Supporting Information for

Terminal-fluoride-coordinated air-stable chiral dysprosium single-

 molecule magnetsJinjiang Wu, ${ }^{\text {a,c }}$ Guo-Lu Wang, ${ }^{\text {b }}$ Zhenhua Zhu, ${ }^{\text {a,d }}$ Chen Zhao, ${ }^{\text {a,c }}$ Xiao-Lei Li, ${ }^{,}$Yi-Quan Zhang*b and Jinkui Tang*a,c
${ }^{a}$ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
${ }^{b}$ Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
${ }^{\text {c School of Applied Chemistry and Engineering, University of Science and Technology of China, }}$ Hefei 230026, P. R. China
${ }^{d}$ University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Synthesis and characterization

General procedure

All coordination reaction manipulations describe below were performed under aerobic conditions. ($1 R, 2 R$)-1,2-di-o-tolylethane-1,2-diamine and ($1 S, 2 S$)-1,2-di-o-tolylethane-1,2-diamine were synthesized according to the published procedure. ${ }^{1}$ Other chemicals were purchased from commercial sources and used as received without any further purification.

Measurements

FT-IR spectra were recorded on a Nicolet 6700 Flex FTIR spectrometer equipped with a smart iTR attenuated total reflectance (ATR) sampling accessory in the range from $4000-540 \mathrm{~cm}^{-1}$. CD spectra data were collected on a Jasco J-820 spectropolarimeter at room temperature with scanning speed of $200 \mathrm{~nm} / \mathrm{min}$ and bandwidth of 5 nm . Thermogravimetric analyses (TGA) were completed using a Netzsch STA449F3 TG-DSC instrument in the range of $30-800{ }^{\circ} \mathrm{C}$ with a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$ under N_{2} atmosphere. X-ray photoelectron spectra (XPS) were taken using a Thermo ESCALAB 250 photoelectron spectrometer. Single crystal X-ray diffraction measurements were performed on a Bruker Apex II CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda=0.71073 \AA$) at 180 K . The structures were solved by direct methods using SHELXT ${ }^{2}$ and refined by full-matrix least-squares methods with SHELXL ${ }^{3}$ on F^{2} with anisotropic thermal parameters for all non-hydrogen atoms in the Olex2 package. ${ }^{4}$ The hydrogen atoms were introduced in calculated positions and refined with a fixed geometry with respected to their carrier atoms. Powder X-ray diffraction measurement were recorded on Bruker D8 advance X-ray diffractometer using Cu-K
radiation. All magnetic susceptibility measurements were carried on a Quantum Design MPMS-XL7 magnetometer equipped with a 7 T magnet. Direct-current (dc) magnetic susceptibility measurements were performed at the temperature range from 2 to 300 K with an external magnetic field of 1000 Oe. Alternative-current (ac) magnetic susceptibility data were collected in zero applied field with a 3.0 Oe ac oscillating field in the temperature range $2-30 \mathrm{~K}$. The experimental magnetic susceptibility data were corrected for the diamagnetism estimated from Pascal's constants and sample holder calibration.

Synthesis

Synthesis procedure for 1
(1S,2S)-1,2-di-o-tolylethane-1,2-diamine ($48.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and pyridine-2,6dicarbaldehyde ($27.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in methanol, followed by addition of $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(37.7 \mathrm{mg}, 0.1 \mathrm{mmol})$. The mixture was stirred and reflexed for 12 h . Then, methanol was evaporated under reduced pressure, yielding orange powders. The obtained orange powder and sodium tetraphenylboron ($34.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to a solution of $\mathrm{NaF}(0.6 \mathrm{mmol}, 25.2 \mathrm{mg})$ in 2 ml H O and 16 ml MeOH , which was stirred at room temperature for 3 h , resulting a turbid liquid. Then, the mixture was filtered and left unperturbed to allow the slow evaporation of the solvent. The light-yellow crystals suitable for X-ray diffraction were obtained after several days. (28 $\mathrm{mg}, 22 \%$, based on Dy) FTIR v/cm ${ }^{-1}$ (ART): 528.00(m), 584.91(m), 613.08(m), 702.43(s), 729.78(s), 757.32(m), 805.66(s), 848.42(w), 970.46(w), 1009.92(s), 1032.44(m), 1058.94(w), 1098.69(w), 1162.75 (s), $1270.05(\mathrm{~m}), \quad 1380.73(\mathrm{w}), \quad 1426.52(\mathrm{~m})$, 1461.33(s), 1478.50(m), 1591.33(s), 1650.49(m), 3052.35(w).

Synthesis procedure for 2

Compound $\mathbf{2}$ was synthesized in a similar fashion to $\mathbf{1}$ except that ($1 \mathrm{R}, 2 \mathrm{R}$)-1,2-di-o-tolylethane-1,2-diamine was used instead of ($1 \mathrm{~S}, 2 \mathrm{~S}$)-1,2-di-o-tolylethane-1,2-diamine. ($30 \mathrm{mg}, 23 \%$, based on Dy) FTIR $\mathrm{v} / \mathrm{cm}^{-1}$ (ART): $529.81(\mathrm{~m}), 585.65(\mathrm{~m}), 614.20(\mathrm{~m})$, 625.72(w) 702.36(s), 729.68(s), 757.82(s), 804.82(s), 850.14(m), 961.86(m), 1010.26(s), $\quad 1033.17(\mathrm{~m}), \quad 1062.13(\mathrm{w}), \quad 1099.08(\mathrm{w}), \quad 1162.59$ (s), $\quad 1271.47(\mathrm{~m})$, 1380.77(w), 1426.64(m), 1461.62(s), 1478.56(m), 1592.19(s), 1650.76(m), 3052.87(w).

Table S1 Crystallographic data for complexes 1 and 2.

Compound	1	2
Formula	$\mathrm{C}_{71} \mathrm{H}_{72} \mathrm{BDyF}_{2} \mathrm{~N}_{6} \mathrm{O}_{4}$	$\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{BDyF}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}$
Mr	1284.65	1280.66
Temperature/K	180.0	180.0
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1}$	$P 2_{1}$
$a / \AA ̊$	16.7090(5)	16.7039(4)
b/Å	23.6685(7)	23.7837(7)
$c / A ̊$	20.7456(6)	20.8456(6)
[1/ ${ }^{\circ}$	90	90
[$/{ }^{\circ}$	96.2300(10)	96.1420(10)
[$/{ }^{\circ}$	90	90
Volume/Å ${ }^{3}$	8156.0(4)	8237.6(4)
Z	4	4
$\rho \mathrm{calc} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.046	1.033
$F(000)$	2644.0	2636.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.14 \times 0.12$	$0.2 \times 0.15 \times 0.13$
Reflections collected	83334	84217
$R_{\text {int }}$	0.0542	0.0384
GOF on F^{2}	1.014	1.036
$* R_{1}, w R_{2}[I>=2 \sigma(I)]$	0.0456, 0.1131	0.0371, 0.0921
${ }^{*} R_{1}, w R_{2}$ [all data]	0.0536, 0.1179	0.0411, 0.0945
CCDC	2142837	2142838

[^0]Table S2 The CShM values calculated by SHAPE 2.1 for 1.

Central atom	Coordination Geometry	Dy1	Dy2
Dy	Johnson triangular cupola J3 ($C_{3 v}$)	14.576	14.233
	Capped cube J8 ($\mathrm{C}_{4 \mathrm{v}}$)	6.591	6.995
	Spherical-relaxed capped cube ($C_{4 v}$)	5.886	6.099
	Capped square antiprism $\mathrm{J} 10\left(C_{4 v}\right)$	7.036	7.244
	Spherical capped square antiprism ($C_{4 v}$)	6.067	6.259
	Tricapped trigonal prism $\mathrm{J} 51\left(D_{3 \mathrm{~h}}\right)$	6.107	6.520
	Spherical tricapped trigonal prism ($D_{3 h}$)	7.044	7.418
	Tridiminished icosahedron J63 ($C_{3 v}$)	11.345	11.533
	Hula-hoop ($\mathrm{D}_{2 \mathrm{v}}$)	3.394	3.386
	Muffin (C_{s})	4.731	4.851

Table S3 The CShM values calculated by SHAPE 2.1 for 2.

Central atom	Coordination Geometry	Dy1	Dy2
Dy	Johnson triangular cupola J3 ($C_{3 v}$)	14.424	14.253
	Capped cube J8 ($\mathrm{C}_{4 \mathrm{v}}$)	6.601	6.746
	Spherical-relaxed capped cube ($C_{4 v}$)	5.855	5.818
	Capped square antiprism $\mathrm{J} 10\left(C_{4 v}\right)$	7.090	7.362
	Spherical capped square antiprism ($C_{4 v}$)	6.091	6.402
	Tricapped trigonal prism $\mathrm{J} 51\left(D_{3 \mathrm{~h}}\right)$	6.115	6.612
	Spherical tricapped trigonal prism ($D_{3 \mathrm{~h}}$)	7.002	7.507
	Tridiminished icosahedron J63 ($C_{3 v}$)	11.057	11.707
	Hula-hoop ($\mathrm{L}_{2 \mathrm{v}}$)	3.292	3.216
	Muffin (C_{s})	4.786	4.939

Table S4 Selected bond distances (Å) for 1.

Dy1	Dy2
Dy1-F1 2.144(9)	Dy2-F3 2.157(10)
Dy1-F2 2.218(9)	Dy2-F4 2.159(8)
Dy1-O1 2.339(11)	Dy2-O2 2.397(9)
Dy1-N1 2.602(10)	Dy2-N7 2.597(11)
Dy1-N2 2.649(12)	Dy2-N8 2.726(11)
Dy1-N3 2.600(11)	Dy2-N9 2.630(11)
Dy1-N4 2.636(11)	Dy2-N10 2.609(11)
Dy1-N5 2.727(11)	Dy2-N11 2.674(12)
Dy1-N6 2.654(11)	Dy2-N12 2.631(12)
Dy-Naverage 2.645	Dy-Naverage 2.646

Table S5 Selected bond distances (\AA) for $\mathbf{2}$.

Dy1	Dy2
Dy1-F1 2.161(7)	Dy2-F3 2.157(8)
Dy1-F2 2.228(8)	Dy2-F4 2.157(7)
Dy1-O1 2.325(8)	Dy2-O2 2.406(11)
Dy1-N1 2.608(10)	Dy2-N7 2.612(9)
Dy1-N2 2.650(10)	Dy2-N8 2.693(10)
Dy1-N3 2.616(9)	Dy2-N9 2.637(10)
Dy1-N4 2.632(10)	Dy2-N10 2.620(9)
Dy1-N5 2.726(9)	Dy2-N11 2.677(10)
Dy1-N6 2.649(9)	Dy2-N12 2.655(10)
Dy-Naverage 2.647	Dy-Naverage 2.649

Table S6 Selected bond angles $\left({ }^{\circ}\right)$ for 1.

Dy1	Dy2
F1-Dy1-F2 145.6(4)	F3-Dy2-F4 146.4(4)
F1-Dy1-O1 143.8(4)	F3-Dy2-O2 144.1(4)
F2-Dy1-O1 70.4(3)	F4-Dy2-O2 69.5(4)
F1-Dy1-N1 89.3(3)	F3-Dy2-N7 98.5(4)
F1-Dy1-N2 90.2(4)	F3-Dy2-N8 75.3(4)
F1-Dy1-N3 79.8(4)	F3-Dy2-N9 76.9(4)
F1-Dy1-N4 99.4(4)	F3-Dy2-N10 91.3(4)
F1-Dy1-N5 75.7(4)	F3-Dy2-N12 81.3(4)
F1-Dy1-N6 78.2(4)	F4-Dy2-N7 79.2(4)
F2-Dy1-N1 83.8(4)	F4-Dy2-N8 74.4(4)
F2-Dy1-N2 70.6(4)	F4-Dy2-N10 92.7(4)
F2-Dy1-N3 75.4(4)	F4-Dy2-N11 134.4(4)
F2-Dy1-N4 89.3(4)	F4-Dy2-N12 123.8(4)
F2-Dy1-N5 135.5(4)	N7-Dy2-N8 61.0(4)
F2-Dy1-N6 126.3(4)	N7-Dy2-N9 120.4(4)
N1-Dy1-N2 61.7(3)	N7-Dy2-N10 170.3(4)
N1-Dy1-N3 123.0(3)	N7-Dy2-N11 121.2(4)
N1-Dy1-N4 170.2(4)	N7-Dy2-N12 60.8(3)
N1-Dy1-N5 121.4(3)	N8-Dy2-N9 60.5(4)
N1-Dy1-N6 61.4(3)	N8-Dy2-N10 122.2(4)
N2-Dy1-N3 61.3(3)	N8-Dy2-N11 150.8(4)
N2-Dy1-N4 122.4(4)	N8-Dy2-N12 111.9(4)
N2-Dy1-N5 152.2(4)	N9-Dy2-N10 61.7(4)
N2-Dy1-N6 116.7(4)	N9-Dy2-N11 114.9(4)
N3-Dy1-N4 61.5(3)	N10-Dy2-N12 158.1(4)
N3-Dy1-N5 110.1(4)	N11-Dy2-N11 61.3(4)
N3-Dy1-N6 157.7(4)	
N4-Dy1-N5 59.9(4)	N12 60.4
N4-Dy1-N6 118.5(4)	N5-Dy1-N6 60.1(3)

Table S7 Selected bond angles $\left({ }^{\circ}\right)$ for 2.

Dy1	Dy2
F1-Dy1-F2 145.1(3)	F3-Dy2-F4 145.4(4)
F1-Dy1-O1 143.9(3)	F3-Dy2-O2 143.6(3)
F2-Dy1-O1 76.3(3)	F4-Dy2-O2 70.9(3)
F1-Dy1-N1 89.3(3)	F3-Dy2-N7 98.7(3)
F1-Dy1-N2 76.8(3)	F3-Dy2-N8 72.9(3)
F1-Dy1-N3 79.8(3)	F3-Dy2-N9 78.7(3)
F1-Dy1-N4 99.6(3)	F3-Dy2-N10 91.3(3)
F1-Dy1-N5 76.0(3)	F3-Dy2-N11 75.3(3)
F1-Dy1-N6 77.6(3)	F3-Dy2-N12 81.9(3)
F2-Dy1-N1 83.1(3)	F4-Dy2-N7 78.9(3)
F2-Dy1-N2 69.5(3)	F4-Dy2-N8 72.9(3)
F2-Dy1-N3 76.1(3)	F4-Dy2-N9 73.2(3)
F2-Dy1-N4 90.4(4)	F4-Dy2-N10 92.6(3)
F2-Dy1-N5 136.2(3)	F4-Dy2-N11 135.5(3)
F2-Dy1-N6 126.0(3)	F4-Dy2-N12 124.0(3)
N1-Dy1-N2 61.9(3)	N7-Dy2-N8 60.7(3)
N1-Dy1-N3 123.2(3)	N7-Dy2-N9 119.9(3)
N1-Dy1-N4 170.9(3)	N7-Dy2-N10 170.0(3)
N1-Dy1-N5 121.4(3)	N7-Dy2-N11 121.6(3)
N1-Dy1-N6 61.1(3)	N7-Dy2-N12 61.1(3)
N2-Dy1-N3 61.3(3)	N8-Dy2-N9 60.6(3)
N2-Dy1-N4 121.7(3)	N8-Dy2-N10 122.1(3)
N2-Dy1-N5 152.5(3)	N8-Dy2-N11 151.1(3)
N2-Dy1-N6 116.9(3)	N8-Dy2-N12 112.5(3)
N3-Dy1-N4 60.8(3)	N9-Dy2-N10 61.5(3)
N3-Dy1-N5 109.7(3)	N9-Dy2-N11 115.6(3)
N3-Dy1-N6 157.0(3)	N9-Dy2-N12 160.5(2)
N4-Dy1-N5 60.0(3)	N10-Dy2-N11 61.5(3)
N4-Dy1-N6 118.9(3)	N10-Dy2-N12 121.3(3)
N5-Dy1-N6 60.3(3)	N11-Dy2-N12 60.5(3)

Fig. S1 The packing diagram for $\mathbf{1}$ gives the shortest intermolecular Dy \cdots Dy distance of 12.521 Å.

Fig. S2 The packing diagram for $\mathbf{2}$ gives the shortest intermolecular Dy \cdots Dy distance of 12.558 A․

Fig. S3 Thermogravimetric analysis of $\mathbf{1}$ (red line) and $\mathbf{2}$ (blue line).

Fig. S4 Powder XRD analyses of $\mathbf{1}$ (red line) and $\mathbf{2}$ (blue line). The black line is simulated data from single crystal data.

Fig. S5 X-ray photoelectron spectrum of F1s for 1.

Fig. S6 X-ray photoelectron spectrum of F1s for $\mathbf{2}$.

Fig. S7 Calculated (red solid line) and experimental (blue circle) data of magnetic susceptibilities of $\mathbf{1}$. The intermolecular interaction parameters $z J^{\prime}$ of $\mathbf{1}$ was fitted to $0.05 \mathrm{~cm}^{-1}$.

Fig. S8 Calculated (red solid line) and experimental (blue circle) data of magnetic susceptibilities of $\mathbf{2}$. The intermolecular interaction parameters $z J^{\prime}$ of $\mathbf{2}$ was fitted to $0.04 \mathrm{~cm}^{-1}$.

Fig. $\mathbf{S 9}$ Field dependence of the magnetization at $1.9,3$ and 5 K for $\mathbf{1}$.

Fig. S10 Field dependence of the magnetization at 1.9, 3 and 5 K for $\mathbf{2}$.

Fig. S11 $M(H)$ hysteresis loops for $\mathbf{1}$ at 1.9 K using an average sweep rate of $42 \mathrm{Oe} / \mathrm{s}$.

Fig. S12 $M(H)$ hysteresis loops for $\mathbf{2}$ at 1.9 K using an average sweep rate of $31 \mathrm{Oe} / \mathrm{s}$.

Fig. S13 Frequency dependence of the in-phase ac susceptibility component under a zero applied dc field for 1.

Fig. S14 Temperature dependence of the in-phase (left) and out-of-phase (right) ac susceptibility component under a zero applied dc field for 1.

Fig. S15 Frequency dependence of the in-phase (left) and out-of-phase (right) ac susceptibility component under a zero applied dc field for 2.

Fig. S16 Temperature dependence of the in-phase (left) and out-of-phase (right) ac susceptibility component under a zero applied dc field for $\mathbf{2}$.

Fig. S17 Cole-Cole plots under zero-dc field for $\mathbf{1}$. The solid lines are best fits to the Debye's law.

Fig. S18 Cole-Cole plots under zero-dc field for $\mathbf{2}$. The solid lines are best fits to the Debye's law.

Fig. S19 Temperature dependence of the relaxation time in the form of natural logarithm for $\mathbf{2}$. The red line is given by $\ln \tau=-\ln \left[C T^{n}+\tau_{0}{ }^{-1} \exp \left(-U_{\text {eff }} / k_{B} T\right)+\tau_{\text {QTM }}{ }^{-1}\right]$.

Fig. S20 Molecular structures of complexes SSSS-Dy-2-Me (1) (left) and RRRR-Dy-2-Me (2) (right), emphasizing the methyl of steric hindrance.

Computational details

Complexes 1 and 2 are both mononuclear, but each of them includes two types of molecular structures. Complete-active-space self-consistent field (CASSCF) calculations on two types of molecular structures indicated as 1_Dy1, 1_Dy2, 2_Dy1 and 2_Dy2 for complexes 1 and 2 (see Fig. S18) on the basis of single-crystal X-ray determined geometry have been carried out with OpenMolcas ${ }^{5}$ program package.

The basis sets for all atoms are atomic natural orbitals from the ANO-RCC library: ANO-RCC-VTZP for Dy ${ }^{\text {III }}$; VTZ for close N, O and F; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. ${ }^{6,7}$ Active electrons in 7 active orbitals include all f electrons (CAS(9 in 7 for $D^{\prime \prime \prime}$)) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets) for each complex. SINGLE_ANISO ${ }^{8-10}$ program was used to obtain the energy levels, \boldsymbol{g} tensors, magnetic axes, et al. based on the above CASSCF/RASSI-SO calculations. The intermolecular exchange interaction for 1 and $\mathbf{2}$ was modeled in the POLY-ANISO module of OpenMolcas. ${ }^{11-13}$

1_Dy1

2_Dy1

1_Dy2

2_Dy2

Fig. S21 Calculated two types of molecular structures for each of complexes 1 and 2; H atoms are omitted for clarify.

Table S8 Weight of calculated crystal-field parameters $B(k, q)$ of complexes $\mathbf{1}$ and $\mathbf{2}$.

Table S9 Calculated energy levels $\left(\mathrm{cm}^{-1}\right), \boldsymbol{g}\left(g_{x}, g_{y}, g_{z}\right)$ tensors and predominant m_{J} values of the lowest eight Kramers doublets (KDs) for complexes $\mathbf{1}$ and $\mathbf{2}$ using CASSCF/RASSI-SO with OpenMolcas.

KDs	1_Dy1			1_Dy2		
	E / cm^{-1}	g	$m_{\text {J }}$	E / cm^{-1}	g	$m_{\text {J }}$
1	0.0	$\begin{gathered} \hline 0.006 \\ 0.007 \\ 19.815 \\ \hline \end{gathered}$	$\pm 15 / 2$	0.0	0.004 0.004 19.846	$\pm 15 / 2$
2	328.6	$\begin{gathered} \hline 0.066 \\ 0.088 \\ 16.911 \end{gathered}$	$\pm 13 / 2$	369.3	0.073 0.087 16.966	$\pm 13 / 2$
3	597.7	0.617 0.738 13.695	$\pm 11 / 2$	676.5	$\begin{gathered} 0.170 \\ 0.196 \\ 13.961 \\ \hline \end{gathered}$	$\pm 11 / 2$
4	771.9	$\begin{aligned} & 5.659 \\ & 6.236 \\ & 8.284 \\ & \hline \end{aligned}$	$\pm 9 / 2$	883.4	4.160 4.564 9.549	$\pm 9 / 2$
5	896.8	$\begin{aligned} & 1.979 \\ & 3.853 \\ & 9.411 \\ & \hline \end{aligned}$	$\pm 7 / 2$	1000.1	3.138 4.337 12.400	$\pm 7 / 2$
6	918.4	1.688 5.190 13.853	$\pm 1 / 2$	1057.4	$\begin{gathered} \hline 0.892 \\ 1.912 \\ 14.053 \\ \hline \end{gathered}$	$\pm 1 / 2$
7	996.6	$\begin{gathered} \hline 0.034 \\ 0.096 \\ 17.830 \\ \hline \end{gathered}$	$\pm 3 / 2$	1082.6	$\begin{gathered} \hline 0.146 \\ 1.063 \\ 11.838 \\ \hline \end{gathered}$	$\pm 3 / 2$
8	1101.6	$\begin{gathered} 0.044 \\ 0.145 \\ 18.710 \end{gathered}$	$\pm 5 / 2$	1152.5	$\begin{gathered} 0.030 \\ 0.904 \\ 17.151 \end{gathered}$	$\pm 5 / 2$
KDs	2_Dy1			2_Dy2		
	E / cm^{-1}	g	m_{J}	E / cm^{-1}	g	$m_{\text {J }}$
1	0.0	0.005 0.006 19.816	$\pm 15 / 2$	0.0	0.005 0.006 19.829	$\pm 15 / 2$
2	346.9	$\begin{gathered} 0.078 \\ 0.103 \\ 16.892 \end{gathered}$	$\pm 13 / 2$	334.2	$\begin{gathered} \hline 0.077 \\ 0.092 \\ 16.947 \end{gathered}$	$\pm 13 / 2$
3	622.7	$\begin{gathered} 0.518 \\ 0.634 \\ 13.754 \end{gathered}$	$\pm 11 / 2$	617.4	$\begin{gathered} 0.241 \\ 0.280 \\ 13.947 \end{gathered}$	$\pm 11 / 2$
4	807.4	$\begin{aligned} & 5.286 \\ & 5.697 \\ & 8.803 \\ & \hline \end{aligned}$	$\pm 9 / 2$	814.1	$\begin{aligned} & 4.231 \\ & 4.373 \\ & 9.662 \\ & \hline \end{aligned}$	$\pm 9 / 2$
5	943.7	$\begin{gathered} 1.529 \\ 4.037 \\ 10.113 \\ \hline \end{gathered}$	$\pm 7 / 2$	932.4	$\begin{gathered} \hline 3.359 \\ 4.115 \\ 12.041 \\ \hline \end{gathered}$	$\pm 7 / 2$
6	996.5	$\begin{gathered} \hline 1.375 \\ 2.331 \\ 15.196 \\ \hline \end{gathered}$	$\pm 1 / 2$	994.9	$\begin{gathered} 0.741 \\ 2.880 \\ 13.448 \\ \hline \end{gathered}$	$\pm 1 / 2$
7	1052.3	$\begin{gathered} 0.015 \\ 0.084 \\ 17.158 \end{gathered}$	$\pm 3 / 2$	1021.1	$\begin{gathered} 1.079 \\ 4.040 \\ 11.960 \\ \hline \end{gathered}$	$\pm 3 / 2$

8	1137.8	0.008			0.138	
		0.112	$\pm 5 / 2$	1078.4	0.190	$\pm 5 / 2$
	18.385			16.869		

Table S10 Wave functions with definite projection of the total moment $\| m_{J}>$ for the lowest eight KDs of complexes 1 and $\mathbf{2}$ using CASSCF/RASSI-SO with OpenMolcas.

	E / cm^{-1}	wave functions
1_Dy1	0.0	98.9\%\| $\pm 15 / 2>$
	328.6	95.3\%\| $\pm 13 / 2>$
	597.7	84.6\%\| $\pm 11 / 2>+7.0 \% \mid \pm 7 / 2>$
	771.9	$59.8 \%\| \pm 9 / 2>+15.2 \%\| \pm 5 / 2>+9.0 \%\| \pm 3 / 2>+8.8 \%\| \pm 7 / 2>$
	896.8	$46.2 \%\| \pm 7 / 2>+17.6 \%\| \pm 3 / 2>+15.5 \%\| \pm 9 / 2>+9.0 \%\| \pm 5 / 2>+8.3 \% \mid \pm 1 / 2>$
	918.4	$38.8 \%\| \pm 1 / 2>+28.9 \%\| \pm 5 / 2>+16.8 \%\| \pm 3 / 2>+7.7 \%\| \pm 7 / 2>$
	996.6	$35.9 \%\| \pm 3 / 2>+35.8 \%\| \pm 1 / 2>+17.0 \%\| \pm 5 / 2>+6.3 \%\| \pm 7 / 2>$
	1101.6	$\begin{gathered} 29.5 \%\| \pm 5 / 2>+23.9 \%\| \pm 7 / 2>+20.4 \%\| \pm 3 / 2>+14.0 \%\| \pm 1 / 2>+9.7 \% \mid \pm 9 / 2 \\ > \end{gathered}$
1_Dy2	0.0	99.4\%\| $\pm 15 / 2>$
	369.3	97.3\%\| $\pm 13 / 2>$
	676.5	90.2\%\| $\pm 11 / 2>$
	883.4	69.8\%\| $\pm 9 / 2>+9.1 \%\| \pm 5 / 2>+8.5 \%\| \pm 3 / 2>+7.4 \% \mid \pm 7 / 2>$
	1000.1	$52.0 \%\| \pm 7 / 2>+27.0 \%\| \pm 5 / 2>+13.1 \%\| \pm 9 / 2>+4.7 \%\| \pm 3 / 2>$
	1057.4	68.9\%\| $\pm 1 / 2>+16.0 \%\| \pm 3 / 2>+10.2 \%\| \pm 5 / 2>$
	1082.6	$54.7 \%\| \pm 3 / 2>+21.6 \%\| \pm 1 / 2>+12.9 \%\| \pm 5 / 2>+5.1 \%\| \pm 7 / 2>$
	1152.5	$40.7 \%\| \pm 5 / 2>+29.1 \%\| \pm 7 / 2>+15.8 \%\| \pm 3 / 2>+7.0 \%\| \pm 9 / 2>$
2_Dy1	0.0	98.9\%\| $\pm 15 / 2>$
	346.9	95.0\%\| $\pm 13 / 2>$
	622.7	84.1\%\| $\pm 11 / 2>+7.8 \% \mid \pm 7 / 2>$
	807.4	60.8\%\| $\pm 9 / 2>+16.1 \%\| \pm 5 / 2>+7.7 \%\| \pm 3 / 2>+6.9 \% \mid \pm 7 / 2>$
	943.7	$48.9 \%\| \pm 7 / 2>+21.0 \%\| \pm 9 / 2>+14.3 \%\| \pm 3 / 2>+8.6 \%\| \pm 5 / 2>$
	996.5	$46.3 \%\| \pm 1 / 2>+27.1 \%\| \pm 5 / 2>+14.9 \%\| \pm 3 / 2>+9.7 \%\| \pm 7 / 2>$
	1052.3	$41.3 \%\| \pm 3 / 2>+30.2 \%\| \pm 1 / 2>+19.8 \%\| \pm 5 / 2>+5.1 \%\| \pm 7 / 2>$
	1137.8	$\begin{gathered} 28.0 \%\| \pm 5 / 2>+21.6 \%\| \pm 7 / 2>+21.5 \%\| \pm 3 / 2>+18.0 \%\| \pm 1 / 2>+8.6 \% \mid \pm 9 / 2 \\ > \end{gathered}$
2_Dy2	0.0	99.2\%\| $\pm 15 / 2>$
	334.2	96.7\%\| $\pm 13 / 2>$
	617.4	89.4\%\| $\pm 11 / 2>+4.4 \% \mid \pm 7 / 2>$
	814.1	71.2\%\| $\pm 9 / 2>+9.3 \%\| \pm 5 / 2>+7.5 \%\| \pm 3 / 2>+6.6 \% \mid \pm 7 / 2$
	932.4	$56.1 \%\| \pm 7 / 2>+23.2 \%\| \pm 5 / 2>+12.9 \% \mid \pm 9 / 2>$
	994.9	49.5\%\| $\pm 1 / 2>+25.3 \%\| \pm 3 / 2>+19.0 \%\| \pm 5 / 2>$
	1021.1	$45.1 \%\| \pm 3 / 2>+38.3 \%\| \pm 1 / 2>+10.1 \% \mid \pm 5 / 2>$
	1078.4	$38.2 \%\| \pm 5 / 2>+26.2 \%\| \pm 7 / 2>+18.4 \%\| \pm 3 / 2>+8.2 \%\| \pm 1 / 2>$

Fig. S22 Calculated orientations of the local main magnetic axes on Dy ${ }^{\text {III }}$ ions of complex $\mathbf{2}$ in their ground KDs.

Fig. S23 Magnetization blocking barriers of complexes 1 and 2. The thick black lines represent the KDs of the individual molecular structures as a function of their magnetic moment along the magnetic axis. The green lines correspond to diagonal matrix element of the transversal magnetic moment; the blue lines represent Orbach relaxation processes. The path shown by the red arrows represents the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

1. M. Zhou, K. Li, D. Chen, R. Xu, G. Xu and W. Tang, J. Am. Chem. Soc., 2020, 142, 10337-10342.
2. G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
3. G. Sheldrick, Acta Crystallogr. Sect. C-Struct. Chem., 2015, 71, 3-8.
4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
5. I. Fdez. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer, M. Johansson, S. Keller, S. Knecht, G. Kovačević, E. Källman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, C. J. Stein, L. K. Sørensen, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, O. Weser, T. A. Wesołowski, P.-O. Widmark, S. Wouters, A. Zech, J. P. Zobel and R. Lindh, J. Chem. Theory Comput., 2019, 15, 5925-5964.
6. P. Å. Malmqvist, B. O. Roos and B. Schimmelpfennig, Chem. Phys. Lett., 2002, 357, 230-240.
7. B. A. Heß, C. M. Marian, U. Wahlgren and O. Gropen, Chem. Phys. Lett., 1996, 251, 365-371.
8. L. F. Chibotaru, L. Ungur and A. Soncini, Angew. Chem. Int. Ed., 2008, 47, 41264129.
9. L. Ungur, W. Van den Heuvel and L. F. Chibotaru, New J. Chem., 2009, 33, 12241230.
10. L. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet and D. Luneau, J. Am. Chem. Soc., 2008, 130, 12445-12455.
11. M. E. Lines, J. Chem. Phys., 1971, 55, 2977-2984.
12. L. F. Chibotaru, L. Ungur and A. Soncini, Angew. Chem. Int. Ed., 2008, 47, 41264129.
13. L. Ungur and L. F. Chibotaru, Computational Modelling of the Magnetic Properties of Lanthanide Compounds. in Lanthanides and Actinides in Molecular Magnetism, Wiley-VCH Verlag GmbH \& Co. KGaA, 2015.

[^0]: ${ }^{*} R_{1}=\mathrm{S}| | \mathrm{Fo}|-|\mathrm{Fc}|| / \mathrm{S}|\mathrm{Fo}|$ for $\mathrm{Fo}>2 \mathrm{~s}(F \mathrm{Fo}) ; w R_{2}=\left(\mathrm{Sw}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2} / \mathrm{S}\left(w \mathrm{Fc}^{2}\right)^{2}\right)^{1 / 2}$ all reflections, $w=1 /\left[\mathrm{s}^{2}\left(\mathrm{Fo}^{2}\right)+(0.1557 \mathrm{P})^{2}\right]$ where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$

