Asymmetric [3 + 2] spiroannulation of pyrazolone-derived Morita-Baylis-Hillman carbonates with alkynyl ketones: facile access to spiro[cyclopentadiene-pyrazolone] scaffolds

Xingfu Wei, Yue Huang, Wenyao Wang, Shiqiang Wei, Jingping Qu and Baomin Wang*

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China E-mail: bmwang@dlut.edu.cn

Contents:

2. General procedure and characterization of MBH Carbonates 1---------------------------------------
3. Experimental procedures and characterization of compounds 3-5------------------------------------ 4

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at $30^{\circ} \mathrm{C}$ with UV detector at 254 nm . Optical rotations were reported as follows: $[\alpha]_{\mathrm{D}}^{\mathrm{T}}$ (c g/100 mL , solvent). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance II $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 151 MHz with chemical shifts reported as ppm (in $\mathrm{CDCl}_{3}, \mathrm{TMS}$ as an internal standard). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of 3ag was assigned by the X-ray analysis. Alkynyl ketones ${ }^{1}$, pyrazole-4,5-diones ${ }^{2}$ and catalysts C6-C8 ${ }^{3}$ were synthesized according to the literature procedures.

2. General procedure and characterization of MBH carbonates 1

A mixture of pyrazole-4,5-dione ($5 \mathrm{mmol}, 1.0$ equiv.) and DABCO ($1 \mathrm{mmol}, 0.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was stirred for 5 min at room temperature. Then methyl acrylate ($15 \mathrm{mmol}, 3.0$ equiv.) was added dropwise into the solution and the reaction was monitored by TLC. After completion, the solvent was removed and the crude product was purified by column chromatography with n-hexane/ethyl acetate $(3 / 1, v / v)$ to give adduct intermediate \mathbf{b}.

To a solution of MBH adduct \mathbf{b} (4.0 mmol , 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a stirred suspension of sodium hydride ($6.0 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 0.5 h , a solution of $(\mathrm{Boc})_{2} \mathrm{O}$ ($4.8 \mathrm{mmol}, 1.2$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added slowly to the above mixture. The resulting solution was stirred at room temperature for $0.5 \mathrm{~h}-4.0$ hours. The reaction mixture was washed by saturated sodium bicarbonate solution (30 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was directly purified by flash column chromatography with n-hexane/ethyl acetate ($5 / 1, \mathrm{v} / \mathrm{v}$) to afford the MBH carbonates 1a-11.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-5-oxo-1,3-diphenyl-4,5-dihydro$\mathbf{1 H}$-pyrazol-4-yl)acrylate (1a); The product was obtained as a white solid (72% yield for two steps); $\mathrm{mp} 146.6-147.3{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=6.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.23$
$(\mathrm{m}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 168.1, 163.4, 138.1, 134.6, 130.7, 130.6, 129.4, 128.9, 128.8, 126.4, 125.4, 119.2, 84.9, 52.4, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$459.1527, Found 459.1517.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-1-(tert-butyl)-5-oxo-3-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1b); The product was obtained as a white solid (67% yield for two steps); mp 107.9-108.6 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.80-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}$, 2 H), $3.62(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d)
$\delta 169.1,163.5,149.7,149.2,134.9,130.2,129.8,129.6,128.6,125.8,84.0,81.3,58.3,52.0,27.9,27.5$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$417.2020, Found 417.12021.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-3-(4-fluorophenyl)-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1c); The product was obtained as a white solid (76% yield for two steps); mp 141.5-142.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.98$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.87 (m, 2H), $7.50-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 163.3,150.5,149.5,138.0,134.5$, 130.7, 128.9, 128.5, 128.4, 125.5, 119.3, 116.2, 116.0, 85.1, 52.5, 27.5; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-108.35--108.58$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 477.1432$, Found 477.1438 .

Methyl 2-(3-(4-bromophenyl)-4-((tert-butoxycarbonyl)oxy) -5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1d); The product was obtained as a white solid (80% yield for two steps); mp 148.3-149.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.09-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 167.9,163.3$, $150.5,149.5,138.0,134.5,130.7,128.9,128.5,128.4,125.5,119.3,116.2,116.0,85.1,81.0,52.5,27.5$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$539.0612, Found 539.0596.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-5-oxo-1-phenyl-3-(p-tolyl)-4,5-dihy-dro-1H-pyrazol-4-yl)acrylate(1e); The product was obtained as a white solid (73% yield for two steps); mp 119.1-120.3 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.07-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 151.6, 149.6, 141.0, $138.2,134.7,130.5,129.6,128.9,126.6,126.3,125.3,119.2,84.9,52.4,27.5,21.6$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$473.1683, Found 473.1692.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-3-(4-methoxyphenyl)-5-oxo-1-phe- nyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1f); The product was obtained as a white solid (68% yield for two steps); mp 143.3-144.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.12-7.96$ (m, 2H), $7.91-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, 2 H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 163.4,161.5,138.2,134.8,130.3,128.9,128.1,125.3,122.0,119.2,114.3,84.8,55.3,52.4,27.5$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$489.1632, Found 489.1641.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-5-oxo-1-phenyl-3-(thiophen-2-

 yl)-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1g); The product was obtained as a white solid (58% yield for two steps); mp 133.8-134.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.04-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 1 \mathrm{H})$, $7.05(\mathrm{dd}, J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$;${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 163.3,149.5,138.0,134.5,132.4,130.8,128.9,128.9,128.4$, 127.7, 125.5, 119.3, 85.0, 52.5, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 465.1091, Found 465.1098.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-3-(naphthalen-1-yl)-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1h); The product was obtained as a white solid (77% yield for two steps); mp 165.6-166.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.89$ (dd, $J=14.7,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~m}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, 1.34 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 151.7,149.8,138.2,134.5,134.3,131.3,130.8$, $129.0,128.6,127.7,127.0,126.7,126.4,125.9,125.5,124.7,119.3,85.0,82.3,52.5,27.5$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 509.1683$, Found 509.1690.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-3-(naphthalen-2-yl)-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1i); The product was obtained as a white solid (82% yield for two steps); mp 168.4-169.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.22-8.11(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86$ (dd, J $=12.1,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, 2 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 168.2, 163.4, $151.4,138.1,134.8,132.9,130.6,129.0,128.9,128.8,127.9,127.5,126.9,126.7,125.5,123.1,119.3$, 85.0, 52.4, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 509.1683$, Found 509.1693.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-3-ethyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1j); The product was obtained as a white solid (62% yield for two steps); mp 124.7-125.9 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~m}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=59.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~m}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 168.2,157.4,138.1,133.4$, 131.0, 128.8, 125.1, 119.0, 84.7, 81.8, 52.5, 27.6, 21.1, 9.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$411.1527, Found 411.1536.

Methyl 2-(4-((tert-butoxycarbonyl)oxy)-3-cyclopropyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1k); The product was obtained as a white solid (62% yield for two steps); mp $144.6-145.8{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.92-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, J=53.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~m}$, $1 \mathrm{H}), 1.00-0.80(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 163.5,158.1,149.7,138.2,133.4$, $130.9,128.8,125.0,118.9,84.6,81.7,52.5,27.6,8.8,8.3,6.5$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 423.1527$, Found 423.1534.

Butyl 2-(4-((tert-butoxycarbonyl)oxy)-5-oxo-1,3-diphenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (11); The product was obtained as a white solid (69% yield for two steps); mp 145.4-146.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.14-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.36(\mathrm{~m}$, $5 \mathrm{H}), 6.71(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{dd}, J=8.5,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.35(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 163.1$,
$151.5,138.2,134.9,130.6,130.5,129.4,128.9,128.8,126.4,125.3,119.0,84.9,65.6,30.2,27.5,19.0$, 13.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$501.1996, Found 501.2006.

 1m

Benzyl 2-(4-((tert-butoxycarbonyl)oxy)-5-oxo-1,3-diphenyl-4,5-dihydro-1H-pyrazol-4-yl)acrylate (1m); The product was obtained as a white solid (80% yield for two steps); mp $169.1-169.8{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.18$ (m, 4H), $7.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=12.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-4.87(\mathrm{~m}$, 2 H), 1.35 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 168.0,149.6,138.1,134.7,134.5,131.0$, 130.6, 129.3, 128.8, 128.8, 128.5, 128.4, 128.3, 126.4, 125.3, 119.2, 84.9, 67.3, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$535.1840, Found 535.1847.

3. Experimental procedures and characterization of compounds 3

A tube was charged with pyrazolone-derived MBH carbonates $1(0.2 \mathrm{mmol})$, alkynyl ketone $2(0.3$ $\mathrm{mmol}), \mathbf{C 8}(0.02 \mathrm{mmol})$ and toluene $(1 \mathrm{~mL})$. The reaction was monitored by TLC. The product was directly purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1$) to give the product 3.

Compound 3aa

Prepared according to the procedure within 6 h as white solid ($77.9 \mathrm{mg}, 87 \%$ yield); mp 138.8-139.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-72.14\left(\mathrm{c} 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.06(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51$ (m, 2H), 7.47 (m, 4H), 7.37 (m, 3H), 7.29 (d, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
Chloroform-d) $\delta 189.8,165.7,161.7,152.8,147.7,144.7,144.6,139.2,138.0,136.8,133.5,131.2$, 130.7, 129.4, 129.1, 129.0, 128.8, 126.0, 125.5, 119.5, 73.2, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$449.1496, Found 449.1490; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=12.0 \mathrm{~min}$, tminor $=9.5 \mathrm{~min})$.

Compound 3ba

Prepared according to the procedure within 10 h as yellow solid $(69.4 \mathrm{mg}, 81 \%$ yield); mp 112.3-113.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}=-51.87\left(\mathrm{c} 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.00(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=10.2,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 189.9,166.8,161.8,149.9,147.2,145.1,144.3,138.9,138.3$, $137.0,136.5,134.1,133.2,131.5,130.3,130.1,129.3,128.9,128.7,125.0,59.5,52.0,28.4$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 429.1809$, Found 429.1808; Enantiomeric excess was determined to be 88% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=15 / 1, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=15.8 \mathrm{~min}$, tminor $\left.=12.8 \mathrm{~min}\right)$.

Compound 3ca

Prepared according to the procedure within 10 h as white solid $(85.8 \mathrm{mg}, 92 \%$ yield); mp 128.3-129.4 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-48.64\left(c 0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.05(\mathrm{~d}, ~ J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.96(\mathrm{~m}$, 3 H), $3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 189.7, 165.7, 165.6, $163.2,161.7,151.8,147.8,144.7,144.3,139.1,137.9,136.6,133.6,129.4,129.1$, $128.8,127.6,127.5,127.0,126.1,119.5,116.4,116.2,73.1,52.3 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-107.65-107.68$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$467.1402, Found 467.1389. Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AS-H column, hexane $/ 2$-propanol $=9 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=27.3 \mathrm{~min}$, tminor $=38.5 \mathrm{~min}$).

Peak\#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* S	[mAU]	
1	25.626	MM T	4.9803	1.05	5e4	35	7371	50.2646
2	36.842	MM T	4.5161	1.03	8e4	38.	8103	49.7354

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	Area		Height		Area
				mAU	* S	[mAU]	
1	27.281	MM T	3.2619	1.02	5	524	7607	95.8897
2	38.540	MM T	2.0976	4404	4551		99277	4.1103

Compound 3da

Prepared according to the procedure within 10 h as white solid $(83.1 \mathrm{mg}, 79 \%$ yield); mp 149.1-150.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-28.57\left(c 0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.05(\mathrm{~d}, ~ J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.82$ (m, $2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 189.7, 165.6, 161.7, 151.8, 147.9, 144.8, 144.1, 139.0, 137.9, 136.6, 133.6, 132.4, 129.6, 129.4, 129.1, 128.8, 126.8, 126.2, 125.6, 119.6, 72.9, 52.4; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 527.0601$, Found 527.0578; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=15.2 \mathrm{~min}$, tminor $\left.=12.4 \mathrm{~min}\right)$.

Compound 3ea

Prepared according to the procedure within 12 h as white solid ($83.2 \mathrm{mg}, 90 \%$ yield); mp 168.1-169.3 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-25.00\left(c 0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 189.8, 165.7, $161.8,147.5,144.9,144.6,141.7,139.3,138.0,136.8,133.5,129.8,129.4,129.0$, $128.8,128.0,125.9,125.4,119.5,73.3,52.3,21.6$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 463.1652, Found 463.1638; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=9 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=17.2$ min, tminor $=19.6 \mathrm{~min}$).

Compound 3fa

Prepared according to the procedure within 12 h as white solid $(87.0 \mathrm{mg}, 91 \%$ yield); mp 130.1-131.3 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-89.00\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.05$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.91-7.79$ (m, $2 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 189.9,165.6,161.9,161.8,152.4,147.4,145.0,144.5,139.3$, 138.1, 136.7, 133.5, 129.4, 129.0, 128.8, 127.1, 125.9, 123.4, 119.5, 114.5, 73.3, 55.4, 52.3; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$479.1601, Found 479.1580; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=4 / 1, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=19.0 \mathrm{~min}$, tminor $\left.=15.2 \mathrm{~min}\right)$.

Compound 3ga

Prepared according to the procedure within 12 h as white solid $(79.0 \mathrm{mg}, 87 \%$ yield); mp 130.3-131.1 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-31.52\left(c 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 188.3, 165.3, 161.6, 152.4, 146.9, 145.6, 143.6, $140.0,139.8,137.8,132.6,131.4,130.6,129.8,129.2,129.1,126.2,125.4,119.5$, 117.7, 116.7, 73.4, 52.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 455.1060$, Found 455.1049; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AS-H column, hexane $/ 2$-propanol $=95 / 5, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=49.0 \mathrm{~min}$, tminor $=67.4$ min).

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	mAU	* s	[mAU]	-
1	53.202	MM T	4.6847	713	73389		38998	50.4119
2	72.829	MM T	6.9299	7020	09766	16.	88359	49.5881

Compound 3ha

Prepared according to the procedure within 18 h as white solid $(75.7 \mathrm{mg}, 76 \%$ yield); mp 172.3-173.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-76.83\left(c 0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 9.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~m}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 2H), 3.68 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 189.8,165.5,153.7$, $147.5,144.8,144.5,138.9,138.1,136.8,134.2,133.5,131.9,130.6,129.4,129.2,128.8,128.0,126.9$, $126.5,126.2,126.1,126.0,124.9,119.5,52.3$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 499.1652, Found 499.1636; Enantiomeric excess was determined to be 80% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=20.8$ \min, tminor $=12.9 \mathrm{~min}$).

Compound 3ia

Prepared according to the procedure within 14 h as white solid $(79.7 \mathrm{mg}, 80 \%$ yield); mp 169.1-170.1 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-86.79\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.17-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.99-7.94$ (m, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ $(\mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ ($\mathrm{s}, 3 \mathrm{H}$),${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 189.8, 161.8, 147.7, 144.8, 144.7, $139.6,138.0,136.7,134.5,133.5,133.0,129.4,129.1,128.9,128.3,127.8,127.7$, $126.9,126.1,125.6,122.4,119.6,73.2,52.3$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 499.1652, Found 499.1633; Enantiomeric excess was determined to be 75% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=23.9$ \min, tminor $=33.1 \mathrm{~min}$).

Compound 3ja

Prepared according to the procedure within 22 h as white solid $(70.4 \mathrm{mg}, 88 \%$ yield); mp 167.4-168.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-96.69\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.95(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{p}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 189.6, 166.2, 161.8, 158.9, 148.1, 145.4, 142.6, 138.0, 136.7, 133.5, 129.3, 129.0, 128.8, 125.6, 119.3, 74.6, 52.3, 22.8, 10.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$401.1496, Found 401.1488. Enantiomeric excess was determined to be 86% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=10.2 \mathrm{~min}$, tminor $=14.5 \mathrm{~min})$.

Compound 3ka

Prepared according to the procedure within 20 h as white solid ($70.9 \mathrm{mg}, 86 \%$ yield); mp 160.1-161.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-56.33\left(c \quad 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.98(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.58(\mathrm{~m}$, $1 \mathrm{H}), 7.50$ (dd, $J=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.87$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~m}, 1 \mathrm{H})$, 0.88 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 189.7, 166.0, 161.8, 159.5, 148.1, 145.3, 142.6, 138.0, 136.7, 136.7, 133.5, 129.4, 128.9, 128.8, 125.5, 119.2, 74.8, 52.3, 9.6, 9.3, 8.0; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$413.1496, Found 413.1487; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AS-H column, hexane/2-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=13.5 \mathrm{~min}$, tminor $=16.7 \mathrm{~min}$).

Compound 31a

Prepared according to the procedure within 22 h as white solid $(82.4 \mathrm{mg}, 84 \%$ yield); mp 179.6-180.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-106.43\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.83(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 2 \mathrm{H})$, $0.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 188.8$, 164.7, $160.3,151.8,146.6,143.8,143.4,138.5,137.0,135.7,132.4,130.2,129.7,128.4,128.0,128.0,127.7$, 124.8, 124.4, 118.1, 72.1, 64.2, 29.4, 18.0, 12.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 491.1965, Found 491.1947; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=11.2$
\min, tminor $=8.5 \mathrm{~min})$.

Compound 3ma

Prepared according to the procedure within 8 h as white solid $(90.1 \mathrm{mg}, 86 \%$ yield); mp 176.8-178.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-99.56\left(c 0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}$, $7 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 189.7, 165.6, 161.0, 152.7, 147.6, 145.4, 144.6, 139.0, $137.9,136.7,134.8,133.5,131.2,130.7,129.4,129.1,129.0,128.8,128.5,128.3$, 128.1, 125.9, 1255, 119.4, 73.2, 67.1; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 525.1809$, Found 525.1806; Enantiomeric excess was determined to be 86% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=18.5 \mathrm{~min}$, tminor $=$ 13.3 min).

Compound 3ab

Prepared according to the procedure within 10 h as white solid $(85.7 \mathrm{mg}, 92 \%$ yield); mp 130.2-131.2 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-76.30\left(c 0.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.16-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 6 \mathrm{H})$, $7.22-6.90(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 186.9$, $165.4,161.7,161.4,158.9,152.7$, 148.5, 145.9, 145.9, 143.5, 139.0, 138.0, $134.3,134.2,131.2,130.8,130.7,129.1,129.0,126.0,125.5,124.7,124.7,119.5,116.8,116.6,73.1$, 52.3; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.73--110.80$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 467.1402$, Found 467.1391; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AS-H column, hexane $/ 2-\mathrm{propanol}=95 / 5, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=$ 44.1 min, tminor $=31.1 \mathrm{~min}$).

Compound 3ac

Prepared according to the procedure within 10 h as white solid $(78.2 \mathrm{mg}, 81 \%$ yield); mp 138.6-139.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-81.25\left(c \quad 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.04(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ $-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 189.3, 165.3, $161.7,152.6,148.3,146.9,143.0,139.4,137.9,137.4,132.1,131.2,130.4,129.4,129.0,127.1,126.0$, 125.6, 119.5, 73.1, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 483.1106$, Found 483.1098; Enantiomeric excess was determined to be 80% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=36.9 \mathrm{~min}$, tminor $=24.9$ min).

Compound 3ad

Prepared according to the procedure within 10 h as white solid $(79.5 \mathrm{mg}, 86 \%$ yield); mp 128.5-129.3 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-38.67\left(c \quad 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.09(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 192.1,165.6,161.8,152.6,149.2,146.1,143.8,139.2,138.0,137.5,137.0,131.6,131.4,131.2,130.8$, 129.1, 129.0, 128.9, 126.0, 125.6, 125.4, 119.5, 73.1, 52.3, 20.2; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$463.1652, Found 463.1645; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AS-H column, hexane/2-propanol $=30 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=34.1 \mathrm{~min}$, tminor $=46.0 \mathrm{~min}$).

Compound 3ae

Prepared according to the procedure within 12 h as white solid $(86.8 \mathrm{mg}, 90 \%$ yield); mp 128.4-129.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-93.33\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.12-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.66 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 188.4,165.5,161.6$, $152.6,147.3,144.9,144.1,135.3,133.4,131.3,130.7,130.1,129.2,129.1,129.1,127.6,126.1,125.4$, 119.6, 73.3, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$483.1106, Found 483.1097; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AS-H column, hexane $/ 2$-propanol $=9 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=19.2 \mathrm{~min}$, tminor $=25.5 \mathrm{~min}$).

Compound 3af

Prepared according to the procedure within 10 h as white solid $(78.0 \mathrm{mg}, 81 \%$ yield); mp 128.9-129.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-34.25\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.07-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $188.5,165.6,161.7,152.7,147.4,144.5,144.4,140.1,139.4,138.0,135.0,131.3$, 130.8, 130.7, 129.2, 129.1, 129.1, 126.1, 125.4, 119.6, 73.2, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 483.1106$, Found 483.1095; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AS-H column, hexane/2-propanol $=9 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=19.2 \mathrm{~min}$, tminor $=24.6 \mathrm{~min}$) .

Compound 3ag

Prepared according to the procedure within 16 h as white solid ($95.7 \mathrm{mg}, 91 \%$ yield); mp 140.1-141.6 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-96.00\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.02(\mathrm{~d}, ~ J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, 7.01 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 188.7, 165.6, 161.7, 152.6, 147.4, 144.6, 144.3, 139.4, 137.9, 135.4, 132.2, 131.2 , 130.9, 130.7, 129.1, 129.1, 128.8, 126.1, 125.4, 119.6, 73.2, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 527.0601$, Found 527.0591; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AS-H column, hexane/2-propanol $=30 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8$ $\mathrm{mL} / \mathrm{min}$, tmajor $=60.0 \mathrm{~min}$, tminor $=81.1 \mathrm{~min}$).

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* S	[mAU]	
1	60.021	MM T	8.2677	9.31	4 e 4	187	6009	94.8955
2	81.143	MM T	5.0154	5010	6494		3057	5.1045

Compound 3ah

Prepared according to the procedure within 10 h as white solid ($84.2 \mathrm{mg}, 89 \%$ yield); mp 126.8-127.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-36.79\left(c 0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, 2H), 3.72 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 189.7, 165.5, 161.7, $148.4,147.7,145.0,144.3,138.8,137.8,136.6,133.6,133.3,129.4,129.2,129.1$, $128.8,128.0,127.3,126.1,119.6,73.1,52.4$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 474.1448, Found 474.1441; Enantiomeric excess was determined to be 67% (determined by HPLC using chiral AS-H column, hexane/2-propanol $=9 / 1, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=61.4$ \min, tminor $=79.3 \mathrm{~min})$.

Compound 3ai

Prepared according to the procedure within 12 h as white solid ($70.2 \mathrm{mg}, 76 \%$ yield); mp 136.4-137.3 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-47.25\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.05$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.03-7.95$ (m, 2H), $7.83-7.74$ (m, 2 H), $7.57-7.51$ (m, 2H), 7.47 (dd, $J=8.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44-7.38$ (m, 1H), $7.35(\mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 189.5,165.9$, $161.8,152.8,147.8,145.0,144.6,144.1,139.0,138.0,134.1,131.2,130.7,129.6,129.5,129.1,129.1$, 126.0, 125.5, 119.5, 73.1, 52.3, 21.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 463.1652$, Found 463.1641; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=51.7 \mathrm{~min}$, tminor $=$ 36.1 min).

Compound 3aj

Prepared according to the procedure within 12 h as white solid ($78.4 \mathrm{mg}, 82 \%$ yield); mp 138.1-139.7 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-53.67\left(c \quad 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ MHz, Chloroform-d) $\delta 8.05(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.91$ $-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 189.9, 165.6, 161.9, 161.8, 152.4, 147.4, 145.0, 144.5, 139.3, 138.1, 136.7, 133.5, 129.4, 129.0, 128.8, 127.1, 125.9, 123.4, 119.5, 114.5, 73.3, 55.4, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$479.1601, Found 479.1590; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AS-H column, hexane/2-propanol = 9/1, $\lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=38.8 \mathrm{~min}$, tminor $\left.=45.9 \mathrm{~min}\right)$.

Compound 3ak

Prepared according to the procedure within 10 h as white solid ($89.6 \mathrm{mg}, 90 \%$ yield); mp 136.3-137.2 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-59.23\left(c \quad 0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J$ $=14.5,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 189.8,165.8,161.8,152.8,147.9,144.8,144.3,139.2$, $138.1,135.7,134.1,132.3,131.5,131.2,130.8,129.7,129.1,129.1,128.9,127.9,127.1,126.0,125.5$, 124.7, 119.6, 73.2, 52.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 499.1652$, Found 499.1642; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=16.9 \mathrm{~min}$, tminor $=12.4 \mathrm{~min}$).

Compound 3al

Prepared according to the procedure within 12 h as white solid ($79.9 \mathrm{mg}, 88 \%$ yield); mp 127.0-127.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-30.63\left(c 0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.10-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.76$ (dd, $J=17.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (d, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 180.9,165.7,161.7,152.8,147.8,144.5$, $142.9,139.2,138.0,135.3,134.5,131.2,130.7,129.1,128.5,126.0,125.5,119.5$,
73.0, 52.3; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$455.1060, Found 455.1049; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AS-H column, hexane $/ 2$-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=17.6 \mathrm{~min}$, tminor $=27.3 \mathrm{~min}$).

Compound 3am

Prepared according to the procedure within 48 h as yellow liquid ($55.2 \mathrm{mg}, 58 \%$ yield); $[\alpha]_{\mathrm{D}}^{17}=-26.59\left(c 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{q}$, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{~s}$, $1 \mathrm{H}), 3.66(\mathrm{t}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.13(\mathrm{dq}, J=7.1,3.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-2.94$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 194.5, 165.5, 161.7, 152.6, 148.6, 143.1, 143.0, 140.4, 139.1, 137.9, 131.2, 130.7, 129.0, 129.0, 128.6, 128.3, 126.3, 126.0, 125.4, 119.5, 73.0, 52.3, 41.3, 29.6; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 477.1809$, Found 477.1794; Enantiomeric excess was determined to be 55% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=8 / 2, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=31.9 \mathrm{~min}$, tminor $=27.8$ min).

Gram-scale Synthesis of 3ag

A tube was charged_with MBH Carbonates $\mathbf{1 a}(870 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), alkynyl ketone $\mathbf{2 g}$ ($620 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv), $\mathbf{C} \mathbf{8}(81 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv) and toluene $(10 \mathrm{~mL})$ at rt . The reaction was monitored by TLC. The product was purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1$) directly to give the product 3 ag 926 mg as white solid $(88 \%$ yield, 90% ee).

The procedure for the synthesis of compounds 4

To a Schlenk tube were added 3ag ($53 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PhB}(\mathrm{OH})_{2}(25 \mathrm{mg}, 0.2 \mathrm{mmol}$, 2.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(12 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(104 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv) and toluene $/ \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 1 \mathrm{~mL})$. The reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 6 h under a nitrogen atmosphere. The product was purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1)$ to give the product 4 as yellow solid ($43.0 \mathrm{mg}, 82 \%$ yield $)$; mp 156.1-157. ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-64.87(c$ $0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.04-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{ddd}, J=25.0,18.7,11.5 \mathrm{~Hz}, 12 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 188.5,165.4,158.4,149.4,145.3,140.9,139.9,137.5,135.3,130.5,129.0,128.8$, 128.3, 128.2, 127.3, 127.2, 126.2, 122.6, 118.6, 117.4, 51.2; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 525.1809$, Found 525.1802; Enantiomeric excess was determined to be 88% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=$ 10.2 min, tminor $=8.2 \mathrm{~min}$).

The procedure for the synthesis of compounds 5

To a solution of 3aa ($54.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(2.0 \mathrm{~mL}$) was added sodium borohydride ($5.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{CeCl}_{3} 7 \mathrm{H}_{2} \mathrm{O}\left(45 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$ for 30 min . The product was purified by silica gel column chromatography (petroleum ether/EtOAc $=10: 1$) to give 5 as white solid ($30.6 \mathrm{mg}, 68 \%$ yield, $7: 1 \mathrm{dr}$); mp 162.7-164.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-74.63(c 0.70$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.51-7.42(\mathrm{~m}, 9 \mathrm{H}), 7.39(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 167.5,161.8,154.0,153.9,145.9,140.8,139.0,138.2$, 132.2, 130.8, 129.0, 128.9, 128.7, 128.6, 126.9, 125.7, 125.6, 119.5, 72.3, 71.4, 52.0; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 451.1652$, Found 451.1655; Enantiomeric excess was determined to be 86% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=7 / 3, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min}$, tmajor $=16.6 \mathrm{~min}$, tminor $=10.3 \mathrm{~min}$).

4. X-ray crystal structure of compound 3ag

CCDC: 2189938
Crystal data and structure refinement for 3ag.

Identification code	3 ag
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{4}$
Formula weight	529.36
Temperature/K	295.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 21_{1} 2_{2}$
a/Å	9.5080 (5)
b/Å	12.3736(6)
c/Å	20.7192(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2437.6(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.442
μ / mm^{-1}	1.725
$\mathrm{F}(000)$	1076.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.2 \times 0.15$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.932 to 54.964
Index ranges	$-12 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-26 \leq 1 \leq 26$
Reflections collected	47283
Independent reflections	$5592\left[\mathrm{R}_{\text {int }}=0.0760, \mathrm{R}_{\text {sigma }}=0.0534\right]$
Data/restraints/parameters	5592/0/317
Goodness-of-fit on F^{2}	1.096
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0581, \mathrm{wR}_{2}=0.1227$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0963, \mathrm{wR}_{2}=0.1405$
Largest diff. peak/hole / e \AA^{-3}	0.35/-1.19
Flack parameter	$0.044(5)$
CCDC number	2189938

5. References

(1) (a) F. Shi, S. Luo, L. Gong, Org. Lett., 2011, 13, 4680-4683; (b) A. Bugarin and B. T. Connell, Tetrahedron Lett., 2015, 56, 3285-3287; (c) J. Rong, H. Li, R. Fu, W. Sun, T.-P. Loh and Y. Jiang, ACS Catal., 2020, 10, 3664-3669.
(2) (a) P. Chauhan, S. Mahajan, U. Kaya, A. Peuronen, K. Rissanen and D. Enders, J. Org. Chem., 2017, 82, 7050-7058; (b) U. Kaya, P. Chauhan, S. Mahajan, K. Deckers, A. Valkonen, K. Rissanen and D. Enders, Angew. Chem., Int. Ed., 2017, 56, 15358-15362; (a) K. Kumar, B. Singh, S. Hore and R. P. Singh, New J. Chem., 2021, 45, 13747-13750.
(3) (a) A. R. Choudhury and S. Mukherjee, Org. Biomol. Chem., 2012, 10, 7313-7320; (b) Y. Nakamoto, F. Urabe, K. Takahashi, J. Ishihara and S. Hatakeyama, Chem.-Eur. J., 2013, 19, 12653-12656.

6. NMR spectra for compounds

$$
\begin{aligned}
& \underbrace{\infty}
\end{aligned}
$$

$\stackrel{\circ}{\circ}$

1a
\qquad

1b

de Jid e
$\stackrel{\square}{0}$
$\stackrel{\sim}{i}$

1c

\qquad ।

1c

無

JJ lil l

1d

$\stackrel{8}{8}$
İ

\%

J/11

 융

J/ J, Js
$\stackrel{8}{\infty}$
$\underset{1}{\infty}$
$\underset{j}{1}$
j
f

Coses)

8 \%	\%ํ.		\cdots	\%	$\stackrel{\circ}{8}$	
- \%	守等		¢ ¢	\sim	$\stackrel{\sim}{\sim}$	
T 1	$1 /$	-nvij	\|		\%	

Ch

~
$\stackrel{\stackrel{5}{7}}{\stackrel{\sim}{1}}$

1h
無

III /r

$1 i$

等
in
1

(Ph

高

らす8a
$\stackrel{\sim}{\square}$
$\iiint \int$
$\stackrel{n}{1}$
r

1m

[^0]3ba

Cosh
3ba

$\stackrel{\sim}{\odot}$		8
$\stackrel{\infty}{\infty}$		\%
T	ア丁-N-	

3da

就	N	
$\stackrel{\circ}{\circ}$	$8{ }^{-1}$	むすずすべ\％
T		

＂．
$\iiint \iiint$

Chersols
3fa

			$\begin{aligned} & \text { T1 T } \\ & \stackrel{\sim}{\alpha} \\ & 0 \\ & \hline \end{aligned}$														
${ }^{1} 5$	8.0	7.5	7.0														


```
~~
```


3ia

NNNNNNNNNNO

3ja

8	80\％		$\stackrel{1}{ }$	$\stackrel{\sim}{\sim}$	
$\stackrel{\otimes}{\square}$	\％		\％	¢	8id
1	111	T｜\V｜V｜｜	｜	，	V

3ka

－ーが，

Ph
3la

$\iint_{1} / \|_{1}$
\int
Ph
3ma

0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5	4.5	4.0	3.5	0	5	2.0	. 5	1.0	0.5	0.0

3ab

Ch
3ad

3ae

N	
∞	
	-r-r-r-r-rror

||ll

3 ag

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

3ah

T
 ふुन

\qquad

3al

[^1]

[^0]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & 10\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

