (m), 1254 (m), 1108 (s), 1049 (m), 1014 (m), 987 (w), 937 (w), 880 (w), 834 (s), 776 (s), 749 (s$), 666(\mathrm{~m}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 298.2197$ found 298.2189.
(2S,3R)-1-((tert-Butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)heptan-3-ol 21

According to General Procedure 5A. n-Butyl lithium ($0.06 \mathrm{~mL}, 0.15 \mathrm{mmol}, 2.5$ M in hexane, 1 equiv.) in dry diethyl ether (0.5 mL) and aldehyde $\mathbf{5 e}$ (50 mg , 0.18 mmol , 1.2 equiv.) in dry diethyl ether (0.6 mL) were used to yield the alcohol 21 ($46 \mathrm{mg}, 90 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{20}=6.1(c=0.23, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.95(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{dd}, J=10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=7.5,4.5,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{dt}, J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.6 \mathrm{o}(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}$, $6 \mathrm{H}), 1.52-1.07(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.35,109.05,106.71,72.30,65.31,62.75,34.08,30.22,27.68$, 25.96, 22.84, 18.30, 15.26, 14.30, 13.77, -5.57, -5.64 Ppm.

IR (ATR) $\tilde{v}=3447$ (br, w), 2955 (m), 2927 (m), 2855 (m), 2377 (w), 2320 (w), 1734 (w), 1520 (w), 1396 (m), 1295 (m), 1253 (m), 1114 (m), 1066 (m), 1006 (w), 984 (w), 835 (s), 776 (s$), 749$ (s$), 666$ (m) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 340.2666$ found 340.2656 .
($2 R, 3 S$)-1-((tert-Butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)heptan-3-ol S-8

According to General Procedure 5A. n-Butyl lithium ($0.04 \mathrm{~mL}, 0.09 \mathrm{mmol}, 2.5$ M in hexane, 1 equiv.) in dry diethyl ether (0.3 mL) and aldehyde $\mathbf{5} \mathbf{f}$ ($\mathbf{3 0 . 0} \mathrm{mg}$, $0.11 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (0.4 mL) were used to yield the alcohol S-8 ($25.4 \mathrm{mg}, 83 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.97(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{dd}, J=10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{td}, J=8.8,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{dt}, J=9.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 2 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.42$ $-1.07(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.35,109.05,106.71,72.29,65.34,62.75,34.04,30.22,27.66$, 25.92, 22.81, 18.30, 15.26, 14.30, 13.77, -5.57, -5.61 ppm.

(1R,2S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-1,3-diphenylpropan-1-ol 22

A solution of bromobenzene ($29 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$, 1 equiv.) in dry diethyl ether (0.9 mL) was treated with n-butyl lithium ($0.11 \mathrm{~mL}, 0.28 \mathrm{mmol}, 2.5 \mathrm{M}$ in pentane, 1 equiv.) at $o^{\circ} \mathrm{C}$ and stirred for lh . Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $\mathbf{5 C}$ ($7 \mathrm{omg}, 0.31 \mathrm{mmol}, 1.1$ equiv.) in dry diethyl ether (1.0 mL) was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate and concentrated in vacuo. The crude residue was purified by column chromatography (o to 40% EtOAc in cyclohexane, linear gradient) to yield the alcohol 22 ($54 \mathrm{mg}, 63 \%, 7: 1 \mathrm{dr}$).
$[\alpha]_{D}^{24}=-44.2(c=0.17, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.08-6.88(\mathrm{~m}, 10 \mathrm{H}), 5.99(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76(\mathrm{dd}, J=9.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=13.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=$ $13.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 ($\mathrm{s}, 3 \mathrm{H}$), 1.39 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.29 ($\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=142.76,139.66,129.43,128.58,128.35,126.53,126.24,109.44,105.58$, 74.93, 65.09, 37.01, 16.22, 12.86 ppm.

IR (ATR) $\tilde{v}=3446$ (br, w), 3029 (w), 2924 (w), 1716 (w), 1519 (m), 1455 (m), 1229 (w), 1081 (w), 1042 (m), 1002 (w), 974 (w), 926 (w), 845 (w), 749 (s$), 697(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 306.1852$ found 306.1843 .

(3R,4S)-4-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-(trimethylsilyl)pent-1-yn-3-ol 23

According to General Procedure 5 B. TMS-acetylene ($56 \mu \mathrm{~L}, \mathrm{o} .39 \mathrm{mmol}, 1$ equiv.) and n-butyl lithium ($0.16 \mathrm{~mL}, 0.39 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (1.3 mL) and aldehyde $\mathbf{5 a}$ ($70 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (1.5 mL) were used to yield the alcohol 23 ($77 \mathrm{mg}, 79 \%,>20: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{\mathrm{D}}^{24}=-19.7(\mathrm{c}=1.00, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.95(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=8.6,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.17 (s, 6H), 1.58 (s, br, 1H), $1.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.56,105.14,90.53,66.02,56.46,16.65,14.68,-0.28 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3446$ (br, w), 2959 (w), 2894 (w), 1733 (w), 1395 (m), 1294 (m), 1073 (m), 1015 (m), 840 (s), 757 (s) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NOSi}$ [M+H] ${ }^{+} 250.1622$ found 250.1614 .

(3R,4S)-4-(2,5-Dimethyl-1H-pyrrol-1-yl)-5-phenyl-1-(trimethylsilyl)pent-1-yn-3-ol 24

According to General Procedure 5B. TMS-acetylene ($56 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 1$ equiv.) and n-butyl lithium ($0.16 \mathrm{~mL}, 0.39 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (1.3 mL) and aldehyde $\mathbf{5 c}$ (98 mg, o. 43 mmol , 1.1 equiv.) in dry diethyl ether (1.5 mL) were used to yield the alcohol 24 ($96 \mathrm{mg}, 76 \%, 9: 1 \mathrm{dr}$) as slightly yellow oil. $[\alpha]_{D}^{24}=-103.8(c=0.31, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.07-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.8 \mathrm{o}(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=9.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=13.6,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$ ppm.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=139.09,129.43,128.62,126.71,109.22,105.83$, 104.72, 90.96, 64.84, 63.92, 36.97, 15.60, 13.37, -0.33 ppm.

IR (ATR) $\tilde{v}=3446$ (br, w), 3029 (w), 2958 (w), 2898 (w), 2377 (w), 2316 (w), 2174 (w), 1731 (w), 1541 (w), 1454 (w), 1395 (s), 1293 (m), 1250 (s), 1081 (w), 1040 (m), 927 (w), 841 (s), 751 (s), 699 (s), $664(\mathrm{~m}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+} 326.1935$ found 326.1924.

(3R,4S)-5-((tert-Butyldimethylsilyl)oxy)-4-(2,5-dimethyl-1H-pyrrol-1-yl)-1-

 (trimethylsilyl)pent-1-yn-3-ol 25

According to General Procedure 5B. TMS-acetylene ($21 \mu \mathrm{~L}$, 0.15 mmol , 1 equiv.) and n-butyl lithium ($0.06 \mathrm{~mL}, 0.15 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (0.5 mL) and aldehyde $\mathbf{5 e}$ ($50 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (0.6 mL) were used to yield the alcohol 25 ($49 \mathrm{mg}, 86 \%, 19: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{19}=-4.2(c=0.11, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.94(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (ddd, $J=9.3,7.5,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (s, 6H), o. $86(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}),-\mathrm{o} .10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.35,107.61,104.56,90.99,64.03,63.78,63.03,30.23,25.95$, 18.32, 14.40, -0.29, -5.53, -5.59 ppm.

IR (ATR) $\tilde{v}=2923$ (s$), 2853$ (m), 1733 (w), 1457 (w), 1249 (m), 1107 (m), 839 (s), 776 (w), 758 (w) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 340.2666$ found 340.2656 .
(3R,4S)-4-(2,5-dimethyl-1H-pyrrol-1-yl)pent-1-en-3-ol 26

To a solution of vinyl bromide (0.43 mL , $0.43 \mathrm{mmol}, 1$ equiv., 1 M in THF) in THF (1.4 mL) was added t - BuLi ($0.45 \mathrm{~mL}, 0.86 \mathrm{mmol}, 2$ equiv., 1.9 M in pentane) at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for i . A solution of aldehyde $\mathbf{5 a}^{\mathbf{a}}(78.5 \mathrm{mg}$, 0.52 mmol , 1.2 equiv.) in THF (1.7 mL) was added, stirred at $-78^{\circ} \mathrm{C}$ for 1 l , quenched by the addition of saturated ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtrated and concentrated in vacuo. The crude residue was purified by column chromatography (o to 40% EtOAc in cyclohexane) to yield the alcohol 26 ($55.3 \mathrm{mg}, 72 \%, 4: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{20}=28.3(c=0.58, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.98(\mathrm{~s}, 2 \mathrm{H}), 5.45$ (ddd, $\left.J=17.2,10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07(\mathrm{dt}, J=17.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dt}, J=10.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{tq}, J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}$, 6 H), $1.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{iH}) \mathrm{ppm}$.
$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=138.79,114.92,107.70,74.81,56.56,17.24,14.67 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3423$ (br, w), 2977 (m), 2926 (m), 1519 (w), 1443 (m), 1394 (s), 1293 (s$), 1128$ (w), 993 (s), 925 (m), 867 (w), $750(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 180.1383$ found 180.1381 .
(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)non-4-yn-3-ol 27

According to General Procedure ${ }_{5}$ B. Hexyne ($45 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 1$ equiv.) and n - butyl lithium ($0.16 \mathrm{~mL}, 0.39 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (1.3 mL) and aldehyde $\mathbf{5 a}$ ($7 \mathrm{omg}, 0.46 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (1.5 mL) were used to yield the alcohol $27(74 \mathrm{mg}, 81 \%, 20: 1 \mathrm{dr})$ as slightly yellow oil.
$[\alpha]_{D}^{19}=-71.2(c=0.11, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.98(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~s}, 6 \mathrm{H}), 1.88(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.08(\mathrm{~m}, 4 \mathrm{H})$, $0.76(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=107.51,86.48,79.70,65.95,56.95,30.78,22.01,18.53,16.76,14.66$, 13.71 ppm .

IR (ATR) $\tilde{v}=3445$ (br, w), 2956 (m), 2929 (m), 2870 (w), 2377 (w), 2312 (w), 2232 (w), 1716 (w), 1519 (w), 1456 (m), 1396 (s), 1294 (s), 1146 (w), 1200 (w), 1012 (s), 747 (s) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 234.1852$ found 234.1845 .

(2S,3R)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-phenylnon-4-yn-3-ol 28

According to General Procedure 5B. Hexyne ($45 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 1$ equiv.) and n - butyl lithium ($0.16 \mathrm{~mL}, 0.39 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1 equiv.) in dry diethyl ether (1.3 mL) and aldehyde $5 \mathbf{5}$ ($98 \mathrm{mg}, 0.43 \mathrm{mmol}$, 1.1 equiv.) in dry diethyl ether (1.5 mL) were used to yield the alcohol $28(103 \mathrm{mg}, 85 \%, 19: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{24}=-107.1(\mathrm{c}=0.39, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.07-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.64 (ddt, $J=9.8,5.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{ddd}, J=11.1,9.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J$ $=13.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{td}, J=6.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~s}$, $3 \mathrm{H}), 1.46(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=139.23,129.52,128.60,128.35,126.67,109.13,105.77,86.92,79.34$, 64.82, 64.34, 37.31, 30.73, 21.88, 18.47, 15.59, 13.68, 13.32 ppm.

IR (ATR) $\tilde{v}=3446$ (br, w), 3029 (w), 2956 (w), 2930 (w), 2870 (w), 2377 (w), 2312 (w), 2233 (w), 1735 (w), 1456 (m), 1395 (s), 1293 (m), 1228 (w), 1146 (w), 1030 (s), 1000 (w), 966 (w), 928 (w), 749 (s), $699(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 310.2165$ found 310.2156 .
(2S,3R)-1-((tert-Butyldimethylsilyl)oxy)-2-(2,5-dimethyl-1H-pyrrol-1-yl)non-4-yn-3-ol 29

According to General Procedure 5B. Hexyne ($17 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.0$ equiv.) and n-butyl lithium ($0.06 \mathrm{~mL}, 0.15 \mathrm{mmol}, 2.5 \mathrm{M}$ in pentane, 1 equiv.) in dry diethyl ether (0.5 mL) and aldehyde $\mathbf{5 e}$ ($50.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) in dry diethyl ether (0.6 mL) were used to yield the alcohol 29 ($41.3 \mathrm{mg}, 76 \%, 10: 1 \mathrm{dr}$) as slightly yellow oil.
$[\alpha]_{D}^{20}=-25.9(c=0.28, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=5.97(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{ddt}, J=9.2,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=9.3$,
$7.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),-0.05(\mathrm{~s}$, $3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=128.36,86.84,79.15,63.98,63.80,63.43,30.74,25.96,21.92$, 18.52, 13.73, -5.56, -5.63 ppm.

IR (ATR) $\tilde{v}=2922(\mathrm{~s}), 2852(\mathrm{~s}), 1728$ (s , 1516 (w), 1462 (m), 1238 (s , $1070(\mathrm{w}), 822(\mathrm{w}), 721$ (w) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 364.2666$ found 364.2658 .

2.3 Deprotection

(2R,3S)-3-Amino-4-phenylbutan-2-ol 30

OH According to General Procedure 6. Alcohol 18 (30.0 mg , $0.12 \mathrm{mmol}, 1$ equiv.), hydroxylamine hydrochloride ($86.0 \mathrm{mg}, 1.23 \mathrm{mmol}, 10$ equiv.) in ethanol and water ($0.8 \mathrm{~mL}, 2: 1$) were used to yield the amino alcohol. The residue was redissolved in a small amount of water, washed with diethyl ether, neutralized and extracted with dichloromethane to obtained the free amino alcohol 30 ($19.0 \mathrm{mg}, 96 \%$, >20:1 dr) as slightly yellow solid.
$[\alpha]_{D}^{20}=-32.8(c=0.05, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.43-7.24(\mathrm{~m}, 5 \mathrm{H}), 3.97(\mathrm{qd}, J=6.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=$ $9.1,6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.01(\mathrm{dd}, J=14.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.86(\mathrm{dd}, J=14.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 3H) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=137.33,130.25,130.08,128.36,66.77,59.27,34.88,17.75 \mathrm{ppm}$.
IR (ATR) $\tilde{v}=3346(\mathrm{~m}), 2910(\mathrm{~m}), 1604(\mathrm{~m}), 1496(\mathrm{~m}), 1455(\mathrm{~m}), 1106(\mathrm{w}), 1049(\mathrm{w}), 740(\mathrm{~m}), 700$ (m) cm^{-1}.

HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 166.1226$ found 166.1225 .

(2S,3R)-3-Hydroxy-1-phenylheptan-2-aminium formate 31

According to General Procedure 6. Alcohol 19 (30.0 mg , $0.11 \mathrm{mmol}, 1$ equiv.), hydroxylamine hydrochloride ($73.0 \mathrm{mg}, 1.05 \mathrm{mmol}$, 10 equiv.) in ethanol and water ($2.1 \mathrm{~mL}, 2: 1$) were used to yield the amino alcohol 31 ($25.2 \mathrm{mg}, 95 \%,>20: 1 \mathrm{dr}$) as slightly yellow solid.
$[\alpha]_{\mathrm{D}}^{23}=-13.38(\mathrm{c}=0.10, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.44(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.76$ (dd, $J=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (ddd, $J=8.9,5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=14.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (dd, $J=14.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dp}, J=26.8,8.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{ddp}, J=21.3,10.0,6.3,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=169.10,137.52,130.31,130.11,128.39,71.28,58.78,34.33,32.94$, 29.28, 23.57, 14.34 ppm.

IR (ATR) $\tilde{v}=3277(\mathrm{~m}), 2929(\mathrm{w}), 2856(\mathrm{w}), 2751(\mathrm{w}), 1636(\mathrm{w}), 1578(\mathrm{~m}), 1539(\mathrm{~s}), 1498(\mathrm{w}), 1393$ (s), $1352(\mathrm{~m}), 1051(\mathrm{w}), 775(\mathrm{~m}), 746(\mathrm{~m}), 698(\mathrm{~m}), 666(\mathrm{~m}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 208.1696$ found 208.1688.

(2S,3R)-3-Hydroxy-1-phenylnon-4-yn-2-aminium formate 32

According to General Procedure 6. Alcohol 28 (30.0 mg , $0.11 \mathrm{mmol}, 1$ equiv.), hydroxylamine hydrochloride ($67.0 \mathrm{mg}, 0.97 \mathrm{mmol}$, 10 equiv.) in ethanol and water ($1.3 \mathrm{~mL}, 2: 1$) were used to yield the amino alcohol $32(22 \mathrm{mg}, 82 \%$, 19:1 dr) as yellow oil.
$[\alpha]_{D}^{23}=40.3(c=0.22, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.49(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.21(\mathrm{~m}, 6 \mathrm{H}), 4.44(\mathrm{dt}, J=3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{td}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{td}$, $J=6.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=169.68,136.98$, 130.25, 130.05, 128.48, 90.07, 76.80, 62.36, $58.53,36.33,31.72,23.06,19.12,13.94 \mathrm{ppm}$.

IR (ATR) $\tilde{v}=2962(\mathrm{w}), 2932(\mathrm{w}), 2066(\mathrm{w}), 1576$ (s$), 1496$ (w), 1455 (m), 1346 (m), 1119 (w), 1051 (m), 978 (m), 764 (w), 739 (m), 699 ($\mathrm{s} \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 232.1696$ found 232.1688 .

(2S,3R)-3-Hydroxy-1-phenyl-5-(trimethylsilyl)pent-4-yn-2-aminium formate 33

dr) as yellow oil.
$[\alpha]_{D}^{23}=39.1(c=0.07, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.50(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 6 \mathrm{H}), 4.49(\mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54(\mathrm{td}, J=7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.23(\mathrm{~s}$, 9H) ppm.
${ }^{13}{ }^{1}\left\{{ }^{\{ } \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=169.86,136.99,130.26,130.04,128.47,102.71,93.84,62.63$, 58.03, 36.18, -0.22 ppm.

IR (ATR) $\tilde{v}=2956(\mathrm{w}), 2172(\mathrm{w}), 1567$ (s$), 1496$ (w), 1455 (w), 1375 (m), 1344 (m), 1249 (m), 1069 (m), 1032 (m), 975 (w), 841 (s$), 760(\mathrm{~m}), 741(\mathrm{~m}), 698(\mathrm{~s}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+} 248.1465$ found 248.1457 .

($\mathbf{R}, \mathbf{2 S}$)-1-Hydroxy-1,3-diphenylpropan-2-aminium formate 34

According to General Procedure 6. Alcohol 22 (30.0 mg , $0.10 \mathrm{mmol}, 1$ equiv.),
 hydroxylamine hydrochloride ($68.0 \mathrm{mg}, 0.98 \mathrm{mmol}$, of equiv.) in ethanol and water ($2.0 \mathrm{~mL}, 2: 1$) were used to yield the amino alcohol $34(21.6 \mathrm{mg}, 81 \%$, dr = 7:1) as slightly brown solid.
$[\alpha]_{\mathrm{D}}^{23}=-25.7(\mathrm{c}=0.08, \mathrm{MeOH})$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.50(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.06(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=8.8,5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.31(\mathrm{dt}, J=3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.85-2.71(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=170.10,141.24,137.53,130.23,130.03,129.69,129.17,128.26$, 127.37, 73.32, 59.54, 34.18 ppm .

IR (ATR) $\tilde{v}=1645$ (w), 1578 (m), 1541 (m), 1496 (w), 1393 (m), 1355 (w$), 775$ (w), 757 (m), 744 (m), 699 (s$), 669$ (m) cm ${ }^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 228.1383$ found 228.1375 .

(2R,3S)-2-Aminododecan-3-ol 35

According to General Procedure 6. Alcohol 17 ($50.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv.), hydroxylamine hydrochloride ($68.0 \mathrm{mg}, 0.98 \mathrm{mmol}$, 10 equiv.) in ethanol and water ($3.6 \mathrm{~mL}, 2: 1$) were used to yield the amino alcohol. The residue was redissolved in a small amount of water, washed with diethyl ether, neutralized and extracted with dichloromethane to obtained the free amino alcohol 35 ($30.0 \mathrm{mg}, 83 \%,>20: 1 \mathrm{dr}$) as slightly yellow solid.
$[\alpha]_{\mathrm{D}}^{23}=-4.5(\mathrm{c}=0.09, \mathrm{MeOH})$
[Lit: ${ }^{8}[\alpha]_{D}^{23}=-4.5(c=1.5, \mathrm{MeOH})$ Lit: $\left.{ }^{9}[\alpha]_{\mathrm{D}}^{25}=-4.3(\mathrm{c}=0.001, \mathrm{MeOH})\right]$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=3.48(\mathrm{dt}, J=7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{qd}, J=6.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-$ $1.27(\mathrm{~m}, 16 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=75.46,52.24,33.98,33.07,30.78,30.76,30.72,30.45,27.20$, 23.73, 16.08, 14.42 ppm .

IR (ATR) $\tilde{v}=3333(\mathrm{w}), 2918(\mathrm{~s}), 2850(\mathrm{~s}), 1614$ (w), 1580 (s), 1550 (w), 1483 (m), 1370 (s), 1310 (w), 1087 (s), $818(\mathrm{~m}) \mathrm{cm}^{-1}$.

HR-MS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 202.2165$ found 202.2157 .

2.5 Determination of Enantiomeric Excess

Method A: eluent: $10 \% i-\mathrm{PrOH}$ in heptane, $1.0 \mathrm{~mL} / \mathrm{min}$, column: $\mathrm{Lux}^{\otimes} 5 \mu \mathrm{~m}$ cellulose-1 (250 x 4.6 mm)

Method B: eluent: $5 \% i$-PrOH in heptane, $1.0 \mathrm{~mL} / \mathrm{min}$, column: $\mathrm{Lux}^{\circledR} 5 \mu \mathrm{~m}$ cellulose-1 (250 x 4.6 mm)

Method C: eluent: $3 \% i$-PrOH in heptane, $1.0 \mathrm{~mL} / \mathrm{min}$, column: $\mathrm{Lux}^{\oplus} 5 \mu \mathrm{~m}$ cellulose-1 (250 x 4.6 mm)
mAU

method A

Peak	RT $[\mathbf{m i n}]$	Area	Area $[\%]$
$\mathbf{1}$	4.7	36075	0.4
$\mathbf{2}$	6.3	8869922	99.6

$>99 \%$ ee

method A

Peak	RT $[\mathrm{min}]$	Area	Area $[\%]$
$\mathbf{1}$	4.7	6589599	99.5
$\mathbf{2}$	6.3	32217	0.5
99% ee			

method B

Peak	RT $[\mathrm{min}]$	Area	Area $[\%]$
$\mathbf{1}$	8.5	36998905	99.6
2	11.4	146604	0.4
$>99 \%$ ee			

mAU

method A

Peak	RT $[\mathrm{min}]$	Area	Area $[\%]$
$\mathbf{1}$	5.1	6953	0.3
$\mathbf{2}$	5.9	2705051	99.7

>99\% ee

method A

Peak	RT $[\mathbf{m i n}]$	Area	Area $[\%]$
$\mathbf{1}$	5.1	2533819	99.6
$\mathbf{2}$	5.9	10625	0.4
$>99 \%$ ee			

method C

Peak	RT $[\mathrm{min}]$	Area	Area $[\%]$
1	7.1	12922129	100

$>99 \%$ ee
mAU

method A

Peak	RT $[\mathrm{min}]$	Area	Area $[\%]$
$\mathbf{1}$	3.6	7294058	98.8
2	4.0	87882	1.2

98\% ee

method C

Peak	RT $[\mathrm{min}]$	Area	Area $[\%]$
$\mathbf{1}$	4.1	7183352	98.7
$\mathbf{2}$	4.5	96752	1.3
97% ee			

3 References

1. B. M. Trost and F. Miege, J. Am. Chem. Soc., 2014, 136, 3016-3019.
2. A. Suárez, S. Suárez-Pantiga, O. Nieto-Faza and R. Sanz, Org. Lett., 2017, 19, 5074-5077.
3. A. Walia, S. Kang and R. B. Silverman, J. Org. Chem., 2013, 78, 10931-10937.
4. S. Wiesler, M. A. Bau, T. Niepel, S. L. Younas, H. T. Luu and J. Streuff, Eur. J. Org. Chem., 2019, 2019, 6246-6260.
5. F. Piscitelli, A. Ligresti, G. La Regina, V. Gatti, A. Brizzi, S. Pasquini, M. Allarà, M. A. M. Carai, E. Novellino and G. Colombo, Eur. J. Med. Chem., 2011, 46, 5641-5653.
6. P. H. Kouwer and T. M. Swager, J. Am. Chem. Soc., 2007, 129, 14042-14052.
7. S. Capone, P. Walde, D. Seebach, T. Ishikawa and R. Caputo, Chem. Biodivers., 2008, 5, 16-30.
8. A. M. Zaed and A. Sutherland, Org. Biomol. Chem., 2011, 9, 8030-8037.
9. A. Aiello, E. Fattorusso, A. Giordano, M. Menna, C. Navarrete and E. Muñoz, Biorg. Med. Chem., 2007, 15, 2920-2926.

4 NMR Spectra

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

ơ
$\stackrel{+}{i}$
$\stackrel{1}{1}$

52.56
51.83
$\stackrel{\sim}{\underset{\sim}{\mathcal{N}}} \stackrel{\sim}{\sim}$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

2b
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | | 10 |
| :--- |

S45

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											ppm											

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

\pm
\vdots
\vdots
\vdots
\vdots
$2 e$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

ம் $\underbrace{\dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\sim}} \boldsymbol{\sim}$
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

 18.0くI-
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

3a
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

3a
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

3b
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

ع6.69I-
-128.19

4a
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

$\varepsilon I^{\prime}\ulcorner-$
$\stackrel{\mathrm{M}}{\mathrm{i}} \stackrel{\mathrm{j}}{\mathrm{j}}$

$\stackrel{\text { ñ }}{\stackrel{\sim}{N}} \underset{\sim}{\mathrm{~N}}$

4a
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

$\stackrel{0}{\infty}$

\%	\bar{m}	$\stackrel{\infty}{n}$
\%	in	®
1	\|	\|

4b
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

 N
$\stackrel{y}{n}$
$\stackrel{y}{n}$
1

4b
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

$\stackrel{m}{\underset{\sim}{m}} \stackrel{9}{m}$

$\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

$\stackrel{\cong}{\stackrel{m}{\dot{m}}}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

O
$\stackrel{+}{+}$
$\stackrel{1}{2}$
1
$\begin{array}{ll}\overrightarrow{0} & \infty \\ \underset{\sim}{\infty} & \stackrel{\infty}{0} \\ \stackrel{0}{0} & \stackrel{1}{1}\end{array}$

V
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

$\begin{array}{llllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$ ppm

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

68.0
$\begin{array}{ll}\text { no } \\ 0 \\ 0 \\ 0 \\ i & i \\ i & i\end{array}$

0
-
-
-
1
1

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

©o

 $\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & p p m & & & & & & \end{array}$

5 a
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

								140			110		1	80		60	50					
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

S6o

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

6a
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

6a
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

6b
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

6b
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

-127.37
-107.92

0
$\stackrel{7}{5}$
0

[^0]

$\mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

[^1]
10
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

$\stackrel{\rightharpoonup}{m} \stackrel{0}{0}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$
 $\underbrace{\infty}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

13
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

$\underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim} \sim$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$
-107.69

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

シ
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

[^2]
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

24
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

													,									
220	210	200	190	180	170	160	150	140	130	120	0	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

26
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$

										$\stackrel{\text { T}}{\underset{\sim}{9}}$		$\stackrel{\text { T }}{\substack{1 \\-\\ \hline}}$						等置				츠N		
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0．5	－1．0
												ppm												

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 126 \mathrm{MHz}$
（ バべ1

30
${ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$
$\underbrace{\substack{m}}$

30
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}$

[^3]
${ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$

31
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}$

33
${ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$
 l_L.aluman

					$\begin{aligned} & \text { T} \\ & \underset{\sim}{\top} \end{aligned}$		$\begin{aligned} & \text { 'Th } \\ & \text { in } \end{aligned}$						- 		M O-									
11.0	10.5	10.0	1	1	1-5	1	7.5	1.	1.		5.5	5.0	4	.	1.5			2.0	1.5		1	1.	1	
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.0

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}$

[^4]

 $\stackrel{\sim}{n}$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}$

[^0]: $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]:

[^2]:

[^3]: $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^4]: $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

