Electronic Supplementary Information for Chemical Communications

Dual functional catalysis of [Nb₆O₁₉]⁸⁻-modified Au/Al₂O₃

Soichi Kikkawa,^{a,b} Shoji Fukuda,^a Jun Hirayama,^{a,b} Naoki Shirai,^a Ryo Takahata^c, Kosuke Suzuki,^{d,e} Kazuya Yamaguchi,^d Toshiharu Teranishi^c and Seiji Yamazoe^{*a,b,e}

- a. Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192–0397, Japan
- b. Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615–8245, Japan
- c. Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- d. Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- e. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan.

*Corresponding Author: Seiji YAMAZOE

E-mail: yamazoe@tmu.ac.jp

Preparation of catalysts

Au/Al₂O₃ catalyst was prepared by the precipitation method using base according to the literature.¹ Au NPs were prepared by the addition of 1 M NaOH into an aqueous solution of HAuCl₄ (10 mM) with maintaining pH at ca. 9. The Al₂O₃ (JRC-ALO-7, <100 mesh powder, 1 g), which was supplied from Catalytic Society of Japan, was then dispersed into the solution. After stirring for 1h, the Al₂O₃ powder was filtrated, washed, and dried at 333 K. The powder was reduced at 573 K for 2 h in the presence of 0.01 MPa of sufficient H₂ to obtain Au/Al₂O₃. The [Nb₆O₁₉]^{8–}-modified Au/Al₂O₃ was synthesized by the adsorption method. The Au/Al₂O₃ was dispersed into the aqueous solution of K₈Nb₆O₁₉·14H₂O (Mitsuwa Chemicals Co. Ltd., 0.8 mM) at a ratio of [Au atoms]:[Nb₆O₁₉] = 1:4, and this mixture was stirred for 10 min. After filtration, washing with pure water, and evacuation at 333 K, [Nb₆O₁₉]^{8–}-modified Au/Al₂O₃ (Ta₆-Au/Al₂O₃ and SiW11-Au/Al₂O₃, respectively) also prepared by using K₈Ta₆O₁₉·16H₂O (Mitsuwa Chemicals Co. Ltd) and K₈SiW₁₁O₃₉ that was prepared according to the literature,² respectively. The [Nb₆O₁₉]^{8–}-absorbed Al₂O₃ (Nb₆/Al₂O₃) was prepared by an absorption method. Al₂O₃ was dispersed with K₈Nb₆O₁₉ (0.04 mmol) and then dried up at 353 K.

Characterizations

The loading amount of Au NPs, and $[Nb_6O_{19}]^{8-}$ and $[Ta_6O_{19}]^{8-}$ clusters were determined by ICP-AES spectrometer (ICPS-8100, Shimadzu). The structures of the prepared catalysts were characterized by PXRD (MiniFlex, Rigaku). The optical property was measured by UV-vis spectrometer (V-770, JASCO). The structure of the $[Nb_6O_{19}]^{8-}$ precursor was confirmed by using a Fourier-transformed infrared spectrometer (FT/IR-4X, JASCO) equipped with an attenuated total reflection (ATR) unit. Nb K-edge XAS spectra were measured using BL01B1³ beamline in SPring-8 (Japan Synchrotron Radiation Research Institute). The data reduction was carried out using xTunes software.⁴ The particle size of the supported Au NPs was estimated by using HAADF-STEM equipped with EDX microanalyzer operating at 300 keV (JEM-3200FS, JEOL). The electronic states of Au NPs surface were evaluated by XP spectra (PHI5000 VersaProbe, ULVAC-PHI). The energy calibration was performed by using the C 1s signal at 284.6 eV.

Catalytic reactions

The catalytic hydrogenation of *p*-nitrophenol, *p*-nitrobenzene, and *p*-nitrostyrene was performed using an autoclave reactor in methanol solution (catalyst: 5 mg, substrate: 62.1μ mol, methanol: 1 mL, H₂: 1 MPa, reaction temperature: 353 K, reaction time: 2 h). Biphenyl was used as an internal standard The products were analyzed by GC-FID. The conversion was calculated by the decreased amount of the substrate. The selectivity toward each product was calculated by the fraction of detected products. As a blank test, the reaction of over Au/Al₂O₃ with the addition of K₈Nb₆O₁₉ (1 mg) or K₂CO₃ (1 mg) as a base was also carried out at the same reaction conditions. As for the reusability test, the samples were collected by centrifugation.

Table S1 Contained amount of Au and Nb species mearured by using ICP-AES^a.

Catalyst	·+	Amount	Au ^b	Nb ^b	Ta ^b	Au	Nb or Ta	POM	POM
	ol.	(mg)	(µg)	(µg)	(µg)	(wt%)	(wt%)	(wt%)	(µmol/g _{cat})
Nb6-Au/A	I ₂ O ₃	19.0	137	84.5	n.d.	0.72	0.44	0.69	8.0
Ta6-Au/A	I ₂ O ₃	19.5	136	n.d.	392	0.70	2.0	2.6	18
Au/Al ₂ 0	D 3	19.9	146	n.d.	n.d.	0.73	_	_	_

^aThe sample for ICP-AES measurement was prepared as follows; ca. 20 mg of POM-Au/Al₂O₃ was added into a mixtue of HCl (Kanto Chemical Co., Inc., 35.0–37.0%, 1.2 mL), HNO₃ (Kanto Chemical Co., Inc., 60.0–61.0%, 0.4 mL), and HF (Kanto Chemical Co., Inc, >46.0%, 0.4 mL) and stirred at 423 K overnight. Then, the obtained clear solution without presipitates was diluted to the total volume of 20 mL. ^bThe concentraiton of Au, Nb, and Ta were estimated by using the emission intensity at 242.8 nm, 316.3 nm, and 226.2 nm, respectively. The contained amount of those species were calculated as follows;

(Contained amount) (g) = (concentraion of target element in measured solution) × (total volume of solution)

Table S2 Reaction results for reduction of p-nitrophenol over Nb6-Au/Al₂O₃^a.

	HO NO2	HO NH ₂
	<i>p</i> -nitrophenol	<i>p</i> -aminophenol
Entry	Reaction time (h)	Conversion (%)
1	2	86
2	7	95
3	18	>99

^a Catalyst, 5 mg; substrate, 62.1 μmol; methanol, 1 mL; H₂, 1 MPa; reaction temperature, 353 K.

Fable S3 Reaction results f	or reduction of p-nitrostyrene	(1c) over Nb6-Au/Al ₂ O ₃ ^a .
-----------------------------	--------------------------------	--

	p-nitrostyrene: 1c p -ethylaniline: 2c	or [] p-vir	nylaniline: 3c <i>p</i> -ethylnitrob	enzene: 4c
Entry	Catalyst	Time	Conversion	Selectivity (%)
	Catalyst	(h)	(%)	(2c:3c:4c)
1	Nb6-Au/Al ₂ O ₃	0.5	17	5:85:10
2	Nb6-Au/Al ₂ O ₃	1	85	33:56:11
3	Nb6-Au/Al ₂ O ₃	2	96	92:4:4
4	Au/Al ₂ O ₃	2	21	3:97:<1
5	Au/Al ₂ O ₃	4	47	<1:99:<1
6	Au/Al ₂ O ₃	6	98	21:73:6

^a Catalyst, 5 mg; substrate, 62.1 μ mol; methanol, 1 mL; H₂, 1 MPa; reaction temperature, 353 K.

Fig. S1 HAADF-STEM image and the size distribution of Au NPs of Au/Al₂O₃.

Fig. S2 XRD patterns of (a) Nb6-Au/Al₂O₃ and (b) Au/Al₂O₃. As references, (c) Au/Al₂O₃ reduced at 773 K, and (d) Al₂O₃ support.

Fig. S3(A) STEM image of Au NPs and **(B)** the corresponding line analysis plots for the red line that were monitored at Au L_{α} - and Nb K_{α} -edges.

Fig. S4 Nb K-edge EXAFS oscillations of Nb6-Au/Al₂O₃ (blue), an aquaeous solution of $K_8Nb_6O_{19}$ (black), and $K_8Nb_6O_{19} \cdot 14H_2O$ (yellow).

Fig. S5(A) XRD patterns of $K_8Nb_6O_{19}$ ·14H₂O and reference $K_8Nb_6O_{19}$ ·16H₂O (ICSD: 391371). **(B)** FT-IR spectra of $K_8Nb_6O_{19}$ ·14H₂O and the aquaeous solution of $K_8Nb_6O_{19}$. The absorption bands assinable to the streching vibration between Nb and terminal oxygen and that between Nb and bridged oxygen retained even in an aquaeous solution.

Fig. S6 Results for reusability test of Nb6-Au/Al₂O₃. Catalyst, 5 mg; substrate, 62.1 μ mol; methanol, 1 mL; H₂, 1 MPa; reacton remperature, 353 K; reaction time, 1 h; The samples were collected by centrifugation for reuse.

Fig. S7 XPS spectra of (a) SiW11-Au/Al₂O₃ , (b) Ta6-Au/Al₂O₃, (c) Nb6-Au/Al₂O₃, and (d) Au/Al₂O₃.

Reference

- 1. L. M. D. R. d. S. Martins, S. A. C. Carabineiro, J. Wang, B. G. M. Rocha, F. J. Maldonado Hódar and A. J. L. d. O. Pombeiro, *ChemCatChem*, 2017, **9**, 1211–1221.
- 2. A. Tézé and G. Hervé, *Inorg. Synth*, 1990, **27**, 88-98.
- 3. T. Uruga, H. Tanida, Y. Yoneda, K. Takeshita, S. Emura, M. Takahashi, M. Harada, Y. Nishihata, Y. Kubozono and T. Tanaka, *J. Synchrotron Radiat.*, 1999, **6**, 143–145.
- 4. H. Asakura, S. Yamazoe, T. Misumi, A. Fujita, T. Tsukuda and T. Tanaka, *Radiat. Phys. Chem.*, 2020, **175**, 108270–108273.