Supplementary Information

Subtly manipulating Zn²⁺ coordinated configurations with complexing agent to boost the reversibility of zinc metal anode

Jingjing Xiang^{a,b,d,#}, Minghe Luo^{a,#}, Xingxing Wu^{b,#}, Yaofeng Zhu^{d,*}, Xuan Zhang^b, Hongge Pan^{a,e}, Wenping Sun^a, Mi Yan^a, Yingying Lu^{b,c,*} Yinzhu Jiang^{a,b,*}

^aSchool of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
^bZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311200, P.R. China
^cState Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
^dSchool of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
^eInstitute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, P.R. China

Experimental section

Preparation of L_0 , L_1 , L_2 , and L_3 electrolytes: 50 mL 1 M ZnSO₄ containing 0, 2.12, 3 and 4.6 mL ethylenediamine was denoted as L₀, L₁, L₂, and L₃, respectively. The pH values of all the electrolytes were adjusted to ~4.5 with concentrated sulfuric acid.

Preparation of NiHCF cathode material: Solution A was prepared by dissolving 3 mmol Na₄Fe(CN)₆·10H₂O, 0.24 mol NaCl and 12 mmol sodium citrate in 100 mL deionized water under magnetic stirring. Solution B was formed by dissolving 6 mmol NiSO₄·4H₂O in 100 mL deionized water under magnetic stirring. Solution A was kept at a constant temperature of 90 °C through an oil bath under N₂ flow, while solution B was added dropwise to solution A at a rate of 1 mL min⁻¹ through a peristaltic pump. Then white precipitate was collected by centrifugation, washed thoroughly with deionized water and ethanol, then dried in a vacuum drying oven at 110 °C for 24 h to obtain NiHCF. As for cathode electrode: NiHCF, Ketjen black and polyvinylidene fluoride (PVDF) were mixed with a mass ratio of 7:2:1. The N-methyl pyrrolidinone (NMP) was added into the mixture, the slurry was then casted onto Ti foil.

Material characterization: The phase structures of zinc foil and by-products were assessed by the X-ray diffraction analyzer (XRD, Bruker D8 diffractometer). The surface structure of zinc foil was characterized by scanning electron microscopy (SEM, Hitachi S-4800).

Electrochemical test: The electrochemical performance of Zn/NiHCF batteries were tested by using CR2025 coin-type cell, which contains a cathode electrode, a piece of Zn foil as anode electrode and Whatman glass fiber as separator. L_0 , L_1 , L_2 , and L_3 were employed as electrolytes. The galvanostatic cycling tests were performed by Neware BTS-5 battery test system. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were carried out on the CHI604E electrochemical station.

Electrolytes	Zn^{2+}	$Zn(En)^{2+}$	$Zn(En)_2^{2+}$	$Zn(En)_3^{2+}$
L ₀	1	0	0	0
L_1	0.455	0.455	0.089	2.87×10 ⁻⁴
L ₂	0.290	0.524	0.185	1.08×10-3
L ₃	0.088	0.451	0.451	7.49×10 ⁻³

Table S1 The distribution of different Zn^{2+} -En coordinated configurations of in variouselectrolytes.

Fig. S1 Tafel curves for the Zn foil in $L_0 \sim L_3$ electrolytes.

Fig. S2 The EIS plots (a) and the corresponding enlarged view at high-frequency region (b) in different electrolytes for estimation of ionic conductivities.

Fig. S3 The EIS plots of Zn/Zn symmetric batteries with various electrolytes at different temperatures

Fig. S4 Coulombic efficiency tested of Zn/Cu cell in L_3 electrolyte.

Fig. S5 (a) XRD patterns and (b) SEM image of synthesized NiHCF.

Fig. S6 Galvanostatic charge-discharge profiles of $Zn/ZnSO_4/NiHCF$ and $Zn/ZnSO_4+En/NiHCF$ batteries at 6 th and 200 th, respectively.