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Experimental 

Preparation of NiCo-LDH samples. The NiCo-LDH samples were prepared by the coprecipitation 

reaction, as we reported previously.[S1-S3] Typically, Ni(NO3)2·6H2O (15 mmol, 4.362 g) and 

Co(NO3)2·3H2O (5 mmol, 1.208 g) were dissolved into 100 mL distilled water, and then 10 mL of a 

degassed aqueous solution containing hexamethylenetetramine (HMT, 20 mmol, 2.804 g) and 

H2C2O4·2H2O (0.10 g) was added by a syringe under stirring. This mixture was refluxed at 100 ℃ 

for 6 h under an oxygen atmosphere to avoid CO2 interference. The product was obtained by 

filtrating, repeated washing, and drying in a vacuum oven at 80 ℃, which has the charge-balancing 

NO3
− anions, denoted as NiCo-LDH/NO3

−. For increasing the interlayer distance, the replacement 

of NO3
− with larger anions (i.e., 1,4-benzenedicarboxylic anions) were performed.[S1] Typically, 

NiCo-LDH/NO3
− (100 mg) was added into 100 mL degassed solution containing 1,4-

benzenedicarboxylic sodium (C6H4(COO)2Na2) (10 mmol, 2.101 g) and refluxed at 90 ℃ for 24 h 

under oxygen atmosphere. Then, the final sample was obtained by washing and drying, denoted 

as NiCo-LDH/CBD.  

Encapsulation of NiCo-LDH/CBD with sodium polyacrylate (PA). The NiCo-LDH/NO3
− (100 mg), 

1,4-benzenedicarboxylic sodium (C6H4(COO)2Na2) (10 mmol, 2.101 g), and sodium acrylate (5 

mmol, 0.47 g) were put into 100 mL degassed distilled water and refluxed at 90 oC for 24 h under 

oxygen atmosphere. Then, 50 mg of the obtained powder sample was added into 15 mL 

isopropanol containing 1 mL aqueous solution of ammonium peroxydisulfate (0.028 g mL−1) and 

stirred for 1 h at room temperature. The product was obtained by ethanol washing and drying in a 

vacuum oven at 80 ℃ for 12 h, denoted as NiCo-LDH/CBD-PA. 

Materials characterization. The morphology of the samples was characterized by scanning 

electron microscope (SEM, Hitachi S-4800) and transmission electron microscope (TEM, FEI Tecnai 

F20). The interlayer distance of obtained samples was measured by X-ray diffraction (XRD, Bruker 

D8 Advance A25 Co Kα radiation of 1.7902 Å). Fourier transform infrared spectroscopy (FT-IR, 

Bruker VERTEX70) was used to examine the anion species in LDHs during the cycling. 

Electrochemical measurements. The electrochemical performances were evaluated on a VMP3 

workstation (Biologic) using a three-electrode cell in 6 M KOH aqueous solution (with or without 

0.5 M K2CO3), with platinum foil counter electrode and Ag/AgCl reference electrode. The working 

electrode was prepared by coating the slurry of LDH, acetylene black, and polyvinylidene fluoride 

(with a weight ratio of 8:1.5:0.5) on Ni foam. The specific capacitances and cycling stability were 

tested by the galvanostatic charge/discharge (GCD) method. The cyclic voltammetry (CV) curves 

were tested at a scan rate of 20 mV s−1 during the long-term charge/discharge tests. The 

electrochemical impedance spectra (EIS) were tested at a frequency range of 100KHz~10mHz with 

an applied potential of 0.25 V (vs. Ag/AgCl). The weight retentions of samples were measured on 

a thermal gravimetric analyzer (Pyris 1, Perkin Elmer) under N2 with a heating rate of 5 oC min−1. 

The specific capacitances (CW, F g−1) were calculated by the following equation: CW = (I  Δt) / (m  

ΔV), where I is the discharge current (A), Δt is the discharge time (s), ΔV is the voltage range (V), 

and m is the mass of LDHs samples (g). The capacitance contributed by the bare Ni foam was 

subtracted.  
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Fig. S1. The cycling performance of various LDHs electrodes.  

 

The data from the literatures are listed below. 

Ref. 1_CoIICoIII-LDH (cycling at 2 A g-1 for 300 

cycles) [S4] 

Ref. 2_NiCo-LDH/ZnO (cycling at 2 A g-1 for 

3000 cycles) [S5] 

Ref. 3_CoFe-LDH (cycling at 4 A g-1 for 2000 

cycles) [S6] 

Ref. 4_NiFe-LDH (cycling at 5 A g-1 for 1000 

cycles) [S7] 

Ref. 5_NiCoAl-LDH (cycling at 5 A g-1 for 2000 

cycles) [S8] 

Ref. 6_CoIICoIII-LDH (cycling at 5 A g-1 for 2000 

cycles) [S9] 

Ref. 7_NiCoAl-LDH (cycling at 6 A g-1 for 3000 

cycles) [S10] 

Ref. 8_CoAl-LDH/Pt (cycling at 9 A g-1 for 6000 

cycles) [S11] 

Note: For better comparison, the literature data came from the pristine powder-like 

LDHs without any improvement. The capacitance retention was calculated according 

to R = (Cfinal/Cmax)  100%, where Cfinal is the capacitance of the final cycle, Cmax is the 

maximum capacitance during cycling. 
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Fig. S2. SEM images of NiCo-LDH samples. (a, b) NiCo-LDH/CBD. (c, d) NiCo-LDH/NO3
−. 
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Fig. S3. TEM images of NiCo-LDHs samples. (a, b) NiCo-LDH/CBD. (c, d) NiCo-LDH/NO3
−.  
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Fig. S4. GCD curves and rate performances of NiCo-LDH/NO3
− and NiCo-LDH/CBD in 6 M KOH. (a1-

a3) GCD curves of NiCo-LDH/NO3
−. (b1-b3) GCD curves of NiCo-LDH/CBD. (c) The rate 

performances.  
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Fig. S5. GCD curves and rate performances of NiCo-LDH/CBD in 6 M KOH with different amounts 

of K2CO3. (a1-a3) GCD curves in 6 M KOH. (b1-b3) GCD curves in 6 M KOH with 0.5 M K2CO3. (c1-c3) 

GCD curves in 6 M KOH with 2.0 M K2CO3. (d1-d3) GCD curves in 6 M KOH with saturated K2CO3. (e) 

rate performances. 
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Fig. S6. GCD curves of NiCo-LDH/CBD at different cycles at 10 A g−1. (a) in 6 M KOH. (b) in 6 M KOH 

with 0.5 M K2CO3. 

 

 

Fig. S7. The normalized FTIR transmittance spectra of NiCo-LDH/CBD during cycling in 6 M KOH 

with or without 0.5 M K2CO3 for different cycles. (a) In 6 M KOH without K2CO3. (b) In 6 M KOH with 

0.5 M K2CO3. 

 

After cycling in these two electrolytes, the intensities of the characteristic peaks at 993 cm−1 and 

1636 cm−1 (corresponding to the C−O stretching vibration and the asymmetric C=O stretch for CO3
2−, 

respectively, [S2] marked by the red dashed line) both increase. Meanwhile, the sharp peaks at 1370 

cm−1 (corresponding to the symmetric COO− stretch) and 1570 cm−1 (corresponding to the 

asymmetric COO− stretch) for CBD anions both gradually weaken (marked by the blue dashed 

line).[S1] It is indicated that the CBD anions in the NiCo-LDH/CBD are exchanged by the CO3
2− anions. 
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Fig. S8. The normalized FTIR absorbance spectra of NiCo-LDH/CBD after cycling in 6 M KOH with or 

without 0.5 M K2CO3 for different cycles. (a) In 6 M KOH without K2CO3. (b) In 6 M KOH with 0.5 M 

K2CO3. 

 

The corresponding FTIR absorbance spectra were also measured. After cycling in these two 

electrolytes, the intensities of the characteristic peaks at 993 cm−1 and 1636 cm−1 (corresponding 

to the C−O stretching vibration and the asymmetric C=O stretch for CO3
2−, respectively, [S2] marked 

by the red dashed line) both increase with increasing the cycle number, which reveals the 

intercalation of CO3
2- anions into the interlayer space of NiCo-LDH to replace the CBD anions partly 

during cycling. 
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Fig. S9. Illustration of the PA encapsulation strategy for improving cycling stability of NiCo-LDH. 

 

Route I: By using large-size CBD anions to replace the NO3
− anions in NiCo-LDH/NO3

−, the NiCo-

LDH/CBD with a large interlayer distance was prepared. When cycling in the alkaline electrolyte 

with unavoidable CO3
2− impurities, the CBD anions of NiCo-LDH/CBD would be replaced by CO3

2− 

gradually, resulting in a narrow interlayer distance and the decreased capacitance. 

Route II: By adding acrylate anions and CBD anions to replace the NO3
− anions in NiCo-LDH/NO3

−, 

the LDH sample with the intercalated CBD and acrylate anions was prepared. By in situ 

polymerizing the acrylate anions in the interlayers, the PA-encapsulated LDH, i.e., NiCo-LDH/CBD-

PA, was obtained. The PA polymer can partly inhibit the exchange of CBD by CO3
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cycling stability. 
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Fig. S10. The XRD patterns of NiCo-LDH/CBD and NiCo-LDH/CBD-PA in different 2-Theta ranges. (a) 

5~70o. (b) 5~25o.  
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Fig. S11. The rate performances of the NiCo-LDH/CBD and NiCo-LDH/CBD-PA. 

 

  The specific capacitances were calculated based on the mass of NiCo-LDH/CBD. The mass ratio 
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PA sample before and after the alkaline solution treatment (see Fig. S15).   
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Fig. S12. The GCD curves of NiCo-LDH/CBD-PA at 10 A g−1 at different cycles in 6 M KOH solution. 

 

 

 

 

 

 

 

Fig. S13. The average interlayer distance of NiCo-LDH/CBD-PA after cycling in 6 M KOH for different 

cycles. 
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nm is larger than that (0.76 nm) for NiCo-LDH/CBD without the PA encapsulation. 
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Fig. S14. The CV curves and EIS spectra of NiCo-LDH/CBD-PA and NiCo-LDH/CBD samples during 

cycling tests in 6 M KOH solution. (a, b) CV curves. (c, d) EIS spectra. (e) The equivalent circuit 

diagram and the detailed values of Rs, Rct, Rw, and RESR for NiCo-LDH/CBD and NiCo-LDH/CBD-PA. 
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Rw for NiCo-LDH/CBD and NiCo-LDH/CBD-PA sample are obtained by simulating the Nyquist plots 

with Z Fit-Bio-Logic method of the EC-Lab software (V11.01), and shown in Fig. S14e. 

 

The CV curves were recorded after 50 cycles of activation tests (i.e., before the cycling tests), 

and after 2500 and 5000 cycles of charge/discharge tests. With increasing the cycle number, the area 

of CV curves decreases gradually, indicating a gradual decay of the specific capacitance. 

Comparatively speaking, the area of CV curves for NiCo-LDH/CBD-PA decreases more slowly than 

the case for NiCo-LDH/CBD (Fig. S14a, b), which indicates the better cycling stability of NiCo-

LDH/CBD-PA than NiCo-LDH/CBD. 

  After charge/discharge tests, the NiCo-LDH/CBD-PA presents smaller values of Rct and Rw than 

the NiCo-LDH/CBD, leading to the smaller RESR and better charge transfer kinetics of the former 

(Fig. S14e). 
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Fig. S15. The dissolution test of PA in 6 M KOH electrolyte. 

It is indicated that the PA can be dissolved in 6 M KOH electrolyte. 

 

 
Fig. S16. Morphology of NiCo-LDH/CBD-PA before and after cycling test. (a, b) SEM images of 

pristine NiCo-LDH/CBD-PA. (c, d) SEM images of NiCo-LDH/CBD-PA after 5000 cycles.  

 

PA particles can be observed on the pristine NiCo-LDH/CBD-PA sample (a, b). After 5000 cycles, 

the LDHs surface is quite clean (c, d), which indicates the dissolution of PA.  
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PA
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Fig. S17. TG analysis of NiCo-LDH/CBD-PA sample before and after 5000 cycles test [heating rate: 

5 ℃ min−1, N2].  

 

The total weight loss of NiCo-LDH/CBD-PA sample after long-term charge/discharge test (32.1%) 

is lower than that of the sample before cycling test (36.6%), which indicates that partial PA polymer 

was dissolved into electrolyte during the long-term charge/discharge tests. 
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Fig. S18. HAADF image and the corresponding EDX element mappings of NiCo-LDH/CBD-PA. (a-e) 

Before cycling test. (f-j) After test for 5000 cycles. (k) The atomic percentage before/after cycling 

test. 

 

To compare the PA content in the NiCo-LDH/CBD-PA before and after the electrochemical test 

for 5000 cycles, HAADF observation and the corresponding EDX element mappings were 

performed. Generally, the LDH samples show uniform element distributions for Ni, Co, O and C (Fig. 

S18a-j). The C element mainly comes from PA, which shows much lower content for the sample 

after cycling test than that before cycling (Fig. S18k). This result supports the loss of PA polymer 

during the cycling test. 

 

  

ba c d e

gf h i j

k Sample The atomic percentage before cycling tests (%) The atomic percentage after cycling tests (%)

Ni Co O C Ni Co O C

NiCo-LDH

/CBD-PA
12.27 2.42 52.15 33.15 19.24 3.79 61.48 15.49

HAADF Ni Co O C

HAADF Ni Co O C
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